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Abstract—Lane information is essential for safe autonomous
driving. In this article, we present a multisensor fusion frame-
work for ego and adjacent lanes with a novel fusion quality
measure and dynamic lane mode strategies for erroneous man-
agement. The framework fuses road marking lines based on
Dempster-Shafer theory and tracks lanes with a particle filter.
Then, a quality measure for each line is computed, integrating
sensor coherence, availability as well as temporal continuity. This
quality is essential to deploy different lane management strategies
in order to avoid integrating erroneous data. The proposed
framework was evaluated in a lateral control architecture with
autonomous driving on open roads and proved its robustness and
availability.

Index Terms—sensor fusion, data fusion, lanes, autonomous
driving, quality, confidence

I. INTRODUCTION

Autonomous driving faces many challenges which can be
seen as twofold. Firstly, reacting to surrounding objects such
as cars or pedestrians. And secondly, keeping the vehicle
moving along a correct path. To do so, detecting the road and
the correct lane is a mandatory requirement. Lane data pro-
vides useful information for many ADAS (Advanced Driver-
Assistance Systems) applications such as Lane Departure
Warning, Lane Keeping, Automatic Lane Change and more.

In the context of self-driving vehicles, this information is
even more crucial as it is at the heart of the critical safety
of the vehicle. To cope with the critical safety requirements,
multisensor data fusion has been widely adopted for object
detection [1] or lane detection [2]. As no single sensor fulfils
all safety requirements, the objective is to improve detection
by combining information from several sources using different
and complementary technologies: optical camera, radar, lidar,
etc. The redundancy of sources not only insures a larger field
of view but also a more reliable and robust unified information,
and ultimately a safer detection.

The fundamental challenge of data fusion is the inherent
imperfection of data. To tackle this problem, different fusion
theories were developed. Bayesian fusion [3] provides a for-
malism for combining information using conditional probabil-
ity according to the Bayes rules. It is a well-established theory,
however it can be difficult estimating the conditional proba-
bilities and it is ineffective in representing data imperfection.
Another fusion theory is fuzzy set logic [4], which introduces
the notion of partial set membership or partial truth, as

opposed to Boolean membership. Fuzzy logic enables fuzzy
reasoning rather than crisp reasoning as in Dempster-Shafer
theory and Bayesian theory. It’s an intuitive theory to represent
and combine vague data produced by human experts in a
linguistic fashion.
Dempster-Shafer theory (DST) [5], [6], also called belief or
evidence theory is a generalization of the Bayesian inference.
It provides a formalism to represent incomplete knowledge,
updating beliefs and a combination rule. DST fusion is also
able to consider conflict between sources. Instead of assigning
unknown evidence to prior probabilities, this evidence is
assigned to ‘ignorance’, giving the fusion more flexibility. One
big advantage of using DST is the ability to represent both
accuracy and reliability of sensors. Therefore we chose DST
for our multisensor fusion framework. For a more detailed
review of data fusion theories, refer to [7].

In this paper, we concentrated on the challenge of multi-
sensor ego and adjacent lanes fusion for a level 2 to 4 of
autonomy [8] in highway and beltway road environments.
We present a real-time multisensor fusion framework based
on grid DST applied to road-marking lines. To the authors’
knowledge, evidence theory has not been applied to high level
lane fusion in the existing literature. In conjunction with lane
fusion, an Erroneous Management (EM) module is proposed.
This module’s goal is to prevent possible erroneous sensor
data by: first assessing the fused lines quality with a novel
quality measure, and then deploying different Dynamic lane
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Fig. 1: Illustration of the used lanes and road structure.



mode (DLM) strategies of management of this data.

II. ROAD STRUCTURE AND LANE MODEL

The first step in constructing a lane detection system is to
choose how to model the road. Because of the high level au-
tomation needed, detecting the ego lane alone is not sufficient.
Therefore, a road observation obs, as illustrated in Fig. 1, is
modelled as three lanes: ego lane, left and right adjacent lanes.
Where each lane is composed of three geometric lines: right
line, left line and lane. A line represents the physical road
marking line on the road, and a lane is the virtual line in
the middle of the road a vehicle would ideally follow to stay
centred on the lane. Thus, a lane will be computed based on
the corresponding right and left road marking lines.

Road-marking lines and lanes can be represented with
different geometrical models, depending on the complexity
needed. For example, a simple straight line can approximate
a lane for a short range detection. Curvature information
can be integrated with a circular model, although this model
drifts from the real lane on high ranges. Polynomial functions
(an approximation of clothoids) add curvature derivative for
a better representation of curves, as well as the possibility
of having varying lane width, making it a good represen-
tation for high ranges and high speeds. Splines, a piece-
wise polynomial function, are popular models however more
computationally expensive considering a real-time application
in an autonomous vehicle. An extensive review of lane models
in literature can be found in [9].

The sensors used in the following experiments provide lanes
in the form of polynomial functions. As such, we adopted a
road structure based on K = 3 degree polynomial functions
y(x) :

y(x) = c3x
3 + c2x

2 + c1x+ c0, (1)

where c0[meter] is the lateral offset of the line to the ego vehi-
cle, arctan(c1)[radian] is the heading angle, 2×c2[1/meter]
is the curvature and 6× c3[1/meter2] is the curvature deriva-
tive. y(x) represents the lateral position of the line to the
vehicle. Each line and lane is a parametrised polynomial
function of the form (1) in the road structure.

III. PROPOSED FRAMEWORK

In our system, lines and lanes are handled differently. In
fact, the lateral controller employed in the test vehicle architec-
ture bases its manoeuvre commands on lane information only.
Thus, we fuse the road marking lines from sensors, whereas
we construct the lanes in the tracker using the corresponding
left and right fused lines of each lane. This helps integrate
possible divergent information from the lines into a filtered
lane result.

The overall framework of the proposed solution is presented
in Fig. 2. First, each sensor n ∈ [1, N ] produces a road
observation noted obsn. Then, for every road marking line,
a fusion is performed independently, producing fused lines
{linesfused}. At the same time, the tracker uses odometry data
from the vehicle (speed and yaw rate), to make a prediction
of the lanes’ state {lanespredicted}.The erroneous manager
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Fig. 2: General framework of the proposed lane fusion module.

computes a quality measure for each fused line to deploy a dy-
namic lane mode strategy DLM . Depending on this strategy,
the tracker will update each lane prediction with the corre-
sponding fused lines. Lastly, the tracked lanes {lanestracked}
form the final road observation which is transmitted to the
lateral controller to compute the manoeuvre command.

A. Dempster-Shafer based Grid Fusion

The fusion is performed on a line by line basis. For each
road-marking line ’li’, a fusion is performed between the
corresponding lines {yli1 (x), yli2 (x), .., yliN (x)} provided by the
N sensors {obs1, obs2, .., obsN}. The fusion of these lines is
actually computed by fusing each coefficient {c0, c1, c2, c3}lin
of the polynomial functions (1) independently, such that the
result of a fused line is in the form ylif (x):

ylif (x) = cli3,fx
3 + cli2,fx

2 + cli1,fx+ cli0,f ,

clik,f = fusion{clik,1, clik,2, .., clik,N},∀k ∈ [0,K].
(2)

Dempster-Shafer fusion is applied to each of these real-
valued coefficients. The main steps are illustrated in Fig. 3. In
the following, the index k ∈ [0,K] will denote a coefficient
variable (1), n ∈ [0, N ] a sensor, f a fusion result and for
simplicity the line index ’li’ will be omitted.

The first concern it how to define real valued coefficients
in a discrete frame of discernment.

1) Frame of discernment: It represents all possible states
of the fusion variable. Here, continuous values ck need to be
combined. Therefore, each k fusion variable is discretised over
a 1-dimension regular grid of the range of possible values
[{ck}min, {ck}max], with each cell i in the form [i, i + di[
with {i, di} ∈ R. The frame of discernment Θ is formed of a
sequence of these intervals and a belief mass will be defined
for each element of the power-set 2Θ.

2) Prototype modelling: In order to combine the input
coefficients from each sensor using the DS combination rule,
the inputs need to be transformed into a set of belief masses.
To do so, they are first modelled as probability densities and
then by applying the inverse Pignistic Transform we obtain
the belief representation. The pignistic transformation operator
Bet() [10] converts efficiently a set of belief masses into a



Prototype 
modelling

ck,1
+3σ- 3σ

Inverse Pignistic
Transform

Combination : conjunctive Dempster-Shafer rule

probabilities
𝑝𝑘,1

belief masses 
𝑚𝑘,1(𝐻)

𝑜𝑏𝑠1 → 𝑦1
𝑙𝑖 x → ck,1

li

belief masses 𝑚𝑘,𝑓(𝐻)

Pignistic
Transform

Prototype 
modelling

ck,2
+3σ- 3σ

Inverse Pignistic
Transform

probabilities
𝑝𝑘,2

belief masses 
𝑚𝑘,2(𝐻)

𝑜𝑏𝑠2 → 𝑦2
𝑙𝑖 x → ck,2

li

Prototype 
modelling

ck,𝑁
+3σ- 3σ

Inverse Pignistic
Transform

probabilities
𝑝𝑘,𝑛

belief masses 
𝑚𝑘,𝑁(𝐻)

𝑜𝑏𝑠𝑁 → 𝑦𝑁
𝑙𝑖 x → ck,N

li

fused line coefficient probabilities
𝑝𝑘,𝑓

…

commonalities 
𝑞𝑘,𝑁(𝐻)

commonalities 
𝑞𝑘,2(𝐻)

commonalities 
𝑞𝑘,1(𝐻)

commonalities 𝑞𝑘,𝑓(𝐻)

…

…

…

…

Fig. 3: DST Grid fusion for road-marking line coefficients.

probability density, and inversely using the least commitment
principle to choose between all possible ways of performing
the reverse transform.

A bell-shaped activation function is used to model the prob-
ability density of each fusion variable as a function of sensor
measurements. The width is 3× σk,n to take into account the
standard variation σk,n of each {sensor, variable} computed in
a sensor characterisation pre-step. For small standard deviation
values, the Gaussian function can be approximated by a
pyramidal function. For a coefficient ck,n, the probability is
formulated as pk,n(c):

pk,n(c) = max(0, 1− |c− ck,n|
3 σk,n

). (3)

Then the Inverse Pignistic Transform is applied to the
probability densities pk,n to obtain a set of belief masses mk,n

for each variable.

mk,n(H) = Bet−1(pk,n), H ⊆ 2Θ. (4)

A discounting operation is also applied using a weakening
parameter αk,n ∈ [0, 1] to account for our confidence in the
sensor’s reliability. The masses mk,n(Θ), representing the total
ignorance, are also normalised.

m′k,n(H) = αk,n ×mk,n(H),

m′k,n(Θ) = αk,n ×mk,n(Θ) + 1− αk,n.
(5)

3) Combination: The final step is to fuse the (discounted)
belief masses from all sensors with Dempster’s rule of combi-
nation. Here the conjunctive rule is chosen as it represents the
intersection or product of inputs, since our sources are overall

equally reliable and modelling this reliability is possible. The
masses are converted into commonality functions qk,n [10]
before applying the combination rule, as it greatly decreases
the computing power required for the combination.

qk,n(H) =
∑

A∈2Θ,A⊇H

m′k,n(A),

qk,f (H) =

N∏
n=1

qk,n(H).

(6)

After the combination rule, the commonalities qk,f are re-
converted into belief masses mk,f and then, using the Pignistic
transform, into probability densities pk,f for the tracking step.

B. Tracking of lanes

To maintain spacial and temporal continuity between
frames, lane tracking is essential. In lateral control, the only
information used is that of the lane rather than the physical
road-marking lines. Therefore we chose to track the lanes (ego
and adjacent) rather than the detected lines.

A particle filter (Sequential Importance Resampling) is
implemented for each lane ’la’ with a state statela =
{width, c0, c1, c2, c3}la. The prediction of the tracker consists
of a kinematic prediction of the current state based on odom-
etry information (ego speed, yaw rate) and previous state.

As illustrated in Fig. 3, the update step uses three input
informations: the predicted state of each lane, the fused lines
and the dynamic lane mode (DLM). The DLM instructs which
data (from the fused lines) will be used in the update. This is
further detailed in section IV-B.

Thus during the update, the particle weights of the current
state are updated based on its left and right fused lines prob-
ability densities (nominal DLM), thus integrating information
from both lines to create the lane.

For the heading, curvature and curvature derivative co-
efficients c1, c2, c3, they are constructed as the average of
corresponding coefficients from right and left lines. As for
the width, it is the difference of laterals from the lines. The
lane lateral c0 is composed from the width and lateral values
of the lines.

The final framework output is the road observation obsf
composed of the tracked lanes.

IV. ERRONEOUS MANAGEMENT

Safety and availability are central in the context of au-
tonomous driving, therefore it is essential to predict and man-
age possible cases of erroneous data. In our fusion framework,
erroneous data can be caused by conflictual or unavailable
sensors. The erroneous manager assumes the role of assessing
the quality of fused data and deciding either to use this data
or not, during the tracker update step.

A. Line Quality

The purpose is to evaluate the quality of each fused line,
without assessing the sensors themselves. Although each sen-
sor provides a confidence in its detection, these values can



not be compared, being computed differently. We based the
proposed quality measure on the product of 3 complementary
components: the coherence Q(li) of sensors, their availability
A (li) and the temporal continuity T (li) of the fused result.
At each frame t and for each line ’li’, the quality is:

Q(li) = C (li)×A (li)×T (li). (7)

Each component is normalised in [0, 1]. With the product,
instead of a weighted average, the quality is more penalised
if more components are low.

The fused line quality should reflect the coherence of
sensors, i.e. the agreement or conflict in their detections. This
coherence C is represented by the Mahalanobis distance dM
between each sensor and the fusion output. We also penalise
the sensors with high confidence αk,n (empirically placed
in each sensor-coefficient) proportionally to the distance. To
normalise the measures, a sigmoid function is employed.

C (li) =
1

N

N∑
n=0

1

K

K∑
k=0

sigmoid(αk,n× dM (clik,n, c
li
k,f )). (8)

The availability of sensors also has a great impact on the
fusion output, as a sensor with frequent disconnections will
have less reliable detections. This measure of availability A
is achieved with a moving average µ() of the presence {εlin}t =
{0, 1} of each sensor n over a time window T .

A (li) =
1

N

N∑
n=0

µT {εlin}t. (9)

Another important aspect is the temporal continuity of the
fused lines. Although the tracker will reduce any discontinu-
ities encountered after fusion, it is important to penalise these
disruptions which could eventually cause erroneous outputs.
To quantify this temporal continuity T , a Kullback-Leibler
divergence DKL of fused probability densities pk,f between
the previous t − 1 and current t frame is computed. This
divergence will quantify the amount of information lost from
the previous to current frame.

T (li) = sigmoid(µT (

K∑
k=0

DKL({plik,f}t−1|{plik,f}t))). (10)

With the proposed components, the quality reflects the
current state and a short-time history of fusion for each line.
The quality of each lane is a combination of quality from its
left and right lines.

B. Dynamic Lane Mode

The Dynamic Lane Mode (DLM) is a strategy of EM which,
depending on the quality of the right and left lines Q(r),Q(l),
determines the appropriate update strategy for the lane. This
strategy is employed at the tracker update step. It defines
which information, from fusion, will be used to update the lane
tracker state. The purpose is to be able to create a lane, while
considering the quality of its lines. The proposed algorithm is
specified in Alg. 1.

The nominal DLM is the dual-line update strategy, where
the right and left fused lines are both integrated to construct
the corresponding lane.

Algorithm 1: Erroneous Manager strategy for Dy-
namic Lane Mode

Data: Left (l) and Right (r) fused line qualities,
thresholds τ and β.

if (Q(r) < τ) & (Q(l) < τ) then
DLM = prediction;

else if Q(r) > β ×Q(l) then
DLM = right line based monoline;

else if Q(l) > β ×Q(r) then
DLM = left line based monoline;

else
DLM = dual-line;

EM starts with comparing the qualities of left and right to a
threshold τ . If both lines have low quality, than the fusion data
should not be considered. In that sense, the DLM transitions
from the nominal mode to a prediction mode. The tracker is
not updated with fused distributions and the lane output is
based on the tracker prediction only. The same transition to
prediction mode happens if all sensors become unavailable.

The next verification made by EM is comparing the right
and left line qualities. For example, if the left line has a β×
higher quality than the right line, then constructing the lane
based on left distributions only would give a more accurate
output lane. The alternative being using both distributions in
the update step of the tracker, which could introduce potential
erroneous data from the right line. If the condition is verified,
than the DLM transitions to a mono-line mode based on the
highest scoring line. In mono-line mode, the tracker will only
use the chosen line to update its state.

Thanks to these strategies, each lane is constructed based
on strong lines, and possible erroneous data is avoided.

If the framework continues in mono-line or predict modes,
it will stop outputting data after a small time window and for
Minimum Risk Manoeuvre (MRM), the control is given back
to the driver. However, the framework can transition back to
the nominal state during this time window if sensor data is
available again and fusion quality is high enough.

In our experiments, the predict threshold is set to τ = 0.1
and mono-line factor β = 2.5.

V. RESULTS

The framework presented in this paper was implemented on
a test-vehicle with the following sensors:
• Frontal camera (s0): 150m range and 47° wide angle,
• Surround viewing (s1): composed of 4 fisheye cameras

with 30m range and a total 360° coverage.
Each sensor runs an internal and independent lane detection

algorithm. More sensors can be integrated into this framework,
up to 4 were tested. Here, only optical sensors were integrated
into the fusion framework. The lateral control architecture



used in the test vehicle integrates other inputs, such as virtual
lanes, in different modules to manage situations with no line
marking. The reason behind this architectural decision is to
not combine directly virtual and optical sources.
In the following, f+ denotes the presented fusion framework
with EM, while f− disables EM module i.e. DLM is in dual-
line or in nominal prediction for unavailable sensors only.

A. Open Road Tests

During the development of the proposed framework and
the global architecture of the test-vehicle, multiple open-
road tests were conducted. Using sensor-equipped vehicles,
over 150,000 km of L2 to L4 driving in highway and
beltway roads were accumulated around Europe, US and
Japan. Open road tests over multiple countries and road
environments showed the robustness, availability and stability
of the proposed method. Although the fusion framework is
very dependent on the maturity and behaviour of its sensors,
the erroneous manager is able to avoid many bad perception
situations as we will detail in the following.

B. Availability

In autonomous driving, any disconnection of lanes induces
function deactivation and take-over from the driver. Through
the redundancy of sensors, the multisensor fusion framework
increases the availability of lane detections. To demonstrate
that, the availability rates of our fusion framework and the
sensors are computed over 213 km of recorded data. The
availability of each lane (ego, right and left) is estimated
separately. The results are summarised in Table I.

TABLE I: Availability rates of sensors and fusion framework.

Left Lane Ego Lane Right Lane

Sensor s0 80.10% 98.68% 80.96%

Sensor s1 84.11% 97.07% 88.79%

Fusion f+ 85.38% 99.61% 93.34%

As expected, the framework is overall more available than
the sensors, 99.61% of tested time. This is thanks to fusion but
also EM which extrapolates data when needed. The missing
0.39% is generated by the use-cases not handled yet such
as merging lanes. Rates of adjacent lanes are also improved:
4.55% of availability is gained for the right lane and 1.28%
for the left. Left lane’s rate is slightly lower than the right’s
because lanes are limited to 4.5m width in our framework.
Thus many wide adjacent lanes detected by sensors are filtered
out for safety, as they are essential for automatic lane change.

C. Erroneous Management Evaluation

To better understand the impact of EM, a specific open
road test was conducted with the lateral control based on
f−. Over 22 km of autonomous driving, the different lateral
problems were counted and analysed. Then, the complete
fusion framework f+ was replayed over the recorded data in
order to study the influence of EM module.

Fig. 4: Fusion output with dynamic lane modes activated in
various difficult Beltway scenarios. Dashed lines refer to a
predicted line (monoline or predict mode).

1) Lateral control: During this test, only 1 dangerous
incident was reported, where a take-over from the driver was
necessary. In this situation, line markings were completely
erased (Fig. 4-d). The sensors did not detect any lanes thus the
framework went into predict mode. After passing the predict
time limit, function is stopped and control is given back to
the driver. Although this type of scenario is not directly dealt
with by our framework, it is by virtual lane modules.
Otherwise, a total of 5 potentially dangerous incidents were
also documented, with no take over needed, however lateral
oscillations were noticed.
• 1 incident - exit lane scenario - the replay with f+

proceeds to monoline mode and successfully reduces the
sensor perturbations in comparison to f− output.

• 2 incidents - partially erased line markings (Fig. 4-a-b) -
f+ also effectively activates monoline strategy. f+ and
f− outputs were similar, as the base line for monoline
strategy was also damaged.

• 2 incidents - working zone and lane change on a guardrail
- the replay with f+ does not proceed to a different DLM.
Line qualities measured (around 0.5 and 0.3) were higher
than the erroneous thresholds set.

In some cases, higher predict thresholds would enable a
DLM strategy, however this would risk introducing unneces-
sary switches of DLM and thus compromising lateral control.
With the set thresholds, EM is able to prevent noisy lane
outputs, without introducing more instability.

2) EM activations: We further analysed the difference
between f+ and f− outputs by counting the number of times
of EM activated a non-nominal DLM. Over a total of 21
activations, 5 were situations where f+ lane coefficients were
smoother using monoline. Although the initial perturbation did
not necessarily impact lateral control, EM was able to reduce
noise. An example of this is detailed in the following section.
In the other 16 situations, the prediction or monoline have
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for the right line. Best viewed in colour.

the same output as f−. It is also important to note that no
activations of erroneous was reported integrating false or noisy
data. In fact, our EM module and DLM strategy were made to
limit the noisy data, while not removing important data which
could lead to introducing noise. The thresholds imposed are
important in that sense. We also observed during the analysis
that erroneous would activate before or after unavailable data,
helping reduce potential erroneous data from unstable sensors.

3) EM environments: We further investigated the environ-
ments or situations in which the DLM are activated. A few
examples are shown in Fig. 4. The 21 activations of DLM were
deployed in situations with: adjacent guardrails (7), damaged
or absent line markings (5), lane changes (4), adjacent lane
entry/exit (3), and tunnels (2). This demonstrates how the
quality is able to reflect difficult perception situations.

D. Quality Illustration

In order to highlight the impact of each quality component
described in IV-A, the framework’s output f+ and f− on a
sequence with sensor imperfection is depicted in Fig. 5. In
this scenario, right line quality decreases while the left’s stays
high. Thus, the fusion output f+ switches from dual-line to
left-based monoline mode when Q(l) > β ×Q(r).

The detailed quality values in graph (2) show that the
coherence and continuity decline due to the abrupt peaks in
lateral, heading and curvature coefficients from sensor s0.
This perception noise creates incoherence between sensors and

fusion output, as well as temporal discontinuities, which both
are successfully represented in our quality measure.

During monoline mode, the right line is predicted based on
the left line. Thus f+ is able to output smooth lateral, heading
and curvature, while the f− (in dual-line) outputs noisy
coefficients. In this scenario, the computed quality successfully
reflects the conditions of the sensors and possible noise in their
measurements is avoided with erroneous management.

VI. CONCLUSIONS

In this paper, we present a multisensor lane fusion frame-
work and a novel quality measure for fused data which effi-
ciently captures sensor instabilities. Thanks to the erroneous
manager utilising this quality, we are able to avoid integrating
sensor imperfections into fusion ; thus having a stable lateral
control in the goal of reaching the L2-L4 safety requirements.
The overall framework was successfully tested on numerous
test drives in various scenarios, presenting high availability
and suitable reactions to conflicting sensors. Some use-cases
such as absent line markings, lane merging or splitting are yet
to be handled by our framework, although can be managed
with virtual lanes and cartography integrated in lateral control.
Efforts are currently concentrated on managing more special
use cases and validation in simulated environments.
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