
Self-Adapting Resource Bounded Distributed Computations

Nadeem Jamali and Xinghui Zhao
Department of Computer Science, University of Saskatchewan

176 Thorvaldson Bldg., 110 Science Place, Saskatoon, SK, Canada, S7N 5C9
n.jamali | x.zhao@agents.usask.ca

Abstract

Self-adaptation is about computations adapting to their
environments. The need for adaptation may dynamically
arise as a result of evolving computations or the environ-
ment. An important part of the environment is the computa-
tional resources for which computations compete.
The CyberOrgs model1 encapsulates distributed concur-

rent computations along with the computational and com-
munication resources they require plus purchasing power
for acquiring additional resources. Ownership of resources
coupled with an effective control mechanism creates a pre-
dictable resource environment for computations to execute
in – in a coordinated manner.
CyberOrgs create three opportunities for self-

adaptation: algorithms may be chosen using resource
knowledge, additional resources may be purchased to
adapt to evolving needs, and computations may coordi-
nate use of known computational and network resources
for optimal results.
The CyberOrgs model is presented and a prototype im-

plementation is described. Our experience with using Cy-
berOrgs’ resource awareness for hierarchical coordination
of distributed processor resource delivery is presented. Ex-
perimental results show that resource knowledge based rea-
soning leads to efficient distributed adaptation.

1. Introduction

Self-adaptation of a computation is about the computa-
tion reacting to disparities between the environment it ex-
ecutes in and the environment it requires for optimal exe-
cution. These disparities may result from the computation’s
own dynamically emerging requirements or from changes
in its environment. A computation’s self-adaptation may in-
volve either altering its requirements or somehow interact-
ing with the environment to secure what it requires.

1 The model is CyberOrgs; encapsulations are Cyberorgs.

An important aspect of an environment is the resources it
affords a computation. In an open system [4], the availabil-
ity of resources to a computation may be threatened by other
computations competing for the bounded resources. In the
context of multi-agent systems, it has been shown [2] that
when there are both logical and resource dependencies be-
tween agents, resource dependencies sometimes lead to log-
ical dependencies. Coordinating resource access by agents
is hence critical to reducing uncertainty and enabling agents
to make control decisions – i.e., adapt – for the best global
performance [8]. Furthermore, it has been argued that com-
putation and coordination are separate and orthogonal di-
mensions of all useful computing [3], necessitating coordi-
nation to be addressed explicitly.

Bounded rationality limits a computation’s ability to as-
sess the situation it may need to adapt to. However, if time-
bounded resource enclaves can be created for computations
to execute in, they can reason about and adapt to the en-
claves’ boundaries. Additionally, if there is a way for com-
putations to negotiate the boundaries of these enclaves, a
richer variety of self-adaptation becomes possible.

Our approach is to create resource encapsulation for
computations to execute in. We use the CyberOrgs model,
which makes explicit the relationship between a concur-
rent computation and the resources it requires, as well
as the competition between computations for bounded re-
sources. Cyberorgs are resource encapsulations, which sup-
port computations using the resources they own. Resources
are owned by cyberorgs in time and space, and can be sold
to other cyberorgs for eCash.

This approach offers three opportunities for self-
adaptation. First, with the knowledge of owned re-
sources within the encapsulation, given the choice, a
cyberorg may choose which algorithms to execute or ad-
just the quality of solution sought (as in Design-to-Criteria
scheduling [9]). Second, the cyberorg may purchase addi-
tional resources from other cyberorgs if required. Third,
the cyberorg may strategize for optimal use of owned re-
sources.

$
$

$
$

isolate

Actor

eCash$

Actor Message

$$
$

$

a) isolate

$$
$

$

assimilate

$
$

$
$

b) asmlt

Figure 1. Creation and Absorption

2. CyberOrgs

CyberOrgs [5] is a model for resource sharing in a net-
work of self-interested peers, where application agents may
migrate in order to avail themselves of peer-owned re-
sources. CyberOrgs organize computational and communi-
cation resources as a market, and their control as a hierar-
chy. Specifically, each cyberorg encapsulates one or more
multi-agent distributed computations, and an amount of
eCash in a shared currency. Cyberorgs act as principals in
a market of distributed resources, where they may use their
eCash to buy or sell resources among themselves. A cy-
berorg may use the resources so acquired for carrying out
its computations, or it may sell them to other cyberorgs.

CyberOrgs treat computational and communication re-
sources as being defined in time and space. In other words,
a resource is not available for use at times and locations
other than when and where it exists. Sale of a resource
is represented by a contract stipulating availability of re-
sources to the buyer for a cost. After signing a contract, a
cyberorg must migrate to the prospective host cyberorg in
order to avail itself of newly acquired resources. Delivery
of resources to cyberorgs is determined by a hierarchy of
control decisions.

Our approach in formalizing CyberOrgs [6] is to sepa-
rate computational concerns from resource concerns. We
represent resource requirements of each computation by a
sequence of resource ticks required to complete the compu-
tation. To simplify the model, we assume that resource re-
quirements are known in advance. As an instantiation, we
assume that the computations are carried out by systems of
primitive agents called actors [1].

Progress is represented by transitions occurring with in-
troduction of ticks into the system. When a tick is inserted
into a cyberorg, it may pass the tick on to a client cyberorg,
or use it for progressing on its application or system actors.
Whether a tick is passed on to a client or used locally de-
pends on the contracts that the cyberorg has with its clients.

As illustrated in Figure 1, a new cyberorg is created by
using the isolate primitive, which collects a set of ac-
tors, messages, and electronic cash, and creates a new cy-
berorg hosted locally. A cyberorg disappears by assimilat-
ing into its host cyberorg using the asmlt primitive, relin-

quishing control of its contents to its host.
A cyberorg may realize that its resource requirements

have exceeded what is available by its contract with the host
cyberorg. This triggers its attempt to migrate. To migrate a
cyberorg searchs for potential hosts, attempts contract ne-
gotiation with them, and if successful, migrates.

3. Implementation of CyberOrgs

We have implemented CyberOrgs by extending Actor
Architecture [7] – a Java library and run-time system for
supporting agents. In this implementation, every agent re-
quires processor time resource to carry out its computation,
and the resource is received by the agent from the cyberorg
containing it.

This implementation adds two key components to an AA
platform: CyberOrg Manager and Scheduler Manager. Cy-
berOrg Manager adds run-time support for a system of cy-
berorgs. A cyberorg has its own strategy for distributing
available resources among its agents and hosted cyberorgs
(according to relevant contracts). This strategy is encoded
in a facilitator agent, which is a special agent that serves
as the active part of a cyberorg. Among other tasks, a facil-
itator triggers primitive CyberOrgs operations which react
to changes in the environment as well as its cyberorg’s re-
quirements.

Scheduler Manager has two parts: cyberorg scheduler
and thread scheduler. The cyberorg scheduler keeps track of
the CyberOrgs’ hierarchical structure for a single platform
and converts the hierarchical schedule represented by the
structure into a flat schedule for agent threads. This sched-
ule, which contains time intervals for which each agent is
to be scheduled, is dynamically updated with changes in
the hierarchical schedule resulting from invocation of Cy-
berOrgs primitives and changes in the cyberorgs’ local re-
source distribution. The thread scheduler schedules agent
threads contained in a queue for the amounts of processor
time they are supposed to be scheduled.

Distributing cyberorgs over multiple physical nodes
presents implementation challenges. An internally dis-
tributed cyberorg has agents located on multiple nodes,
representing its distributed parts. Each part has its own lo-
cal facilitator which is responsible for making local de-
cisions and receiving requests for primitive operations
involving local agents. We use a simple protocol. The mas-
ter facilitator maintains global information of the cyberorg,
and it alone is responsible for enforcing global deci-
sions of the cyberorg by coordinating its actions with those
of other (slave) facilitators. By default, the master facil-
itator is the facilitator located at the node on which the
cyberorg’s creation is originally requested. Slave facilita-
tors, by themselves, only possess the resource knowledge
of their own parts of the cyberorg, and a slave facili-

tator can autonomously make local decisions involving
agents in its own part of the cyberorg.

The way cyberorgs encapsulate computational and com-
munication resources creates unique opportunities for scal-
able distributed coordination. Because delivery of network
and processor resources to computations is controlled at
a fine grain, idle resources are known precisely. As a re-
sult, communication and processing delays in carrying out
fixed length system communications required for coordina-
tion become predictable. This – in turn – allows the dis-
tributed coordination components to reason about the feasi-
bility of coordinated action based on good estimates of de-
lays, and attempt only promising coordinated actions.

Coordination of distributed processor resource delivery
can be treated as an example of a distributed coordination
problem, illustrating how to estimate coordination delays.
Consider a 2-node (N1, N2) request for a coordinated prim-
itive operation to be carried out across the nodes hosting a
cyberorg. The delay ∆ in reaching agreement consists of
several parts: D1, the time delay from when the request
is generated by the master facilitator on N1 (or received
from a slave) to when the request is scheduled to be pro-
cessed on N1; P (a), the computational cost of analyzing
the request and creating distributed tasks (where a is the to-
tal number of agents involved in the request); C(N1, N2),
the network delay in sending a message from N1 to N2 (as-
suming clocks are synchronized within some epsilon); D2,
the delay from when the request is received on N2 to when
the request is scheduled to be processed on N2; P (a2), the
computational cost of interpreting the request, and evaluat-
ing its feasibility on N2 (where a2 is the number of agents
on node N2 involved in the primitive); C(N2, N1), the net-
work delay of sending an acknowledgment back from N 2

to N1; D3, the delay from receipt of the acknowledgment
to when the message is processed on N1. Therefore, the co-
ordination cost should be:

∆ = D1 + P (a) + (C(N1, N2) + D2 + P (a2)+
C(N2, N1)) + D3

(1)

The delays D1, D2, and D3 can be estimated from de-
tails of CPU scheduling. Communication costs C(N1, N2)
and C(N2, N1) can be estimated from details of network re-
source control. If fNi,Nj is the network cost between nodes
Ni and Nj , we can generalize equation 1 for n nodes where
the master facilitator is located at N1:

∆ = D1 + P (a) + max(fN1,Ni + Di + P (ai) + fNi,N1)
(2)

for i between 2 and n. Although estimating P (a) for a gen-
eral purpose computation would be difficult, because we
are dealing with special purpose computations for assess-
ing feasibility of local actions, it is possible to obtain good
estimates, so long as local resource availability is known,
which it is in this case.

A global decision of a master facilitator may require
modifying resources available to agents spread across mul-
tiple nodes. In order to guarantee that the corresponding ac-
tions associated with an n-node global decision will be per-
formed successfully by time t on all involved nodes, a mas-
ter facilitator must generate the decision by time t ′, so that
t′ < t − ∆. However, some savings can be obtained by
eliminating some communication. Particularly, if the mas-
ter facilitator can calculate ∆ without explicitly communi-
cating with the slave facilitators, it can send requests to the
slave facilitators to carry out their parts of the global action,
with the knowledge that all actions will indeed succeed. Al-
though this is not possible in general, if the the master facil-
itator receives periodic updates from the slaves about their
locally available resources, along with promises to main-
tain those availabilities for certain time intervals, the master
may be able to assess feasibility of remote actions so long
as the actions can be completed before expiration of the re-
source availability promises received from the slaves.

If the coordinated action itself is required in the future,
the master facilitator may estimate the delay required for
agreement on feasibility of the coordinated action in a sim-
ilar manner. In this case, instead of waiting for each slave
facilitator to acknowledge agreement, the master facilita-
tor may be optimistic. In other words, the slave facilitators
no longer have to send acknowledgments; they only report
back if they find the action infeasible. The master facilita-
tor, in turn, waits for ∆ time for possible infeasibility re-
ports, rather than wait for each slave to acknowledge. The
master would be able to calculate this ∆ if the promises
of resource availability received from the slaves do not ex-
pire before the slaves finish assessing local feasibilities. Ad-
ditionally, instead of waiting to be informed by the master
of global agreement, the slaves too optimistically wait long
enough to give the master a chance to inform them about
possible cancellation of the coordinated action. Because the
master facilitator calculates ∆ prior to communication with
the slaves, it can advise the slaves in the initial communi-
cation to wait for a period ∆ + Tr, where Tr is the time
the master would take to report cancellation to them af-
ter it has received an infeasibility report from some slave.
As a result, in the case when global agreement is achieved,
all parties are ready for coordinated action after a delay of
∆ + Tr, without any need for communication after the ini-
tial requests from the master facilitator. Furthermore, any
cancellations too are known by all parties by ∆ + Tr.

4. Experimental Results

A number of experiments were carried out to assess
the effectiveness and scalability of our approach. We col-
lected results on delays in completing distributed schedule
update tasks involving up to 1500 agents distributed over

networks of two and three processors. Because a partic-
ular task would involve only a fraction of the total num-
ber of agents, this represents systems with 104 or more to-
tal number of agents. Specifically, we compared the delay
in achieving group agreement on feasibility of success or
failure of global updates to distributed processor schedules,
when using and not using our approach of exploiting pre-
dictability of resource availability in cyberorgs.

We applied the approach to an implementation of Cy-
berOrgs. In the first set of experiments – in the absence of
resource availability information – we used the pessimistic
approach of requiring a series of acknowledgments confirm-
ing that the requested updates can indeed be carried out at
the required time. In the second set, we relied on knowl-
edge of available resources to (optimistically) assume that
the requests have been satisfied unless a failure message is
received by a deadline. Note that this is not a fair compari-
son because in the resource unaware case, there is no guar-
antee of success of coordinated action until after the dis-
tributed actions have actually been attempted; nor is there
a determination of failure, in which case a backtrack is re-
quired wherever the actions did happen to succeed. How-
ever, short of indicating that no comparison is possible, this
appears to be a reasonable compromise.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

Co
or

di
na

tio
n

fe
as

ib
ilit

y
de

cis
io

n
co

st
 (s

ec
on

ds
)

Number of agents involved on each node

resource-aware, 2 nodes
resource-unaware, 2 nodes

resource-aware, 3 nodes
resource-unaware, 3 nodes

Figure 2. Delay in achieving agreement on co-
ordinated distributed schedule update.

Figure 2 compares the delays described above for the two
approaches for coordinated update of schedules for up to
1500 agents distributed across two and three physical nodes.
Significant savings in the delay for global agreement on co-
ordinated action are achieved using the CyberOrgs based
resource-aware approach. These savings are in addition to
the savings achieved by avoiding attempting infeasible ac-
tions, which cannot be avoided in the resource-unaware ap-

proach, even when local resource information is available.
Furthermore, the penalty of increasing the number of agents
linearly with the number of nodes is insignificant.

5. Conclusion

Self-adaptation is about computations staying in sync
with their environments. It is difficult to reason about adapt-
ing to available resources without encapsulating computa-
tions in resource boundaries.

We described our experience with using the CyberOrgs
model to address this challenge. CyberOrgs create three op-
portunities for self-adaptation. First, computations may use
the knowledge of owned resources to choose the most suit-
able algorithms; second, computations may purchase addi-
tional resources to adapt to their evolving needs; third, com-
putations may coordinate their use of known computational
and network resources for optimal results.

We presented a prototype implementation which uses
CyberOrgs’ resource awareness for hierarchical coordina-
tion of distributed processor resource delivery. Experimen-
tal results illustrate that CyberOrgs based reasoning involv-
ing knowledge of resources aids distributed adaptation.

Although preliminary results are promising, case studies
are required to obtain more authoritative results.
Acknowledgments Research funded by NSERC, Canadian
Foundation for Innovation, and Saskatchewan Govt. grants.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press, Cambridge, Mass., 1986.

[2] L. Gasser. DAI approaches to coordination. In N. M. Avouris
and L. Gasser, editors,Distributed Artificial Intelligence: The-
ory and Praxis, pages 31–51. Kluwer Academic, 1992.

[3] D. Gelernter and N. Carriero. Coordination languages and
their significance. CACM, 35(2):97–107, Feb 1992.

[4] C. Hewitt and P. de Jong. Open systems. In J. Mylopou-
los, J. W. Schmidt, and M. L. Brodie, editors, On Conceptual
Modeling, chapter 6, pages 147–164. Springer, 1984.

[5] N. Jamali. CyberOrgs: A Model for Resource Bounded Com-
plex Agents. PhD thesis, Univ. Illinois U-C, 2004.

[6] N. Jamali and X. Zhao. Scalable hierarchical coordination
of multi-agent resource usage. In Proc. of Intl. Workshop on
Massively Multi-Agent Systems, Kyoto, Dec 2004.

[7] M. Jang and G. Agha. On efficient communication and ser-
vice agent discovery in multi-agent systems. In Proc. of SEL-
MAS ’04, pages 27–33, Edinburgh, May 2004.

[8] N. R. Jennings. Commitments and conventions: The founda-
tion of coordination in multi-agent systems. The Knowledge
Engineering Review, 8(3):223–250, 1993.

[9] T. Wagner, A. Garvey, and V. Lesser. Criteria directed
task scheduling. Journal for Approximate Reasoning–Special
Scheduling Issue, page 91.

