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On a Self-Organizing MANET Event Routing Architecture with Causal

Dependency Awareness

Guanhong Pei

(ABSTRACT)

Publish/subscribe (P/S) is a communication paradigm of growing popularity for information

dissemination in large-scale distributed systems. The weak coupling between information

producers and consumers in P/S systems is attractive for loosely coupled and dynamic

network infrastructures such as ad hoc networks. However, achieving end-to-end timeliness

and reliability properties when P/S events are causally dependent is an open problem in ad

hoc networks.

In this thesis, we present, evaluate benefits of, and compare with past work, an architecture

design that can effectively support timely and reliable delivery of events and causally related

events in ad hoc environments, and especially in mobile ad hoc networks (MANETs).

With observations from both realistic application model and simulation experiments, we

reveal causal dependencies among events and their significance in a typical use notional

system. We also examine and propose engineering methodologies to further tailor an event-

based system to facilitate its self-reorganizing capability and self-reconfiguration. Our design

features a two-layer structure, including novel distributed algorithms and mechanisms for

P/S tree construction and maintenance. The trace-based experimental simulation studies

illustrate our design’s effectiveness in both cases with and without causal dependencies.



Acknowledgments

I owe much to my advisor, Dr. Binoy Ravindran, for guiding me through the academic and

nonacademic endeavors. All his guidance, encouragement, patience and insights have been

instrumental in shaping me during my pursue of the degree.

Dr. E. Douglas Jensen has been actively involved with my work. His inputs at various stages

of my work have played a vital role.

I would like to thank Dr. Yaling Yang and Dr. Thomas Y. Hou for giving me valuable

advice. I would also like to thank Dr. Yaling Yang again and Dr. Paul Plassmann for taking

the time to serve on my committee and review my work.

Besides, many thanks go to everyone at our Real-Time Systems Lab, for their help in the

process of my work.

Last but not least, I would like to express my gratitude to my family, and my friends, for

their constant love, unshakable support and encouragement.

iii



Contents

1 Introduction 1

1.1 P/S and Ad Hoc Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Event Causal Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work 9

2.1 Tree-based vs. Non-tree Approaches . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Existing MANET Tree-based P/S Architecture . . . . . . . . . . . . . . . . . 11

3 Hierarchical Tree-based Model 14

3.1 Graph Theory Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Path Overhead Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Basic Architecture Design 21

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Inner-tree Level Interconnection . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Inner-tree Subscription and Publication . . . . . . . . . . . . . . . . . 22

iv



4.2.2 Parent Evaluation Metrics (PEM) . . . . . . . . . . . . . . . . . . . . 23

4.3 Inter-tree Level Interconnection . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Root Node Selection and Tree Merging . . . . . . . . . . . . . . . . . 24

4.3.2 Inter-tree communication . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Self-reconfiguring Architectural Facilitation for Event Causal Dependen-

cies 30

5.1 Causal Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Self-reconfiguration with Awareness of Event Causal Dependencies . . . . . . 32

6 Experimental Evaluation 36

6.1 Simulation Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Architecture Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . . . 37

6.2.1 Influence of DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.2 Tree Merging and New Root Selection . . . . . . . . . . . . . . . . . 39

6.2.3 Event Delivery with Awareness of Causal Dependencies . . . . . . . . 40

6.2.4 Timely and Reliable Event Delivery . . . . . . . . . . . . . . . . . . . 43

7 Conclusion and Discussion 48

Bibliography 51

A Confidence Interval Tables 59

v



List of Figures

1.1 Example Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Example Causal Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Pentagon, Octagon — Invalid Model Example . . . . . . . . . . . . . . . . . 16

3.2 Network Model Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Advantage over Single-tree Model . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Tree Merging Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 New Root Node Selection Algorithm . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Event Causal Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Timeliness Performance under Different DT w/o Tree Merging/New Root Se-

lection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Effectiveness of Tree Merging and New Root Selection . . . . . . . . . . . . . 39

6.3 Improvement from Causal Event Delivery Architectural Support . . . . . . . 41

vi



6.4 Timeliness Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.5 Comparison of Timely Delivery . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.6 Comparison of Delivery Ratio under Node Failure . . . . . . . . . . . . . . . 45

6.7 Network Traffic Load with Low P/S Load . . . . . . . . . . . . . . . . . . . 46

6.8 Network Traffic Load with High P/S Load . . . . . . . . . . . . . . . . . . . 47

vii



List of Tables

6.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.1 Confidence interval for Figure 6.1. . . . . . . . . . . . . . . . . . . . . . . . . 59

A.2 Confidence interval for Figure 6.2. . . . . . . . . . . . . . . . . . . . . . . . . 60

A.3 Confidence interval for Figure 6.3(a). . . . . . . . . . . . . . . . . . . . . . . 60

A.4 Confidence interval for Figure 6.3(b). . . . . . . . . . . . . . . . . . . . . . . 60

A.5 Confidence interval for Figure 6.5. . . . . . . . . . . . . . . . . . . . . . . . . 61

A.6 Confidence interval for Figure 6.6. . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



Chapter 1

Introduction

The publish/subscribe paradigm [26] communicates on the basis of either the message content

or the message source being of interest to destinations – as opposed to the source specifying

the recipient(s). Publish/subscribe communication has been used in computing systems

(notably for defense and industrial automation) since at least the early 1970’s (e.g., [15]).

Only since the middle of this decade has it gained rapidly increasing interest – for example,

the Object Management Group has developed a publish/subscribe standard named the Data

Distribution Service [38].

Publish/Subscribe (P/S) systems can be considered to be a form of event-based systems, in

the sense that the information injected to and propagated through the system can be treated

as events. An entity in the system can act either or both as information producers (publish-

ers) and consumers (subscribers). The subscribers declare their interests by subscriptions

to certain events, most commonly specified by the content or the topic of the events (with

different expressive power), and publishers produce events of information to the system.

The event routing mechanism implemented in the P/S system (usually middleware) then

takes charge of the event delivery according to the subscriptions. In short, a P/S system

1
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is an information dispatching system which does not explicitly involve the use of network

addresses.

P/S systems are usually thought of in the context of disseminating data, but they can also be

used for control information. Indeed, the data/control dichotomy in general is often an over-

simplification, since the same information can be data at one time and place, and control at

another time and place. This fact plays a role in our motivation for the work described in

this thesis.

1.1 P/S and Ad Hoc Networks

Many problems pertaining to P/S in a wired network system have been proposed and solved.

With increasing popularity and availability of wireless devices, extending the applications of

P/S into wireless environments becomes a pressing need. The advantages of this extension

are due to the natures of both P/S systems and wireless ad hoc networks.

In essence, a wireless ad hoc network is formed by wireless devices communicating without

a fixed network infrastructure, either because it is difficult to build a wired infrastructure

due to environmental, economical, or resource constraints, or because the existing wired

infrastructure is not functioning due to damage from war or natural disaster. Devices discover

and “talk” to others within range to form a network. Connections may be multi-hop. New

properties such as broadcasting and signal conflicts arise from the use of wireless MACs.

The weak coupling between information producers’ and consumers’ identities in a P/S system

provides P/S the advantages of asynchronous, multipoint communication, hence freeing the

communicating entities from temporal and spacial requirements for connection. Therefore

P/S is appealing in loosely coupled network contexts such as ad hoc networks, and especially
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mobile ad hoc networks (MANETs) [16] because of the ease with which components can be

added, removed or changed at runtime.

A MANET, as a subclass of ad hoc networks, is a collection of (usually) mobile wireless

devices with dynamically changing membership and multi-hop topologies composed of wire-

less links. By its nature, a MANET is a self-organizing adaptive network, and thus needs

to be formed and maintained in a distributed manner without centralized support or fixed

infrastructures [47].

The P/S scheme is adopted in various types of ad hoc networks with different configurations.

In a sensor network context, for instance, sensor nodes may host temperature sensors in

a plant and subscribe to all the application events querying about temperature data of

that location; an actuator or monitor may only be interested in receiving all the messages

concerning a temperature greater than 1,000 degrees centigrade, to activate an alarm.

Figure 1.1: Example Scenario

An interesting notional scenario for the use of P/S in a MANET is illustrated by Figure 1.1.
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It begins when a commander either makes (i.e., invokes) or publishes a service request to

“agents” to find out something about the situation in a particular combat region. Note that

although making a request for information by publishing it is a departure from the conven-

tional P/S mindset of publishing only ”data”, it can be a natural and effective technique.

Typically there is a mission-critical time constraint for him to obtain that information —

the information’s utility [29] to the mission degrades after a certain amount of time following

his service request.

To obtain the information: two forms of imagery are obtained by subscription from surveil-

lance platforms, and fused by recipient agents; re-scoped down to the geographical region of

interest (perhaps by publishing it to a service which does that); re-sized to fit on soldiers’

PDA screen (perhaps by publishing the re-scoped information to a service which re-sizes

it); published to, and annotated by, one or more soldiers in that region; then sent by those

soldiers to a ground-to-space relay and from there to a satellite and then to the commander

making the original service request (and probably other interested commanders). Most, if

not all, of these communications can effectively be in the form of publishes and subscribes.

More application examples, in the settings of sensor networks, unmanned aerial vehicles,

etc., can be found in [7, 21, 28, 33, 43].

Currently, the P/S mindset, and hence P/S concepts and techniques, are focused on min-

imizing latency (sometimes called delay) and thus maximizing throughput as the primary

performance metric. This is in contrast to the real-time mindset, and hence concepts and

techniques, that are focused on satisfying time constraints, conventionally by minimizing

response times (or, increasingly, focused on maximizing accrued utility [14]). Although

throughput and response time are conjugate metrics, latency plays a fundamental role in

both. To compare our P/S research results with those of others, we necessarily employ that

communities’ performance metric. Time constraints such as those in our motivating notional
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scenario, and latencies, can be mapped between each other.

The potential advantages of the P/S interaction model atop ad hoc networks are not fully

realized by the state of the art predominant industrial and academic solutions, such as

TIB/RV [37], SCRIBE [12], SIENA [10], REDS [22], Kyra [5], IBM’s Gryphon [2], IBM’s

WS-Notification [27], and RTI’s DDS [11] based on OMG’s DDS [38].

In the context of P/S in ad hoc networks, many of the previous efforts have focused primarily

on throughput and overhead. Timeliness and reliability, which are important for many ad

hoc-based applications, have not been well addressed. Furthermore, as one of the key issues in

ad hoc networks, full mobility support also needs to be accommodated. Some previous efforts

have been made [7, 25, 36] assuming either that only a subset of nodes in the network can roam

and act as clients or that the clients are always one hop away from the fixed infrastructure.

They therefore focus only on a restricted subset of the problem space. A more general and

common scenario in mobile ad hoc networks is that every node in the network is potentially

mobile, can join, leave the system, and have access to the publish/subscribe service (e.g., by

running P/S middleware), while also acting as a broker for message forwarding and matching

to make the service available.

In addition, MANETs are subject to significantly greater run-time uncertainties and resource

constraints than are traditional fixed-infrastructure networks, including:

(1) frequent link breakages and temporary network disconnections;

(2) temporary node unavailability and node joins or departures at unpredictable times; and

(3) mobility-induced resource constraints on the overall architecture, such as limits on band-

width, latency, and energy consumption.
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1.2 Event Causal Dependencies

To garner the most timeliness and reliability from the P/S system in real-world ad hoc

applications, we explore architectural real-time support for event causal dependencies, an

important property of many emerging ad hoc-based applications that are suited for P/S-

style communication. This refers to the existence of multiple publication and subscription

hops that are causally related (e.g., topic-wise), resulting in an event causal chain or event

causal graph. We illustrate this above with a motivating scenario from the military domain

(similar scenarios can be found in other application domains such as automotive [34] and

e-health [32] systems, etc.). To better understand causal dependency, we should also note

that logical implication is not equivalent to event causal dependency in a P/S system because

of the lack of temporal relationships [41].

The conventional ideas about timely and reliable P/S event delivery are always on a sin-

gle publish-hop basis, by which we mean the travel of an event from its publisher to its

subscriber(s), perhaps transparently through network devices such as routers. Thus that

neglects a common phenomenon of event causal dependencies, which refers to the existence

of multi-publish-hop — i.e., an event causal chain or even an event causal graph constructed

based on the event causal dependencies. To better understand these concepts, let us consider

again the example scenario in a P/S system in MANETs.

Figure 1.2 shows the underlying causal relationship graph for the Figure 1.1 scenario. The

timeliness and reliability of the event delivery from the causal event initiator (commander in

Figure 1.1 above) to the last publisher in the whole chain (satellite in Figure 1.1), is mission

critical and is challenging due to the MANET dynamics.

This scenario raises fundamental yet unsolved problems:
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Figure 1.2: Example Causal Graph

(1) What interconnection architecture is appropriate for P/S service in MANETs that can

handle causal dependencies?

(2) How to self-organize mobile nodes into an interconnection topology with support for

reliable and timely delivery of causally-dependent messages?

(3) How to reliably and timely route causally-dependent messages?

In this thesis, we address these questions. Without loss of the potential to be adopted

in generic ad hoc networks, we consider a MANET, where every node in the network has

mobility and can access a P/S service. Based on analysis, we present an event routing

architecture design called SOMER (Self-Organizing MANET Event Routing) that supports

timely and reliable data delivery across causally-dependent event chains. Key aspects of

SOMER include algorithms and mechanisms for P/S tree construction and maintenance with

self-organizing and self-configurable capabilities. Our simulation-based experimental results

show that SOMER achieves 30%–100% timeliness improvement and up to 30% reliability

improvement over previous solutions.
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To the best of our knowledge, this is the first work to consider causally-dependent networked

P/S systems. Thus, our contribution is the SOMER architecture.

The remainder of this thesis is organized as follows. Chapter 2 discusses related work and

identifies SOMER’s unique aspects. Then we illustrate the advantages of a hierarchical

tree-based interconnection through an analytical model in Chapter 3. Chapter 4 presents

SOMER’s basic design. In Chapter 5, we discuss how we design architectural support for

causality awareness. Chapter 6 reports our experimental results, including comparison with

past work. Chapter 7 concludes the thesis with discussion and future work.



Chapter 2

Related Work

Typically, in MANETs, a structured interconnection topology is used; most of the recent

representative work [6, 28, 35, 39, 42] presents algorithms for constructing and maintaining

an event routing tree as the interconnection topology under a filter-based routing scheme.

There are also structure-less approaches—e.g., Baldoni et al [1] employ a form of informed

flooding-based event routing using Euclidean distances; the adoption of rendezvous-based

protocols first described in SCRIBE [12], has been studied in a MANET setting by Carvalho

et al [8], and also in an Internet setting by Bharambe et al [3]; Costa et al [18] propose a

gossip-based protocol used in VANETs (Vehicular Ad Hoc Networks).

It is also interesting to note various approaches used in P/S systems atop wired networks.

For example, a distributed hash table configuration is used to facilitate the interconnection

topology [17, 44, 48, 50]. Some approaches do not maintain any deterministic data struc-

ture on the topology at a peer. In this case, event routing is neither filtering-based nor

rendezvous based, like in [20, 23]; the authors employ probabilistic flooding and gossiping,

respectively. Chakraborty and Finin [13] propose a service/control information dissemina-

tion architecture/protocol in a MANET pervasive computing environment, utilizing bounded

9
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advertisement, peer-to-peer dynamic caching and logical group-based selective forwarding of

discovery requests.

2.1 Tree-based vs. Non-tree Approaches

We refer to a tree-based interconnection topology as an approach to interconnect mobile

nodes with an acyclic structure. We refer to non-tree approaches as the ones that use

either rendezvous-based or flooding-/gossip-based approaches. The fundamental difference

between the tree-based topology and the non-tree approaches is that the interconnection

topology of non-tree approaches tends to weakly match the underlying physical topology,

because of the loose geographical coupling among the nodes. The impact on the message

delivery is that latency can be very high and sometimes unpredictable, as information might

pass across many nodes, some of which might be slow or have long physical paths between

them in the underlying network. Non-tree approaches may find their suitable applications in

scenarios such as delay tolerant networks [19], and thus deviate from part of our goal as to

accommodate timing properties of the system. Also, in the case of large periods of message

multicast or flooding in peer-to-peer networks it may suffer congestions and inefficient use

of bandwidth with non-tree-based connections.

By contrast, a tree-based topology can more efficiently and effectively meet the end-to-

end timeliness requirement [9, 30]. However, in order to meet the demands of large scale

MANETs, we need a more effective architecture to handle node failures, link breakage, node

joins and departures, while still maintaining the same or increased timely message delivery.
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2.2 Existing MANET Tree-based P/S Architecture

To the best of our knowledge, for MANETs, most tree-based P/S interconnection approaches

either employ a single P/S tree structure in the whole network, or build one P/S tree for

each publisher. The latter model can accommodate only a limited number of designated

publishers, and thus suffers from a lack of scalability.

The single-tree strategy is typically used; and due to the resemblance between multicast and

P/S in MANETs, in [35] the P/S tree is derived from multicast tree construction and main-

tenance mechanisms of MAODV (Multicast Ad hoc On-Demand Distance Vector Routing

Protocol) [45, 46].

In large scale MANETs, as the average distance increases between the root and a node in

the P/S tree, it becomes much harder to handle failures and topology changes. Moreover,

although the single-tree architecture is fully based on the geographical topology, there still

exists a possibility that a publisher’s message may not reach some of its subscribers via the

physically shortest route. That is because the length of the path is hard to upper bound,

and is independent of the length of the physically shortest route.

there still exists a possibility that a publisher’s message may not take the physically shortest

route to reach some of its subscribers, and sometimes the path stretch can get as high as O(n)

(in which n is the number of nodes in the network). Generally, low path stretch is hard to

achieve in a spanning tree unless with careful design which may be running-time-consuming

in decentralized settings. For this issue, interested readers are referred to [24, 40], etc., on

construction of low stretch spanning tree.

A hierarchical tree-based interconnection in a MANET self-organizes all the nodes into non-

overlapping trees and has specific mechanisms for inter-tree communication. The roots of

the trees function as the inter-tree brokers. In Section 3, we will show the advantages of
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a hierarchical tree-based interconnection topology over a single P/S tree approach through

both qualitative and quantitative analysis.

Motivated by all the above observations, we consider a tree-based approach and explore

a hierarchical architecture design for causally related event delivery. The idea of using

hierarchical architecture in ad hoc networks is not new. For example, [43] presents a scalable

P/S system called SensTrac based on a tree-based hierarchical structure.

SOMER is uniquely novel and different from [43] in several aspects including:

(1) Tree Construction. SensTrac uses static clustering via nodes’ geographic coordinates

using GPS. In contrast, SOMER uses dynamic clustering, allowing nodes to be clustered

on-the-fly;

(2) Inter-tree Communication. SensTrac uses AODV to find routes among root nodes (lead-

ers), and uses gossip to disseminate information among root nodes, whereas SOMER uses

restricted flooding among root nodes, which is more suitable for a mobile environment;

(3) In SensTrac, the query (subscriber) node subscribes to the information of its area of

interest (AOI) which is bounded by a given square, whereas our subscription model is

more general;

(4) In SensTrac, the query node is the only subscriber, and does not act as a broker, and

the publishers are only the sensors in the AOI, whereas we do not have those limitations

on subscribers or publishers;

(5) In SensTrac, nodes are stationary and only the query node can move, whereas we allow

every unit to be mobile;

(6) SensTrac does not support system reconfiguration for causal dependencies (due to its

static node clustering mechanism which has no capability to handle causal dependencies
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similar to that of SOMER).

In brief, SOMER is a more general architecture design comparing to SensTrac, as opposed to

an application specific design. From now on, we mainly consider tree-based approaches for

event delivery on top of MANETs, and we show the structure and the features of SOMER

in the following chapters.



Chapter 3

Hierarchical Tree-based Model

Suppose that the system (i.e., a MANET) has already completed self-organization and re-

mains stationary. To build an analytical model from which we get our first motivations, we

make the following assumptions:

∙ All nodes are homogeneous and evenly distributed within a 2-dimensional area; and

∙ Each node has the same number of immediate neighbors and thus each tree has the same

number of immediate neighboring trees. Let the number of neighbors of any node be

NNeigℎbor.

∙ We do not consider the physical topology where nodes are placed to form a string or a

circle.

Note that the underlying hierarchical tree-based network model in this chapter is to pro-

vide an abstract analysis and rough idea of the architectural motivation of the work. The

assumptions made here are not related to the structure and features of SOMER, or for the

simulation-based experimental studies in the later chapters.

14
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3.1 Graph Theory Preliminaries

An r-tree is a tree with root r. Let T (r) denote such a tree. The level of a vertex v in T (r)

is the length of the path rTv. Each edge of T (r) joins vertices on consecutive levels, and

it is convenient to think of these edges as being oriented from the lower to the higher level,

so as to form a branching. Each vertex except v on the path rTv, is called an ancestor of

v, and each vertex of which v is an ancestor is a descendant of v. Two vertices are related

in T if one is an ancestor of the other. The immediate ancestor of v is its predecessor or

parent, denoted p(v), and the vertices whose predecessor is v are its successors or children.

A leaf of a tree is the node which has no successors. We refer to the process of going from

a non-root node to the root by way of its parent as “going upward,” and going the reverse

way as “going downward.”

Suppose NNeigℎbor is subject to a normal distribution with mean of 6 and standard deviation

of 4. Obviously, only 4 and 6 are the possible number of neighbors that can produce an

evenly distributed physical topology given that we rule out the case where NNeigℎbor = 2 as

the third assumption states above; For example, if NNeigℎbor = 5, we would not be able to

find a topology to maintain the equality of the distances between any two of neighboring

nodes, thus violating the 2-dimensional even distribution assumption.

We provide a sketchy proof for finding valid NNeigℎbor’s here. For NNeigℎbor = 3, it turns out

this case is invalid because eventually we would find there are in fact 6 immediate neighbors

for each node, which results in contradiction. For NNeigℎbor = 5, as Figure 3.1 shows, suppose

that node A has exactly 5 immediate neighbors placed on the corners of a pentagon. Then

for node B, we should find at node D, where ∣AB∣ = ∣BD∣, ∕ BAC = ∕ ABD, an immediate

neighbor of node B due to the isotropy of our model. However, ∣CD∣ < ∣AB∣ = ∣BD∣ makes

node D an invalid node in the graph because there should not be any edge that is shorter
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Figure 3.1: Pentagon, Octagon — Invalid Model Example

than the distance between two immediate neighbors. Similar statement applies to the cases

where NNeigℎbor > 6 as shown in Figure 3.1. Therefore, we have

NNeigℎbor = 4, 6 (3.1)

The network can be represented by a connectivity graph N(V,E, P ), where V = {v1, ..., vn}

is the set of nodes, E is the set of links, and P = {p1, ..., pk} is the set of publishers. Also,

let n denote the number of nodes and k denote the number of publishers. Let DT denote the

density of root nodes and T = {t1, ...tt} denote the set of trees. Let the longest distance from

the tree root to a node in its territory be R (i.e., the radius). Let the distance between any

pair of neighboring nodes be denoted as distMin. We assume that 0.5distCST < distMin <

distCST , where distCST is the one-hop wireless transmission range (carrier sensing range),

such that a node should only receive the signal from an immediate neighbor.

From Equation 3.1, we can derive that the network connection links form either a grid-like

(NNeigℎbor = 4) or a beehive-like (NNeigℎbor = 6) structure. Figure 3.2 illustrates this, where



Guanhong Pei Chapter 3. Hierarchical Tree-based Model 17

Figure 3.2: Network Model Structures

the solid dots denote nodes in the network, and the red hexagons and squares with nodes at

the angles cover the set of immediate neighbors of the center node.

Assume that a straight path can be established between any pair of neighboring trees’ roots.

It can be seen that for any root node to reach another root node, if their trees are not

neighbors, it needs a route by way of other root nodes, and this route takes at most one turn

along the route. Let � denote the angle of the turn if there is one. Now,

� =

⎧





⎨





⎩

120o, for NNeigℎbor = 6

145o, for NNeigℎbor = 4
(3.2)

Let s(pi, vj) be one of pi ∈ P ’s subscriber which is associated to the tree rooted at vj ∈ V .

We estimate the average distance from a node to its tree root to be R
2
. Let lengtℎ(u, v)

denote the length of the path between two nodes u and v. Now, the length of the path
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between pi and s(pi, vj) is:

lengtℎ(pi, s(pi, vj)) = lengtℎ(pi, r(pi))+

lengtℎ(r(pi), vj) + lengtℎ(vj , s(pi, vj))

= R
2
+ lengtℎ(r(pi), vj) +

R
2

= R + lengtℎ(r(pi), vj)

(3.3)

Let dist(u, v) denote the straight-line distance between two nodes u and v. We can bound

the length of the path between pi and s(pi, vj) as:

lengtℎ(r(pi), vj) ≤ dist(r(pi),vj)

∣ sin�∣ ⇒ lengtℎ(pi, s(pi, vj))

≤

⎧





⎨





⎩

R + 2√
3
dist(r(pi), vj), for NNeigℎbor = 6

R + 2√
2
dist(r(pi), vj), for NNeigℎbor = 4

(3.4)

For a large-scale MANET, dist(pi, s(pi, vj)) is approximately dist(r(pi), vj). Therefore,

lengtℎ(pi, s(pi, vj))

≤

⎧





⎨





⎩

R + 2√
3
dist(pi, s(pi, vj)), for NNeigℎbor = 6

R + 2√
2
dist(pi, s(pi, vj)), for NNeigℎbor = 4

= R + 2
√
2√

NNeigℎbor

dist(pi, s(pi, vj))

(3.5)

3.2 Path Overhead Ratio

We define the path overhead ratio (POR) based on the variation of the concept of path stretch

(i.e., the ratio of the length of the route between two nodes to the length of the shortest

path (both in Euclidean distance)) as the extra number of hops required by the path over

that of the straight line distance. The number of hops is proportional to the path length,
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and hence:

PORSOMER ≤ lengtℎ(pi,s(pi,vj))−dist(pi,s(pi,vj))

dist(pi,s(pi,vj))

= 2
√
2√

NNeigℎbor

+ R
dist(pi,s(pi,vj))

− 1
(3.6)

By applying this POR in a large-scale network where R≪ dist(pi, s(pi, vj)), we obtain:

PORSOMER ≤
2
√
2

√

NNeigℎbor

− 1 (3.7)

Figure 3.3: Advantage over Single-tree Model

Figure 3.3 gives an example showing the path from pi to s(pi, vj) with red lines. In the figure,

the blue solid nodes are root nodes and the solid hexagons denote the abstract territories of

the trees rooted at the center nodes.

Now we can observe that for the hierarchical tree-based architecture, POR can be bounded

small-order parameters (and in large networks it can be as small as
√
2−1 or 2√

3
−1); whereas

for single-tree-based and structure-less approaches, the length of the path could sometimes

be up to the order of the total number of nodes. Thus, the benefits of the hierarchical

tree-based architecture include the following:
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(1) event delivery can be completed in a more timely manner;

(2) shorter and bounded path length implies lower probability for a delivery to fail, despite

frequent link breakages and node failures; and

(3) the multi-tree structure gives enough leeway to devise multi-path event delivery schemes

through the use of multiple neighboring trees and multiple border routers (leaf nodes)

among the trees, and may also balance the network traffic and alleviate congestion.



Chapter 4

Basic Architecture Design

4.1 Overview

SOMER’s design employs the hierarchical tree-based interconnection as shown in Figure 4.1.

Figure 4.1: Architecture Overview

At the lower layer (inner-tree level), nodes are self-organized into multiple P/S trees rooted

at several root nodes across the network. At the top layer (inter-tree level), root nodes act

21
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as super publisher/subscriber nodes and constitute an overlay network.

4.2 Inner-tree Level Interconnection

The publish/subscribe tree (PST) is constructed distributively in a request/reply fashion.

Any node v0 that has not joined a PST broadcasts the join request message and waits for

its immediate neighbors that are currently in a P/S tree to reply with a join reply message.

After a timeout for the neighbors’ reply expires, if the node gets any replies, it greedily

selects the best candidate neighbor from the replies as its parent according to the parent

evaluation metric (PEM); otherwise, it continues to broadcast new join request messages.

Each node in the system can only join one PST.

4.2.1 Inner-tree Subscription and Publication

Each node v0 has its own subscription interest set s(v0), termed inherent subscription. On

joining the tree, node v0 sends a subscription message containing s(v0) upward toward the

grafting node for each of its ancestors to match, and subsequently publish information to v0,

which is now a leaf in that tree. We define a non-leaf node u0’s effective subscription S(u0)

as the “combined” subscription formed by merging u0’s inherent subscriptions with all of its

descendants’ subscriptions. Thus, the grafting node of node v0 is the closest node (in terms

of number of hops) in the upward path, whose effective subscription overlaps with that of

v0. In this way, each non-leaf node maintains data structures for its successors’ subscription

interests, and in u0’s parent p(u0)’s view, u0 is a child that has the subscription interest of

S(u0).
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4.2.2 Parent Evaluation Metrics (PEM)

PEM is the key mechanism for constructing and maintaining the PST. There are various

PEMs, including:

∙ Shortest-path Metric (SM);

∙ Publication-overhead-aware Metric (PM); and

∙ Combination Metric (CM) of SM and PM.

SM is a most straightforward metric, in which a node chooses the neighbor at the lowest level

as its parent. PM uses the subscription information of the other nodes in the tree to decrease

the total number of messages needed to complete the delivery of one publication. In [28],

the authors propose a publication-overhead-aware metric that requires a’ priori knowledge

of the exact rates of invocation (publication) for each category of subscription; otherwise

the lack of that knowledge will cause high inaccuracy in a distributed system where the

rates of invocation vary over time or even are unpredictable as is the case in our motivating

scenarios. Thus, their metric not only suffers from the requirement to have that global

information to function properly, but also implies that the PEM they use is limited to

topic-based publish/subscribe systems. Note that in a content-based system, subscriptions

are so finely grained that events are not classified according to any predefined categories

but rather according to the properties of the events themselves. The PM in [6] requires

periodic messages to go upwards (towards the root) in the tree through a probabilistically

chosen candidate parent until it reaches a new grafting node. However, in a large-scale

network where subscription interests vary greatly, especially for a content-based system,

finding a grafting node may require traversing a significantly long distance and incurring

much higher overhead than SM. In [6], the authors claim an advantage of less “overhead” over
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the MAODV-based PST approach. However, by “overhead,” they only count the messages

used for publication without considering the considerable overhead incurred for a better path

detection initiated periodically by each node other than the root (level-0) and level-1 nodes.

In [28], the authors also give a combination metric (CM) which calculates the product of

the level of a candidate node and the predicted publication overhead to evaluate each of

the candidate parent nodes. However, as long as the aforementioned problems with PM

exist, the combination metric still suffers from some impractical requirements for it to work

properly.

Based on these observations, we choose Shortest-path Metric (SM), similar to the approach in

the MAODV-based PST and that in [43]. Obviously, SM inherently improves the timeliness

of event delivery.

4.3 Inter-tree Level Interconnection

A natural question that arises for this distributed architecture is which nodes should be the

roots, given no centralized administration. Another question is how the inter-tree commu-

nication mechanism is designed to facilitate event routing.

4.3.1 Root Node Selection and Tree Merging

A node’s role (either root or non-root) in the system is designated for the first time when

the P/S middleware is initiated.
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Root Selection

We use a random-number-based strategy for distributed root selection. Let DT denote the

density of roots. In fact,DT has a significant influence on the performance of the architecture,

as shown in Chapter 6. Given the size range of a MANET, which often is known at least

approximately based on the MANETs application, we can select the best DT based on

experimental studies, which is reasonable. And in fact, as shown in Chapter 6 with the

following tree merging and new root selection mechanisms, the system will self-adapt to the

initial topology, self-adjust and converge to a stable state, without preselecting a value for

DT . However, a better initial DT value shortens the system self-adaptation time.

A random number Rand within the range of 0 to RandMax is produced by the P/S middleware

on each node. For a node v, that is:

⎧





⎨





⎩

v is a root node,if 0 < Rand(v) ≤ DT ⋅ RandMax

v is a non-root node, otherwise

Tree Merging

To deal with the degradation of performance caused by roots lying geographically too close

(e.g., one or two hops away from each other), a tree merging mechanism is employed.

A commonly used tree maintenance technique is the periodic refresh message broadcast

with a sequence number, from the root throughout the tree. Every node rebroadcasting this

message replaces the level value field with its own level value. Whenever a node v0 receives a

foreign tree node u0’s refresh message, it calculates the root-to-root distance between r(v0)

and r(u0) from the level numbers of v0 and u0. If the root-to-root distance falls below a

threshold Merging Tℎres, either v0 or u0 sends a merging request message to the root, and
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input: local node i’s level number level(i), level number level(v) of foreign node v,
r(v)’s address

r2rdistance ← level(i) + level(v) + 1;1

if r2rdistance > Merging Tℎres then2

if i ∕= r(i) then3

Send merging message with r(v)’s address to r(i) to initiate tree merging4

process;
else5

Initiate tree merging process(r(v)’s address);6

/* Function tree merging process() */

tree merging process(r(v)’s address):7

if My address is higher than r(v)’s address then8

I will remain as a root;9

initiate the partition merging process;10

else11

I will wait for the other root to initiate the partition merging and I will resign12

Figure 4.2: Tree Merging Algorithm

the merging process is initiated. The tree merging process is similar to the partition merging

in MAODV [46], in which the root with a higher ID retains its role and takes over the other

tree. Figure 4.2 describes the tree merging algorithm.

New Root Node Selection

New root node selection is required based on the following considerations. To better accom-

modate MANET dynamics, it is important to observe that the topology changes due to node

mobility and failures can cause the distances among the roots to change. Such dynamics

together with tree merging can cause the number of trees (i.e., the number of root nodes)

to decrease. Thus, schemes must be designed for handling root node failures and mobility,

and for controlling the tree sizes to be below a certain upper threshold. The basic idea is to

select a new root and start a new tree to overcome those adverse conditions.
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input: local node i’s level number level(i)

/* For random number based strategy */

if level(i) > New Root Tℎres or Out Period-timer expires then1

Rand(i)← new random value;2

if 0 < Rand(i) < DT ⋅ RandMax ⋅� then /* � > 1 */3

I become a root;4

else if Out Period-timer expires then5

start Out Period-timer again;6

Figure 4.3: New Root Node Selection Algorithm

When a node v’s level is above a certain predefined threshold New Root Tℎres, or it has

not been a member of any tree for a certain time frame Out Period, the node checks the

possibility of advancing itself to a root. A new random number will be produced raising the

probability of the node being accepted as a root. After the new root’s “birth”, it broadcasts

invitations to “crop” tree members from other trees, until the level value of its leaf nodes

is no smaller than that of at least one of the leaf nodes’ neighboring foreign nodes. This

algorithm is illustrated in Figure 4.3.

Note that in a reliable wireless network with little topology change, our tree merging and

new root selection strategies for system maintenance would introduce very little additional

traffic overhead.

4.3.2 Inter-tree communication

Inter-tree Route Establishment

Similar to the mechanism for tree merging, whenever a node v0 receives a foreign tree node

u0’s refresh message, it calculates the root-to-root distance between r(v0) and r(u0) from the

level numbers of v0 and u0. If the new root-to-root distance is smaller than the current value,
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node v0 records u0 as the next hop destination for inter-tree routing, and send a route report

message upwards. On receiving the route report message, v0’s parent p(v0) checks its local

root-to-root distance value. If the new value reported is better, p(v0) will also update its

record and send a route report message upwards. In this way, the root will always keep the

freshest feasible route for inter-tree communication. Further, a node only registers the next

hop destination and the corresponding root-to-root distance for inter-tree routing, requiring

only small memory usage. When an inter-tree message (e.g., a publication or notification

message) arrives at a foreign node u0, u0 will simply forward this message upward to its root.

Now, we claim that the route established between two roots of the neighboring trees is the

shortest.

Theorem 4.1. The path p, which is established for inter-tree communication between the

roots a and b of two neighboring trees, is the shortest one.

Proof. Assume that the inter-tree path p connecting T (a) and T (b) established in SOMER

is not the shortest one. Then there exists a distinct path p′ such that

lengtℎ(p′) < lengtℎ(p).

Let the last node of T (a) that lies on p be va, and the last node of T (b) that lies on p be vb;

in the same way we have v′a and v′b for p
′. Then we obtain:

lengtℎ(p′) = lengtℎ(a, v′a) + lengtℎ(v′b, b) + 1

< lengtℎ(p) = lengtℎ(a, va) + lengtℎ(vb, b) + 1.

Also, we have:

lengtℎ(a, va) = level(va), lengtℎ(vb, b) = level(vb),

lengtℎ(a, v′a) = level(v′a), lengtℎ(v
′
b, b) = level(v′b).
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According to our inter-tree route establishment process, if there is such a path that level(v′a)+

level(v′b) < level(va) + level(vb), then we should have already found that path based on the

level numbers, resulting in a contradiction. Thus, the assumption does not hold and the

theorem is true.

Inter-tree Overlay Event Routing

Advertisement messages are widely used in P/S systems. On joining a P/S tree, a node sends

both its subscription and publication interests to the root nodes. From the top layer view,

root nodes can be treated as super publishers/subscribers, with the effective subscription and

the effective publication capabilities. Event routing at the inter-tree level is based on periodic

advertisement messages flooding across root nodes such that the root nodes’ effective P/S

interests are propagated across the top layer. Though the flooding among root nodes incurs

message overhead, it is worth it when node mobility is high. (We show in Chapter 6 that the

overhead is reasonable.) When a root node r0 receives an advertisement message forwarded

by a neighbor root r1 originally from r2, r0 updates r2’s P/S interests and the inter-tree

route entry for r2, and updates the corresponding next-hop root-address with r1’s address.

In this way, the inter-tree routing uses the shortest reverse path to effectively propagate

event notifications.



Chapter 5

Self-reconfiguring Architectural

Facilitation for Event Causal

Dependencies

5.1 Causal Graph Construction

The architectural P/S system management is done at an entity level, with the abstraction

from a transaction level. That means in this architecture, nodes are being manipulated to

maintain the system structure, while causally-related events flows act as the momentum

behind. That reflects that a conceptual transition from event causal dependency to node

causal dependency is necessary. As the example in Chapter 1 shows, a node causal graph

is a graph comprised of causally-related nodes of the P/S system, created by mapping the

event message graph onto the physical system of nodes.

We must be careful when extending the concept of causality from events to the nodes in

30
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a network where events are generated and consumed. The two necessary conditions for an

event b to be a “causal child” of event a are:

∙ b subscribes to a’s publication; and

∙ b’s receipt of a’s publication event message is the sufficient condition for b to generate a

new publication to its subscribers.

In turn, a is b’s “causal parent”. The corresponding causal relationship is denoted by a⇒ b.

For instance, given a causal dependency specification as “(a⇒ b)∧ (a⇒ c)∧ (a⇒ d)∧ (b⇒

e) ∧ (c⇒ e)”, the corresponding causal graph is shown in Figure 5.1.

Figure 5.1: Event Causal Graph

Event causal dependencies are deemed strictly anti-symmetric (which may be different from

some logical causal relationships). However, the anti-symmetry does not hold among the

networked causally related nodes. In Figure 1.1 we can find the retro-causal relationships

between nodes.

To simplify the problem, we make careful assumptions on the the composition of the causal

graph.

(1) We assume that a node can only be either a “causal descendant” or a “causal ancestor”

of another node but not both. This preserves the acyclicity of the node causal graph. In
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fact, if that happens we can always break the retro-causal ties by splitting all of them

from the original causal graph and creating new disjoint causal graphs.

(2) The causal graph can be reduced to a causal tree if we assume that there is at most one

“causal parent” for each causally-related node. However, that abstraction is too strong.

A more general and simplifying assumption is that all of one’s “causal parents” (if there

is any) are at the same level (we set the original event source node to be at Level 0; then

one level up as one descendant down on the causal graph).

(3) We do not place any assumption on the number of causal graphs that the system may

have (i.e., the system can have any number of original event source nodes and any number

of disjoint causal graphs).

(4) In this way, the whole causal graph is reduced to a set of disjoint acyclic directed causal

graphs. On this quasi-tree-like logical structure, we borrow the self-explaining concepts

of “root” and “leaf” that are used for the tree structures.

Now, advertising the subscription/publication interests throughout the system enables the

root nodes of the physical trees to build the causal graph for the whole system.

5.2 Self-reconfiguration with Awareness of Event Causal

Dependencies

The original physical trees stop their natural growth when each node has joined in a tree. The

tree merging and new root selection strategies confine the tree sizes withMerging Tℎres and

New Root Tℎres. However, this may not be the “ultimate” solution for a system with event

causal dependencies. We explore further performance improvements based on the following
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observations and discussion.

(1) A physical tree of a comparatively larger size typically has more neighboring trees,

implying increasing possibilities to establish direct inter-tree connection with more other

trees. Consequently, the probability increases for a causally-involved node to get to its

causal children through fewer intermediate forwarding nodes.

(2) One physical tree’s expansion means other neighboring trees’ contraction, as if trees are

contending for nodes which can only belong to one tree at any given time. The policy for

resolving trees’ contention for nodes must be carefully designed. The goal is to shorten

the event notification time along the P/S causal chains that originate at the “causal

root” until they reach the “causal leaves” in the causal quasi-tree-like graph.

(3) For a given physical tree, if it contains more “causal nodes” at lower levels in the causal

graph, or a larger number of causal nodes, it should be given greater preference in

the resource contention resolution policy for physical expansion. That is because lower

level causal nodes in the causal graph usually have greater influences on the subsequent

event notification deliveries that directly or indirectly depend on those nodes in the

corresponding causal chains. For instance, in Figure 1.1, any delay that occurs for the

event notification delivery between the commander and the agents will have an impact on

every subsequent causal chain, whereas the soldier-relay link will only have an influence

on one causal chain.

(4) Furthermore, for the causal nodes covered by a physical P/S tree, if a large number

of their causal descendants are already covered by the same tree, there is a possibility

that the trees expansion will not contribute to the timely and reliable event delivery

across the causal graph as much as before when only a few of the causal descendents are

covered in the tree. This is because, the profit margin of the tree expansion decreases



Guanhong Pei Chapter 5. Self-reconfiguration for Causal Dependencies 34

and the expansion may cause undesirable consequences in terms of timeliness of event

deliveries. For example, when tree t1 crops nodes from tree t2 by expansion, if those

nodes have their causal parents in tree t2 and those causal parent nodes are still in t2

after t1s expansion, then the event deliveries from those causal parent nodes to the nodes

now seized by t1 will have to make a detour by passing the root of t1. While this could

be avoided by sharing nodes P/S information and nodes geographical information on

the inter-tree level, it would add much to the cost of inter-tree communication. Further,

in some application settings, it could be quite difficult (or costly) or impossible to get

nodes geographical information.

Here, we define a tree’s expansion potential (EP) as the metric for evaluating the potential

benefit of a tree’s expansion for event delivery across the causal graph. For a physical tree T ,

let NCausal(T ) be the number of causal nodes that T covers, Avg levCausal(T ) be the average

level value in the quasi-tree-like causal graph containing the causal nodes covered by T , and

 be the percentage of causal descendants that is covered by T for all the causal nodes in T .

Now, EP (T ) is given by:

EP (T ) =
(NCausal(T (v)) + �)

(Avg levCausal(T ) + �) ⋅ ( + �)
. (5.1)

Here, � is a parameter with a constant positive value to offset the variables that could be

zero.

It is the leaf nodes which actually carry out the expansion (i.e., contending) through peri-

odically requesting neighbor foreign nodes for a comparison of each other’s local expansion

potential (LEP). Because we need to also constrain the tree’s branches from abnormal growth,
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a node v’s LEP is:

LEP (v) = EP (T (v))
(level(v)+�)

= (NCausal(T (v))+�)
(Avg levCausal(T (v))+�)⋅(+�)⋅(level(v)+�)

(5.2)

For two nodes u and v involved in such contention, the one with the higher LEP will win,

and the loser will join the winner tree as a child of the winner. It is possible that a node may

constantly change its affiliation. To avoid that situation, we stop two nodes from contending

when:

1

1 + �
≤ LEP (v)

LEP (u)
≤ 1 + � (5.3)

Here, � is a parameter to tune the contention severity.

The result of the contention may change the size of a tree. The contention is allowed to take

place only when the merging threshold or new root selection threshold is not violated.

The causality awareness module can be integrated as an add-on to the existing event routing

hierarchical architecture, as done in SOMER. Yet we should note that only reconfigurable

architecture can support such dynamic self-architectural-facilitation to causal dependencies.



Chapter 6

Experimental Evaluation

We conducted sets of simulation experiments using NS-2 with the Random Trip Mobility

Model package [4] to generate sets of random MANET topologies.

6.1 Simulation Environment Setup

Our simulation environment is built with each node having its own subscription interest. A

randomly selected set of nodes acts as publishers. We used the model of Number Intervals [28]

for P/S pattern generation. We used a large number interval as the interest pool, and a node’s

subscription interest is represented by a random subset of the interest pool. We call it a

match when the number associated with a published event falls into the range of a node’s

interest. We do not restrict publishers to have constant event injection rates. The publishers

either choose a constant rate or a randomly varying rate to publish. We carried out 250 runs

for each set of experiments and, when applicable, we provide the 95% confidence intervals

in Appendix A for the results reported below. Table 6.1 details the simulation settings.

36
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Table 6.1: Simulation Settings
Parameter Range/Value

Simulation Area
1000m× 1000m –
3300m× 3300m

Network Size 50 – 250 nodes
Simulation Period 1000s

Node Wandering Velocity 0 – 10 m/s
Pause Time 1s – 3s

MAC Protocol
IEEE 802.11

with 2Mbps Bandwidth
Root Node Density (DT ) 1% – 18%

Wireless Transmission Range 200m
Proportion of Publishers 30% – 40%

Proportion of Causal Nodes 5% – 15%
Proportion of Causal Nodes 10%

Tree Refresh Period 10s
Advertisement Period 10s
Transmission Jitter 5% – 10%

Advertisement Period 10s
Merging Tℎres 1 – 3
New Root Tℎres 5 – 10

Out Period 15s
Tree Contention Tuner (�) 0.2 – 0.4

6.2 Architecture Evaluation and Analysis

6.2.1 Influence of DT

As mentioned in Chapter 4, DT is a parameter that can affect the system’s convergence time.

To evaluate the values of DT , we deactivated the tree merging and new root selection mech-

anisms to ensure that the number of roots does not change during the experiments. Using

delivery time as the performance metric, we measured the average time cost in 250-node net-

works for both single-publish-hop and complete causal graph event delivery. We normalized

the delivery time with respect to the minimum value in each case, so that the trend can be
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clearly observed.

Figure 6.1: Timeliness Performance under Different DT w/o Tree Merging/New Root Selec-
tion

As expected, the curves in Figure 6.1 exhibit the same trend. Further, we observe that

at DT = 9%, both the curves reach the minimum value, indicating that 9% is the best

value for DT under current settings. When DT decreases from 9%, the average time cost

increases because there would be fewer root nodes which act as brokers in the top-layer

overlay, degrading the efficiency of the inter-tree route. On the other hand, as the number

of trees increases, a publisher and one of its subscribers in the same tree could be separated

to be in two trees. Consequently, the event messages from the publisher would have to make

a detour through at least two root nodes to reach the subscribers, in contrast with the fact

that the messages only need to go through one root node if they were in the same tree. For a

given network topology, we can find the best DT . However, doing so requires some a’ priori

knowledge of the system. We will show in the following results that we can avoid calculating

or preselecting a best DT .
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6.2.2 Tree Merging and New Root Selection

Recall that through the tree merging and new root selection strategies, the system inter-

connection is self-reorganized, thereby optimizing the tree distribution toward timely event

delivery.
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Figure 6.2: Effectiveness of Tree Merging and New Root Selection

From Figure 6.2, we observe that after these strategies take effect, the average time cost for

single-publish-hop event delivery is effectively lowered and the system has stable performance

as the initial density of root nodes (DT ) varies all the way from 1% to 16%. (We used 200-

node networks for these experiments.) This implies that our strategies are stable. The

decrease in the average event delivery time is due to the new root selection strategy when

the initial DT is small. The tree merging strategy reduces the average delivery time while

the initial DT is comparatively large.
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6.2.3 Event Delivery with Awareness of Causal Dependencies

To evaluate the effectiveness of SOMER’s causality awareness design, we performed two sets

of experiments via:

(1) deactivating the tree merging and new root selection mechanisms to observe the “pure”

performance gain from system self-reconfiguration for causal event delivery; and

(2) reactivating those two mechanisms, and evaluating the performance gain with every part

of SOMER working together.

Figure 6.3 is produced by the first set of experiments with 250-node network scenarios. We

tested the timeliness and reliability improvement from the architectural support for causal

event delivery. The performance metrics we used are event delivery time across the causal

graphs and the causal event delivery ratio. The causal event delivery ratio is the success

ratio of event delivery through one causal chain. To test reliability, we used node failure rate

as a variable, with node wandering speed randomly ranging from 0 to 10m/s.

We observe in Figure 6.3(a) that our design yields as much as over 15% improvement at

around the best DT (9%). In Figure 6.3(b), we observe that SOMER’s causality awareness

mechanisms also enhance the average success ratio of causal event delivery and thus the

system reliability. Because the tree merging and new root selection mechanisms were de-

activated during this set of experiments, the performance is still much lower than that of

SOMER as a whole.

In the second set of experiments, we evaluate the average timeliness gain with all the algo-

rithms and mechanisms of SOMER working together as a whole. Because trends of average

reliability gain would be similar to those of timeliness gain, we only show the results for

the timeliness gain here by varying the network size and the tree contention severity tuning



Guanhong Pei Chapter 6. Experimental Evaluation 41

5% 6% 7% 8% 9% 10% 11% 12% --
0s

1s

2s

3s

4s

5s

6s
Ev

en
t D

el
iv

er
y 

Ti
m

e 
ac

ro
ss

 th
e 

C
au

sa
l T

re
e

DT

 w/o Causality Awareness
 w/ Causality Awareness

(a) Timeliness Improvement

0% 5% 10% 15% 20% 25%
0%

20%

40%

60%

80%

100%

C
au

sa
l E

ve
nt

 D
el

iv
er

y 
R

at
io

Node Failure Rate

 w/o Causality Awareness
 w/ Causality Awareness

(b) Reliability Improvement

Figure 6.3: Improvement from Causal Event Delivery Architectural Support
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parameter �.

We first explored the space of � by obtaining the average performance gain with network

sizes increasing from 50 to 250 for a given value of �. From Figure 6.4(a), we observe a

peak performance gain around � = 0.325. When � increases this gain reduces due to the

degradation of tree contention severity such that the system has less self-reconfigurability for

causal event delivery. The gain also reduces as � decreases because the overhead incurred by

severe tree contention adds to the system instability and thus partly negates the performance

gain.

Figure 6.4(b) illustrates that SOMER achieves around 10% average performance gain, and

higher when the network size scales up. This trend corresponds to Equation 3.6, which

states that the upper bound of the path overhead ratio usually decreases for larger size

networks. Thus, our experiments illustrate that SOMER’s design is scalable and effective

toward reducing the total event delivery time across a causal graph.

6.2.4 Timely and Reliable Event Delivery

We compared SOMER’s timeliness and reliability against significant past MANET P/S work

including:

∙ SP-COMBO [28], a PST protocol with a combination of shortest path and publication-

overhead-aware metrics;

∙ DSAPST [6], a distributed subscription-aware PST protocol; and

∙ PS-MAODV [35], an MAODV-based PST protocol.

The network size was varied with a constant DT in the experiments. We omitted SensTrac

from our comparison due to the significant differences between SensTrack and SOMER as
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described in Chapter 2. Note that none of the past work addresses event causal dependencies.

Timeliness

We measured and calculated the timeliness performance index by reciprocating the measured

time cost for event delivery. Then we normalized each protocol’s performance to the worst

one’s performance. In this way, we can also observe the trend of relative performance as the

network size changes.

Figure 6.5 illustrates SOMER’s advantage in timely delivery over others. DSAPST performs

the worst because the way it constructs the PST is mainly based on a publication-overhead-

aware metric as discussed in Chapter 4.

Figure 6.5: Comparison of Timely Delivery

By normalizing with respect to DSAPST’s performance, we can clearly observe SOMER’s

performance gain over the others. SOMER outperforms PS-MAODV, which is the second

best, with at least a 30% improvement. As the network size scales up, SOMER’s improvement

over PS-MAODV increases up to around 100%, illustrating SOMER’s superior scalability.
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This is due to the increase of the number of trees that can be used as top-layer brokers to

make the route closer to the straight line path between two nodes.

Reliability

We measured reliability through delivery ratio, which is calculated as the number of copies

of event messages successfully received by their subscribers over the number of copies of

event messages that should arrive at all of their subscribers, given no failures or no topology

changes. We used node failure rate as a variable to assess system reliability, with node

roaming speed randomly ranging from 0 to 10m/s. Figure 6.6 shows that SOMER can

survive a 12% node failure rate with an over 75% average event delivery ratio. The highest

performance improvement of SOMER is an over 10% higher average delivery ratio than that

of PS-MAODV.

Figure 6.6: Comparison of Delivery Ratio under Node Failure

Note that SOMER also provides a 30% higher average delivery ratio over the other two

rivals. SOMER’s improvements are due to its inherent distributed multi-tree structure, and
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also due to its tree merging and new root selection strategies that effectively counter network

unreliability.

Network Traffic Load

For a structured architecture, the traffic load of a P/S system has two sources:

∙ Structure Maintenance Messages; and

∙ P/S Messages.

Figure 6.7: Network Traffic Load with Low P/S Load

In tree-based structures, the maintenance messages are those used for maintaining trees.

P/S messages include the event notification messages, subscription/unsubscription messages,

and advertisement messages if there are any. We measured the number of messages incurred

for each source type throughout the entire simulation period. The number of messages

increases whenever a message is produced or forwarded. We observed that, among PS-

MAODV, DSAPST, and SP-COMBO, only PS-MAODV had relatively acceptable timeliness
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Figure 6.8: Network Traffic Load with High P/S Load

and reliability. Thus, we compared SOMER and PS-MAODV with respect to the network

traffic load incurred under the same simulation scenarios and publication patterns.

First, we conducted simulations with a low P/S traffic load injected. Figure 6.7 shows that

SOMER introduces slightly more maintenance messages due to the neighbor-tree route setup

and tree merging and new root selection processes. We also observe that SOMER spends

slightly more P/S messages (at most about 10%) than PS-MAODV. This is due to the

periodic advertisement messages on the top-layer overlay.

Interestingly, we observe that SOMER outperforms PS-MAODV under a higher P/S traffic

load, as shown in Figure 6.8. Here, we omit the statistics of maintenance messages because

they almost do not change when the traffic load increases. SOMER is able to reduce the

average number of P/S messages by dispatching the events along shorter paths from publish-

ers to subscribers. Also, its higher robustness avoids considerable message retransmissions.

More injected events means a larger reduction in the average number of P/S messages.



Chapter 7

Conclusion and Discussion

This thesis is based on a more general perspective of P/S systems than is usual. First, it

recognizes that P/S information need not be confined to data information but may instead

(or indeed, also) be control information. Second, it takes a higher level system view of P/S

—normally P/S is considered to take place by one hop (not counting transparent network

devices such as switches and routers) from the publisher to the subscribers, but there are cases

where receipt of subscribed information causes subscribers to subsequently publish, resulting

in causal dependency graphs of publishes. Such graphs raise a variety of interesting issues,

including end-to-end timeliness, that to our knowledge have not been addressed before.

In this thesis, we begin to address some of those issues by presenting SOMER, a self-

organizing and self-reconfigurable event routing architecture for a class of P/S events that

have causal dependencies and time constraints. This architecture is oriented toward ad

hoc mobile networks, providing algorithms and mechanisms for P/S tree construction and

maintenance with self-organizing and self-configurable capabilities. Through the simulation

experiments shown in Chapter 6, we see that SOMER can achieve as much as 30%–100%

improvement on timeliness and up to 30% improvement on reliability improvement compared

48
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to previous solutions, such as PS-MAODV, DSAPST and SP-COMBO. Then referring back

to our motivating notional example in Chapter 1, the SOMER architecture’s reconfigurabil-

ity will make the multi-hop causal P/S event flow be more timely and reliable throughout,

and particularly back to the commander as the causal event sequence initiator in Figure 1.1.

Causal dependencies are common in modern event-based systems. For instance, complex

causal dependencies can be found in a customized event-based financial service system with

multiple agents servicing multiple investors. Investors trigger the service whenever they

have request/requirement updates to push into the service system. An agent servicing a

certain number of investors changes their subscription to the financial indexes information

and system computing resources accordingly. The customer portfolio module subscribes to

the investment decisions that investors have made, and agents also subscribe to changes in

the portfolios of their customers. Whenever a new event arrives at an agent from the financial

indexes information module, the agent analyzes all the data and makes suggestions with risk

and profit probabilities. When at the agent side there is an event matching an investors

criteria, a warning signal will be triggered (published) out to the corresponding investor.

Such causal event flows can also be found in event-based sensor networks, where sensors are

used to detect anomalies and send messages through a gateway to a corresponding control

unit; then either actuators are triggered or a false alarm is cleared. Please refer to [31, 49]

for details of similar use cases.

Causal dependencies in event-based systems need more attention from both academia and

industry given their common use but neglected study. Tasks that lie in a causal chain

sometimes are of more significance when the causal chain as a whole influences decision

making or situation handling. Any causal link’s failure (including timeliness failure) in the

middle of a causal chain may cause the failure of the end goal of the causal chain, similar to

the occurrence of a failure in a chain of RPCs or remote method invocations. Failures in a
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causal graph have more complex potential impacts, and require more sophisticated recovery

schemes. Mechanisms are thus needed to (1) recognize causal links; (2) build causal graphs;

(3) determine the critical causal links or chains; (4) tune system performance based on the

knowledge of causal dependencies.

There exist different approaches to addressing those problems, from a system designer’s view,

a software developer’s view, or a system administrator’s view:

(1) here in the design of SOMER, we present a system design approach;

(2) from a software developer’s point, software add-ons may be plugged in for P/S middle-

ware;

(3) from a system administrator’s point, system configuration strategy profiles can be cre-

ated and maintained by a system administrator or distributively by application users.

However, to the degree that the problem can be solved during the system design phase, then

a crisp software development cycle and simpler system administration schemes, will result

in less expensive system and application software development and system administration.

So far, we have only dealt with deterministic time-sensitive causal dependencies; there are

also probabilistic causal dependency links, delay-tolerant causal dependency links, etc. By

probabilistic, we mean that an event may probabilistically cause a subsequent event to

successfully occur. By delay-tolerant, we mean that a causal descendent event may take

some time to occur, or may not have a stringent timeliness requirement. Thus, there remains

a large design space to explore for further understanding and improving causal P/S systems,

their performance, and their reliability. It is likely that application-specific approaches may

also be required for certain cases.

SOMER, as it is, may offer insights for subsequent event routing protocol designs. And it
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can be easily extended with real-time scheduling strategies and multi-path schemes. The

current version of SOMER includes some presumptions:

(1) The design and evaluation of SOMER’s framework is implicitly based on the premise

that all the nodes in the system are, or can be treated as, homogeneous. When nodes

are heterogeneous (i.e., under different configuration, performing different tasks, or using

different hardware, etc.), the performance of the system may deviate from the current

results due to possible different nodal processing time, network interface buffer length,

and network connection type, etc. To make SOMER more adaptable, more system

configuration and performance data are needed.

(2) The system causal graphs are assumed to be such that all of one’s “causal parents”

are at the same level. We can weaken this assumption to adapt SOMER to any gen-

eral causal graph by splitting those causal links and extracting overlapping or non-

overlapping subgraphs from the original causal graph; then the nodes can have logical

shadow replications among subgraphs. And similarly for case of the retro-causal arcs,

instead of creating new disjoint causal graphs, we may consider using subgraph extract-

ing to “break” those arcs. The graph splitting or subgraph extracting algorithm must

be carefully designed such that the system reconfiguration mechanism can be effective

at improving the timeliness and reliability of causal event deliveries.

Event, and particularly P/S event, routing in ad hoc networks is still an emerging area.

Interesting issues which call for both academic and industrial research include, but are not

limited to: (1) the co-existence and mutual facilitation between a typical ad hoc network

routing scheme and an event routing scheme; (2) self-organizing protocols for event routing

under opportunistic channel communication; (3) geographic routing induced event routing,

etc.
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Appendix A

Confidence Interval Tables

Table A.1: Confidence interval for Figure 6.1.
`
`
`
`
`
`
`
`
`
`
`
`
`
`̀

Delivery type
DT 5% 6% 7% 8%

Single-publish-hop ±0.14 ±0.12 ±0.13 ±0.11
Complete causal graph ±0.08 ±0.04 ±0.06 ±0.05

`
`
`
`
`
`
`
`
`
`
`
`
`
`̀

Delivery type
DT 9% 10% 11% 12%

Single-publish-hop ±0.12 ±0.13 ±0.12 ±0.14
Complete causal graph ±0.05 ±0.06 ±0.06 ±0.06
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Table A.2: Confidence interval for Figure 6.2.
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
hh

PST strategies in use?

DT
1% 2% 3% 4% 5% 6%

Yes ±0.13 ±0.15 ±0.11 ±0.12 ±0.11 ±0.11
No ±0.08 ±0.11 ±0.09 ±0.10 ±0.10 ±0.09

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
hh

PST strategies in use?

DT
7% 8% 9% 10% 11% 12%

Yes ±0.12 ±0.10 ±0.11 ±0.12 ±0.10 ±0.09
No ±0.09 ±0.08 ±0.06 ±0.07 ±0.07 ±0.06

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
hh

PST strategies in use?

DT
13% 14% 15% 16%

Yes ±0.07 ±0.08 ±0.07 ±0.09
No ±0.05 ±0.06 ±0.05 ±0.05

Table A.3: Confidence interval for Figure 6.3(a).
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
hh

Causality aware?
DT 5% 6% 7% 8%

Yes ±0.08 ±0.06 ±0.07 ±0.06
No ±0.08 ±0.04 ±0.06 ±0.05

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
hh

Causality aware?
DT 9% 10% 11% 12%

Yes ±0.06 ±0.06 ±0.08 ±0.06
No ±0.05 ±0.06 ±0.06 ±0.05

Table A.4: Confidence interval for Figure 6.3(b).
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

h
hh

Causality aware?

Node falure rate
2% 4% 6% 8%

Yes ±0.27% ±0.19% ±0.16% ±0.17%
No ±0.18% ±0.15% ±0.15% ±0.14%

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

h
hh

Causality aware?

Node falure rate
10% 12% 14% 16%

Yes ±0.21% ±0.18% ±0.24% ±0.26%
No ±0.16% ±0.17% ±0.25% ±0.28%

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

h
hh

Causality aware?

Node falure rate
18% 20% 22% 24%

Yes ±0.23% ±0.32% ±0.34% ±0.33%
No ±0.23% ±0.34% ±0.32% ±0.32%
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Table A.5: Confidence interval for Figure 6.5.
h
h
h
h
h
h
h
h
h
h
h
h

h
h
h
h
hh

Protocols
Network Size

50 70 90 110 130 150

SOMER ±0.10 ±0.09 ±0.13 ±0.14 ±0.15 ±0.14
PS-MAODV ±0.09 ±0.08 ±0.10 ±0.09 ±0.09 ±0.10
SP-COMBO ±0.08 ±0.05 ±0.08 ±0.08 ±0.06 ±0.07
DSAPST ±0.03 ±0.05 ±0.06 ±0.06 ±0.05 ±0.04

h
h
h
h
h
h
h
h
h
h
h
h

h
h
h
h
hh

Protocols
Network Size

170 190 210 230 250

SOMER ±0.11 ±0.12 ±0.09 ±0.13 ±0.14
PS-MAODV ±0.08 ±0.12 ±0.11 ±0.13 ±0.09
SP-COMBO ±0.08 ±0.05 ±0.08 ±0.07 ±0.06
DSAPST ±0.03 ±0.05 ±0.04 ±0.02 ±0.04

Table A.6: Confidence interval for Figure 6.6.
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
hh

Protocols
Node Failure Rate

3% 6% 9% 12%

SOMER ±1.47% ±2.59% ±2.56% ±1.77%
PS-MAODV ±1.38% ±1.45% ±2.55% ±2.54%
SP-COMBO ±2.08% ±2.35% ±3.08% ±3.44%
DSAPST ±2.57% ±2.05% ±3.36% ±3.06%

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
hh

Protocols
Node Failure Rate

15% 18% 21% 24%

SOMER ±2.31% ±3.18% ±3.35% ±4.04%
PS-MAODV ±3.16% ±2.47% ±3.34% ±2.76%
SP-COMBO ±3.76% ±3.87 ±4.25% ±2.98%
DSAPST ±3.15% ±2.97 ±4.24% ±3.26%

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
hh

Protocols
Node Failure Rate

27% 30% 33%

SOMER ±2.93% ±2.72% ±1.44%
PS-MAODV ±2.63% ±3.04% ±2.52%
SP-COMBO ±3.23% ±1.92% ±2.74%
DSAPST ±2.23% ±2.24% ±1.32%


