
Self-organized fault-tolerant routing
in peer-to-peer overlays

Wojciech Galuba, Karl Aberer
Ecole Polytechnique Fédérale de Lausanne (EPFL)

firstname.lastname@epfl.ch

Zoran Despotovic, Wolfgang Kellerer
DOCOMO Euro-Labs, Munich, Germany

lastname@docomolab-euro.com

Abstract—In sufficiently large heterogeneous overlays message
loss and delays are likely to occur. This has a significant impact on
overlay routing, especially on longer paths. The existing solutions
to this problem rely on message redundancy to mask the loss and
delays. This incurs a significant bandwidth cost.
We propose the Forward Feedback Protocol (FFP) which only

routes a single copy of the message and detects the message loss
and excessive delays while routing. Failures are signalled along
the routing paths. Based only on the simple binary signals, each
overlay node locally and independently learns to route to avoid
failures. The local node interactions lead to the emergence of fast
reliable overlay routes. This is a continuous process, the system
constantly self-organizes in response to changing delay and loss
conditions.
We evaluate the protocol in the Internet deployment and in

simulation. Our system uses 2-5 times less bandwidth than the
existing overlay routing approaches that rely on high message
redundancy for fault-tolerance. Despite its marginal bandwidth
investment in reliability, FFP achieves up to a 30% higher delivery
success rate in comparison to the existing solutions. The protocol
is scalable with local state size of O(log2

N) in terms of the
network size and is universally applicable to all recursively
routing overlays.

I. INTRODUCTION
To ensure scalability of message delivery in peer-to-peer

(P2P) systems, the nodes are typically interconnected to form
an overlay network. The messages are then routed to their des-
tinations hop-by-hop along the links of the overlay topology.
Peer-to-peer systems are mostly deployed in heterogeneous en-
vironments with resource availability varying not only across
the nodes but also over time. If any of the computational,
storage or network resources are exhausted, message loss and
delays might occur. Persistent message loss, usually caused
by peers’ departure from the network, is trivial to detect and
detection typically triggers the appropriate protocols that repair
the P2P overlay topology [24], [2], [27], [23] after the failure.
However, any sufficiently large P2P system will also expe-

rience non-persistent, intermittent message loss due to various
factors, including peer overload [21], transient network con-
nectivity problems [14] or DDoS attacks [12]. These problems
cannot be solved by using the same techniques as persistent
failures, since permanent changes in overlay topology incur
substantial additional repair costs such as the overlay search
for new neighbors or additional key replication in distributed
hash tables [22].
Transient failures pose a challenge. When message loss oc-

curs at some peers or network links, even with low probability,

it may substantially decrease the overlay routing reliability,
especially for longer routing paths. This can be demonstrated
using a simple Bernoulli trial argument as in [12], [8]. More-
over, some peers might introduce message forwarding delays.
The delays accumulate over the whole path and the delivery
time may exceed application timeouts.
A simple local solution to the problem could use hop-by-

hop acknowledgments. After some peer receives the message it
sends an acknowledgement back to the previous hop indicating
that it has processed the message successfully. By keeping
track of the acknowledgements the peer can eliminate the
faulty peers from the routing paths. However, a receipt of
an acknowledgement does not guarantee that its sender has
already received the acknowledgment from the next hop on the
path. The acknowledgment thus signals only that the message
performed one hop and not that it successfully traversed the
whole path and reached the destination. All the nodes on the
path must be functioning correctly to complete the message
delivery. The loss probability and delays are cumulative over
the whole routing path and such failures are challenging to
detect by relying only on local ack signalling. Path-wide
mechanisms are necessary to achieve this.
In practice, all the widely used solutions to the problem

of reliable message delivery rely on redundancy for masking
the message loss and delays. In one approach [8], messages
are sent along several disjoint routing paths. If one path fails,
the messages on the other paths can still potentially reach
the destination. Another approach [19] uses iterative routing
that keeps several parallel RPCs (remote procedure calls), each
independently asking peers on the routing path for the next
hops that are closer to the destination. When one RPC fails
the other can still make progress. These solutions heavily rely
on message redundancy and thus have a high bandwidth cost.
Moreover, they do not in any way remember where the failures
happen and are likely to repeat the same routing mistakes
again.
In this paper we propose an overlay routing protocol that

routes each message only along a single routing path for
bandwidth-efficiency, detects message loss along the paths
and over time learns to avoid the lossy and slow peers in an
entirely decentralized and self-organized way. In our Forward
Feedback Protocol (FFP) each routed message is followed on
its routing path by a binary feedback message (§III-B). The
feedback is positive when the message is delivered on time



and negative when routing path delays exceed the application
timeout or when messages are lost. Based on the feedback,
each node on the path locally and independently learns to avoid
slow or lossy parts of the overlay. Despite the independence
of its nodes, the overlay as a whole converges on reliable
loop-free routes. The process of learning from feedback is
continuous, the system constantly self-organizes in response
to changing delay and loss conditions.
The proposed FFP protocol combines several properties in

a novel way:
• path-wide fault-tolerance - FFP’s failure detection cov-
ers the whole routing process: from the moment the
source sends the message, until the final destination
acknowledges the receipt. Thanks to that FFP can respond
to failures that can only be detected at the routing path
level, such as when the delay accumulated over the whole
path exceeds the application timeouts.

• self-organized routing - FFP peers do not require any
prior knowledge about their neighbors, including their
location in the overlay address space (§III-C). Routing is
topology-oblivious. Through feedback each peer individ-
ually learns which of its neighbors is a reliable forwarder
for which destination. The network as a whole converges
on efficient routing paths (§V-C) in a decentralized self-
organized way.

• low overhead - peers in our system continuously learn
through feedback and remember past failures. This is
in contrast to some of the existing approaches which
rely on multiple redundant paths for increasing fault-
tolerance and do not learn from routing mistakes. In
§V we demonstrate that despite the 2-5 times lower
bandwidth usage our solution achieves the success rate
comparable to the existing approaches.

• scalability - FFP is fully decentralized and scalable, we
show the local state size to be only O(log2(N)) in terms
of the network size (§IV).

• universality - FFP is simple and general enough to be
used as a fault-tolerance mechanism in any recursively
routing overlay or in any recursively routing network
(§VI).

The remainder of the paper is organized as follows. In §II
we go over the existing work. Section III describes the basic
system setup followed by the specification of the Forward
Feedback Protocol (§III-B). We then analyze the protocol’s
scalability and propose several optimizations (§IV). FFP is
then evaluated (§V) together with the existing approaches
under a range of failure scenarios and workloads and the paper
concludes in §VII.

II. RELATED WORK

Considerable attention has been devoted to overlay fault
tolerance to churn, i.e. constant peer arrivals and departures.
Many designs have been proposed [24], [20], [2], [27], [23],
[22] each with different topologies and overlay maintenance
algorithms. The problem of message loss is solved either by

retries or by falling back on multipath or iterative routing,
which we explain next.
Although our solution is based on recursive routing, many of

the widely deployed systems such as Coral [13] or Kademlia
[19] rely solely on iterative routing. Iterative routing puts the
control over the routing process in the hands of the source
of the message and works as follows. A source S picks the
neighbor A closest to the destination and sends a next hop
request to A asking for A’s neighbor that is closest to the
destination. Suppose that A responds with B, then S in turn
sends the next hop request to B asking for B’s neighbor
closest to the destination and so on until the destination is
reached. Because of the round trips between the source and
the nodes on the routing path, iterative routing increases the
latency, it is on average up to 60% higher than recursive
routing according to some measurements [10] and since more
messages are exchanged bandwidth consumption is also higher
[18]. However, by centralizing the control over the progression
of routing, iterative routing is more fault tolerant, especially in
its parallelized form (e.g. in Kademlia [19]) when the source S

instead of sending the request for next hops to only one of its
neighbors, it sends the request to k neighbors and at any time
maintains k outstanding next hop requests to different peers
until the destination is reached. We contrast the performance
of our approach with parallelized iterative routing in §V.
Another solution to message loss in overlays is multipath

routing. Messages are routed along many, possibly node-
disjoint paths to lower the loss probability and lower the delay
[5], [4], [8]. In our system, failures are actively detected and
routed around using only a single path. In §V we compare the
performance of our system with the routing path diversification
approach from [8].
The concepts of trust and reputation have been used to

detect and then isolate the faulty or selfish peers in non-
cooperative environments [16], [3], [26]. Most of this work
considers the problem of selecting a reliable peer to perform
a transaction with, e.g. a file transfer. Up to our knowledge
there has been no direct application of the trust and reputation
concepts to fault-tolerant overlay routing, so there are no
grounds for comparison with our approach.
The stigmergic routing protocols are inspired by ant

colonies and their ability to form robust short paths between
the nest and the food sources. In AntNet [11], routing is
divided into two phases. The forward ant first attempts to reach
the destination. Once the destination is reached a backward
ant returns on the same path as the forward ant depositing
pheromone at each node which tells the subsequent forward
ants in which direction is the destination. Our protocol uses
a similar design pattern. When the routing path is traversed,
it is either reinforced or weakened depending on weather the
delivery to the destination was successful or not. However,
unlike AntNet, which is designed for fixed networks, our
protocol specifically addresses the dynamic nature and larger
scales of the peer-to-peer overlays.
An early evaluation of the Forward Feedback Protocol

(§III-B) used in this paper has been performed in [15]. In



the current work we replace the complex learning algorithm
with a more efficient and robust success estimation technique
(§III-C). We apply the Forward Feedback Protocol to solve
a specific fault-tolerance problem and for the first time the
protocol’s effectiveness is demonstrated in an Internet deploy-
ment.

III. THE PROTOCOL
A. Service provisioning
We assume an overlay that offers some service that is ad-

dressable in the peer ID space. For example in the distributed
hash tables (DHTs), key-value pairs are stored and retrieved
by specifying the location of the key in the peer ID space.
When a peer (the source) requests a service it sends a service
request to some destination in the peer ID space. We assume
that even though the service request specifies a unique location
in the ID space, the requested service can be provided by
more than one peer (e.g. through key replication in DHTs).
The service request is routed hop-by-hop until it reaches the
service provider (i.e. the destination).
The source, after it has sent the service request, expects to

receive a service response. In a correctly functioning overlay
the response always arrives. Even in the case when the source
asks for a non-existent service, a negative response is sent
back to the source. If the response does not arrive within
a timeout, this indicates an overlay routing failure and may
happen when either the request is forwarded too slowly or
is entirely lost. We next define a protocol that informs all the
peers on the routing path that a routing failure has occurred. By
using that failure information, request forwarders can improve
their routing decisions and route around faulty peers.
Our protocol is entirely agnostic to the details of the service

response. Service provisioning may be just a single message
from the destination back to the source or it may be a complex
exchange of messages involving the source, the destination and
possibly other peers. The only assumptions we make are (i)
that the source can determine the success or failure of service
provisioning and (ii) that any service provisioning completes
within the Ts timeout. Applications are expected to adjust Ts

to their needs.
We define the lookup to be the whole process of issuing

and routing the service request until the service response is
received.

B. Forward Feedback Protocol (FFP)
The Forward Feedback Protocol (FFP) is to disseminate

the routing failure information to all the peers on the routing
path. There are two outcomes possible when routing a service
request: either success, when the source receives the service
response or failure when the source does not receive the
response within the timeout Ts. The source is the only peer
that can determine the outcome of the routing process. When
the outcome is known the source sends a feedback message
that is recursively routed along exactly the same routing path
as that taken by the service request (Fig. 1). The feedback
message is either positive or negative depending on whether

������ ����	��

���	���

����	�����
����

����������������

�

�

�

����	������
����

Fig. 1. The Forward Feedback Protocol (FFP). The service request is
recursively routed in the overlay until it reaches the service provider (the
destination). The destination sends the response back to the source. When the
service response is successfully received or the Ts timeout fires the source
sends a feedback message along the same routing path that the service request
took. After receiving the feedback, the peers on the routing path learn whether
their routing decisions led to the successful lookup.

the outcome was a success or a failure. As the peers along
the routing path receive the feedback they learn whether their
routing decisions led to the successful service provisioning.
Each peer on the routing path other than the source or

destination after forwarding the service request expects to
receive a feedback message from the previous hop. All service
requests and their corresponding feedback messages contain
the same unique identifier. When a service request is received
a node allocates the state containing the unique identifier from
the incoming the service request and the address of the sender.
This state is used to match the incoming feedback messages
with the previously forwarded service requests and to forward
the feedback backward on the path. The state is kept at a node
i until either: (1) the feedback arrives at i or (2) the service
response arrives at i and i is the source or (3) Ts fires at i

and i is the source or (4) Tf fires at i and i is not the source.
The Tf > Ts is a timeout specifying how long a non-source
node waits for arrival of the feedback message.

C. Fault-tolerant routing

Each peer locally keeps a set of success estimators. The suc-
cess estimators reflect the history of the past lookup outcomes.
When a service request arrives and needs to be forwarded the
peer selects the next hop for which the success estimate is the
highest. The arriving feedback messages are used to update the
success estimators. As the peer is forwarding service requests
and receiving feedback it improves its routing decisions.
Success estimators. Assume that some peer i has n neigh-

bors to which it can send service requests. Let the identifier
of i be pID. The neighbors are indexed by j = 1 . . . n.
The peer i keeps one success estimator θ̂j,dz(dID) for ev-
ery (neighbor, destination zone) pair. The destination zone
dz(dID) is the function of the destination ID dID defined
as �− log2 d(pID, dID)�, where d(pID, dID) is the distance
in the ID space between pID and dID specified in the service
request. The properties of the zoning function and the rationale
behind it are illustrated on Fig. 2.
The success estimator θ̂j,z kept by node i models the

neighbor j’s reliability of delivering service requests to zone
z. Each θ̂j,z is represented by two numbers a and b which
are the exponential moving average counts of the observed
positive (a) and negative (b) feedback. The value of θ̂j,z is



�������	�
 ����
�� �	������ �� ����	���	���������	�
�����
����	��������������	���	��

���� ����
�������	�
�����	���	��������������
��������	�

���������	�
�������	��

Fig. 2. Destination zoning. Zoning is key to FFP’s scalability. Rather
than keeping per-destination success estimators which would not scale we
divide the destination space into zones and only keep per-zone success
estimators. The further the zone is from the peer the larger the portion of
of the destination space it covers. Since the zone sizes decrease exponentially
there are O(log N) of them in terms of the network size, which dramatically
reduces the protocol’s local state size.

simply defined as a
a+b
. The a and b counts are initialized to 1.

When positive feedback arrives the updates are: a ← γa + 1,
b ← γb, on negative feedback: a ← γa, b ← γb + 1.
The parameter 0 < γ < 1 provides a single knob for

controlling how sensitive the system is to failures. Low values
of γ result in a system that readjusts its routing paths quickly
in response to failures but the routes are less stable since even
a few lost messages can affect them. In a high γ system more
feedback needs to accumulate before the peers change their
routing decisions but the decisions are more reliable.
Next hop selection. Given a service request r with a

destination dID, the node i selects such next hop h that
the predicted success probability is maximized, i.e. h =
arg maxj∈1...nθ̂j,dz(dID), where j ∈ 1 . . . n are all the neigh-
bors of i in the overlay.
While forwarding the request each node decrements the

request’s TTL (time-to-live) counter. When it reaches zero the
request is dropped.
Self-organized fault-tolerance. The next hop selection rule

makes the service requests follow the most reliable paths.
When the lookup fails all the peers on the routing path de-
crease their success estimates for their downstream neighbors
on the path, the routing path is weakened. In the same way,
when a lookup succeeds, the path is positively reinforced and
more likely to be used in the future. As lookups are performed,
each node locally and independently accumulates reliability in-
formation about its overlay neighbors. The network as a whole
converges on reliable routes in a completely decentralized self-
organized way. This process is continuous and when delay or
loss conditions change, the network detects that and reroutes
the traffic to increase reliability (Fig. 3).
Topology-oblivious routing. In contrast to existing overlay

routing protocols, FFP’s next hop selection does not rely on the
overlay neighbors’ peer identifiers but only on the neighbors’
reliability history. In that sense, FFP is entirely oblivious to
the topology of the network it routes in. This is key to FFP’s
universal applicability to a wide range of topologies.
Consider an overlay that has never forwarded any service

requests. Initially all success estimators on all peers are
(a = 1, b = 1). Due to the properties estimator updates
and the next hop selection the service requests either tend
to visit the next hops that have not been visited before or

� �

�

�

�

� �

�

�

�

Fig. 3. Self-organized fault-tolerant routing. Two routes are passing
through peer j. When j starts failing the two routes are weakened by negative
feedback. Peer i starts associating failure with its neighbor j and switches to
l as the next hop. Similarly, node k routes around i, however, in this k’s next
hop i is not faulty, it only happens to lay on a faulty route. In general, it does
not matter which node on the routing path reacts to failure as long as some
node does. Both i and k made their decisions to reroute independently and
based only on local observations. This illustrates how an FFP-based network
of independent nodes self-organizes and finds reliable routes.

those that have already been successful at delivering to a
destination zone. Given enough service request traffic the
system eventually by trial and error learns which next hops are
best for which destination zones and routing becomes efficient.
Despite starting with no knowledge about the next hops at
all, this process converges relatively fast (§V-C). Successful
routing paths are rapidly reinforced and service request traffic
is redirected to use them.
Optimized bootstrap. Initially, when no feedback infor-

mation is available the peers make essentially random routing
decisions. Over time, as more successful paths are found and
reinforced with positive feedback the routing becomes reliable
for all source-destination pairs. This process can potentially be
slow, but only takes place when a large group of uninitialized
peers suddenly joins the system, which is a rare case in prac-
tice. However, to account for this we introduced a performance
optimization: the warmup phase. The warmup phase starts
after the peer joins and ends when the peer has received at
least fmin = 100 feedback messages. During the warmup
phase the peer uses the usual greedy distance-minimizing rule
for routing in the overlay. When the warmup phase has finished
the peer switches to FFP routing and starts using the feedback
gathered during the warmup to make routing decisions. We
found the simple fmin = 100 rule to perform well in all the
workloads and failure scenarios used in the evaluation (§V).
Loop-freedom. Most of the existing protocols follow the

greedy approach in which each hop attempts to minimize
the distance to the destination in the peer ID space. FFP
routing is driven by the success estimators and not the ID
space distance. To increase the routing reliability the peers in
our system deviate from the greedy routing paths. Because of



these deviations, one desirable property of greedy routing is
lost: loop-freedom. However, routing loops are extremely rare
in FFP. There are two reasons for that. First, any loops that
occur lead to exhaustion of the service request TTLs, which
leads to failures and negative feedback. The negative feedback
is then received by the peers that are part of the loop and they
start using alternative routes most likely breaking the loop.
Second, when loops occur they increase the lookup latency,
which leads to the Ts timeouts followed by negative feedback
and the breaking of the loop.
Achieving near loop-freedom without explicitly enforcing

it is a good illustration of FFP’s path-wide fault tolerance in
action. It does not matter how the service requests are routed as
long as they do not exhaust the TTL and the response arrives
at the source within Ts. Any routing inefficiencies such as
loops are eliminated by peers changing the routing paths in
response to negative feedback.

IV. SCALABILITY, OVERHEADS AND OPTIMIZATIONS
Each peer needs to store the success estimators. Assume

a system of N peers and some peer i with d neighbors.
The destination zoning function divides the whole set of
peers into O(log(N)) zones. Hence, there are O(d log N)
θ̂j,dz(dID) success estimators. Assuming d = O(log N), the
total state size for the success estimators is O(log2 N), which
scales well with the network size. A peer must also keep
the state between arrival of the service request and either
receipt of the corresponding feedback message or the Tf or
Ts timeout. Assuming the rate λ of incoming service requests
and Ts < Tf , the expected state size is O(λTf ), which in
practice does not pose a problem since request rates in P2P
systems are low and overlays are typically well load-balanced
in terms of forwarded traffic.
The bandwidth overhead in our system consists of the

feedback messages and the unique identifier field that needs
to be added to the service requests. A feedback message
consists of the unique identifier and a Boolean flag indicating
either success or failure. The naive approach is to send each
feedback message separately, but this can be optimized in a
number ways. First, feedback can be piggybacked on other
service requests sent to the same neighbor. Second, the largest
part of the feedback message is the unique identifier. If the
identifiers are assigned sequentially and independently for
each ordered pair of connected peers, then feedback can be
sent for contiguous ranges of identifiers, which can simply be
specified by their left and right bounds. If the ranges are big
enough the total amortized bandwidth overhead is reduced to
a single bit per feedback message.

V. EVALUATION
The system is implemented using the ProtoPeer1 toolkit and

evaluated in a 400-node PlanetLab2 deployment.
We consider the following routing protocols: (1) BASE -

the baseline without any routing fault-tolerance mechanisms,

1http://protopeer.epfl.ch/
2http://www.planet-lab.org/

(2) MULTIk - multipath routing as in [8], in the first hop the
source chooses k neighbors closest to the destination instead of
one, (3) ITERk - iterative routing scheme based on Kademlia
[19] with k simultaneous lookups, we set a low timeout of
500ms on the hop-by-hop responses so that peers can recover
from local failures and resume routing on-the-fly and (4) FFP
- system running the FFP.
We use a bidirectional Chord [24] implementation. Each

peer sends one service request for some key every 500-
1500ms. We create a set of 1024 keys uniformly randomly
distributed in the ID space. The service request keys are drawn
from this set according to a power-law distribution such that
50% of the requests are for the top 5% of the keys. This
constitutes a realistic workload for a large number of P2P
applications [6].
The request is considered delivered when it reaches either

the peer responsible for the key or one of the two of the peer’s
immediate Chord successors or predecessors, i.e. in the DHT
terms, there is a 5-fold key replication. The timeouts are Ts =
3s and Tf = 6s and the TTL is set to 20. Note that Tf

applies only to FFP, while Ts and TTL apply to all four routing
protocols. A lookup fails when either the TTL is exhausted or
Ts fires before the service response is received by the source.
FFP’s γ parameter (§III-C) is set to 0.95, which offers a good
balance between the sensitivity to failures and the tolerance to
feedback noise.
Each deployment is approximately 400 PlanetLab hosts

in size depending on the availability. The standard practice
in PlaneLab experiments is to exclude highly loaded hosts
from the deploy list. We have included all the hosts that
we could log on to provide a more challenging environment
for evaluating the fault-tolerance. The hosts were polled for
their 15-min UNIX load averages. The median was 5.11 and
the 90th percentile was 16.12. Under these conditions CPU
starvation was causing considerable delays on some peers.

A. Message loss
To simulate peer overload some fraction of peers are

droppers, which drop messages with probability 0.5. Enough
messages get through such that the neighbors of the droppers
do not consider them as departed from the network and keep
them as their overlay neighbors. Just as the other peers, the
droppers periodically send their own service requests, but they
might get dropped on sending as any other message.
In our failure scenario, every 5 minutes a new 10% batch of

peers becomes droppers adding to the existing set of droppers.
New droppers stop arriving when half of the peers become
droppers.
Success rate. We measure the lookup success rate, i.e. the

number of service responses that arrived before the Ts timeout
as the fraction of all service requests that have been sent by
the sources. Figure 4 summarizes the results.
As more droppers arrive the lookup success rate decreases

sharply for the system without any routing fault-tolerance
mechanism (BASE). The multipath (MULTI4) and iterative
(ITER4) routing approaches improve the lookup success rate



0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

time [s]

lo
ok

up
 s

uc
ce

ss
 ra

te

FFP
ITER4
MULTI4
BASE

10 20 30 40 50
fraction of droppers [%]

Fig. 4. Resilience to message dropping. Every 5mins. a new 10% batch of
peers starts to drop all messages except their own lookup traffic. FFP responds
to the failures and routes around the droppers, which allows it to reach the
delivery success rates up to 30% higher than the existing approaches.

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

time [s]

ba
nd

w
id

th
 u

sa
ge

 p
er

 s
uc

ce
ss

fu
l l

oo
ku

p 
[b

yt
es

]

FFP
ITER4
MULTI4
BASE

10 20 30 40 50
fraction of droppers [%]

Fig. 5. Per-lookup bandwidth usage. We sum up the total send and receive
bytes from all the peers. This value is then divided by the number of successful
lookups and plotted. MULTI4 routing relies on 4-way message redundancy
for fault-tolerance, which results in 4 times the bandwidth cost compared to
the baseline. ITER4 has a 1s timeout on the RPCs and when many peers are
dropping messages there are many RPC retries which increases the bandwidth
cost considerably. FFP’s only overhead are the feedback messages (§III-B),
which add up to only a marginal bandwidth increase compared to the system
without any routing fault-tolerance mechanism (BASE). As the droppers arrive
in the system, FFP routes around them, this increases the path lengths and
thus the per-lookup bandwidth cost.

by 30%. An FFP-based system, when it converges, is able to
achieve a high 90% success rate despite the fact that half of
the peers in the system are dropping messages.
The droppers do not send any feedback messages even

though they are the sources of service requests. Although there
is less feedback exchanged in the network, the available feed-
back provides the peers with enough information to effectively
adjust the overlay routes.
Bandwidth usage. In the dropper experiment we have also

measured the total number of bytes that have to be transmitted
by the peers per successfully completed lookup (Fig. 5).

0 500 1000 1500 2000 2500 3000
0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

lo
ok

up
 s

uc
ce

ss
 ra

te

FFP
ITER4
MULTI4
BASE

10 20 30 40 50
fraction of delayers [%]

Fig. 6. Tolerance to message delays. Every 5mins a new 10% batch of peers
starts delaying all outgoing messages by 500-2000ms. The multipath algorithm
performs well, while the source-controlled iterative routing is significantly
slowed down by the delaying sources. The feedback that FFP peers are
receiving is noisy due to the high variability of the path delay. FFP needs
500s to detect and route around the delayers after the last failure injection
at 1500s. When it converges, FFP reaches the high performance level of
multipath routing.

Both the multipath and the iterative routing approaches
rely on redundantly sent messages to tolerate failures, which
considerably increases the bandwidth cost. ITER4 is worse
than MULTI4 in two ways. First, every time an RPC times
out in ITER4 it is retried, which in presence of many droppers
results in many retries, which increase the bandwidth cost
considerably. Second, because of the round trips back to the
source the total lookup latency is much greater than in the
case of MULTI4 and many ITER4 lookups take longer than
Ts and fail (Fig. 4).
Although we have not investigated this, our implementa-

tion can be further optimized by piggybacking the feedback
messages on other messages or sending feedback messages in
batch (§IV), thus avoiding message header overhead, which
is the dominating component in case of the simple feedback
messages.

B. Tolerance to message delays

We turn to evaluating the tolerance of our system to peers
delaying the messages. Apart from the inherent PlanetLab
delays we introduce artificial ones. Similarly to the case
of droppers a new 10% batch of peers becomes delayers
every 5mins. Each delayer delays all messages by an interval
uniformly randomly chosen from between 100 and 2000ms.
Figure 6 shows the lookup success rate. Multipath routing

with its four independent routing paths is able to reach the
destination at least with one of them. Iterative routing fails
entirely in this case. When the sources are also the delay-
ers they significantly slow down the whole iterative routing
process. Due to the high delay variability FFP needs 500s
to gather enough feedback information to route around the
delayers. Once it converges it reaches the same high lookup
success rate as the multipath routing.



0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

time [s]

m
ed

ia
n 

lo
ok

up
 la

te
nc

y 
[m

s]

FFP
ITER4
MULTI4
BASE

10 20 30 40 50
fraction of delayers [%]

Fig. 7. Median lookup latency under forwarding delays. The same
setup as in Fig. 6. Multipath routing with its four independent routing paths
achieves the lowest latency. Even though FFP was not designed for latency
minimization, it removes slow peers from the routing paths when the lookup
latency exceeds the Ts threshold, which over time leads to latency decrease.

We have also measured the median lookup latency for the
successful lookups (Fig. 7). The multipath routing method
besides increasing the fault-tolerance to delays also lowers
the lookup latency. Our system is designed to maximize the
fraction of lookups completed within a timeout Ts = 3s and
not the lookup latency median. However, as a side effect of
rerouting for reliability FFP also slightly lowers the median
delay.

C. Topology-oblivious routing & the bootstrap
One of the novel properties of our protocol is its ability to

route in overlays while using only the reliability feedback and
ignoring any overlay topology information (§III-C) such as the
locations of the neighbors in the peer ID space. In this section
we demonstrate this property experimentally.
All the peers initially have no previously recorded feedback,

i.e. all their success estimators are (a = 1, b = 1). At the one
minute mark all the peers simultaneously start their workloads.
Initially, the routes are explored randomly, there are many
failures, but over time each node learns which of its next hops
are reliable forwarders for which destinations.
To create a more challenging scenario we use a workload

in which peers send service requests to destinations that are
at least 0.25 away on the unit Chord ring. Such workload has
a larger fraction of long multi-hop routing paths.
We compare the systems with and without warmup. Warmup

is an optimization that speeds up convergence by initially
relying on topological information and then subsequently
switching FFP’s purely reliability-based routing (§III-C).
The results on Fig. 8 shows that in a system without warmup

the uninitialized FFP peers are still able to converge on
efficient routes despite ignoring any topological information.
Moreover, the created routes are loop-free, despite the fact that
loop-freedom is not explicitly enforced by FFP. Loops lead to
failures and the peers in a self-organized way learn to avoid
them.

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

time [s]

lo
ok

up
 s

uc
ce

ss
 ra

te

FFP + warmup
FFP

Fig. 8. Topology-oblivious routing & the bootstrap. Two instances of
FFP are compared, with and without warmup (§III-C). All the peers’ success
estimators are initially (a = 1, b = 1). At 60s all the peers start their
workloads simultaneously. FFP without warmup converges on efficient loop-
free routes relying solely on the reliability feedback and ignoring any overlay
topology information. The warmup shortens the initial convergence time as
well as slightly improves the overall performance.

The measurements also confirm that the warmup process
significantly speeds up the initial convergence.

D. The influence of the workload on convergence time
Until now our FFP evaluation has been based on a power-

law workload, we next explore how the workload influ-
ences the FFP’s performance. We are next going to con-
sider four workload variants: multi-source/multi-destination
(MS/MD), single-source/multi-destination (SS/MD), multi-
source/single-destination (MS/SD) and single-source/single-
destination (SS/SD). In the single-destination workloads peers
issue lookups for a single fixed key. In the multiple-destination
workloads destination keys are chosen uniformly at random
from the ID space. In the single-source workloads there is
a single high-rate peer sending lookups, the other peers are
passive. The workloads are normalized such that the lookup
rates summed across all the sources in each workload are the
same.
Figure 9 compares how the system recovers from a failure

under different workloads. The general observation that can
be made is that the fewer the source-destination pairs in the
workload the faster the failure recovery. This is particularly
evident in the SS/SD case. When traffic is constrained to fewer
paths, the peers along these paths receive more feedback and
can adapt faster. Moreover, the failure recovery is the faster
the fewer there are destinations in the workload. The peers in
the neighborhood of the destinations receive more feedback
and with it they can determine which of the destination ID
replicas are more reliable.

E. Tolerance to churn
So far we have evaluated our system in setups with all

peers permanently on-line, however in P2P systems peers
are constantly joining and leaving the overlay (churn). Peer



0 100 200 300 400 500 600 700 800 900
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

time [s]

lo
ok

up
 s

uc
ce

ss
 ra

te

MS/MD
MS/SD
SS/MD
SS/SD

Fig. 9. FFP performance under different workloads. The four workloads
are: multi-source/multi-destination (MS/MD), single-source/multi-destination
(SS/MD), multi-source/single-destination (MS/SD) and single-source/single-
destination (SS/SD). At 5mins 25% of the peers become droppers (§V-A).
The fewer paths the traffic is confined to the more feedback the peers on
these paths receive and the faster the recovery after the failure.

departures in our system cause forwarded messages to be lost
and also break the feedback flow, which affects the state of the
success estimators, which in turn might disrupt FFP’s next hop
choices. In addition, churn constantly adds new peers which
initially are in the warmup mode (§III-C) and make routing
decisions that do not account for the lookup failures. In the
following experiment we test to what extent these effects affect
the system’s performance.
We take the same application code as used in the PlanetLab

deployment and evaluate it in the ProtoPeer simulator. The In-
ternet latencies are taken from the King dataset3. We are using
the churn model based on the Kad4 data from the Stutzbach’s
et al. study [25], which measured churn characteristics in live
P2P networks. There are 1024 live peers on average. At 800s
into the simulation, 40% of the peers become droppers. The
results of the simulation with and without churn are compared
on Fig. 10. The ability to detect and route around failures is
largely unaffected by churn. There is only a 1 − 2% drop
in the lookup success rate, but this is mainly caused by the
unpreventable message loss due to the peer departures.

VI. DISCUSSION
Self-organized fault-tolerance. In the Forward Feedback

Protocol each node locally and independently of the other
nodes learns to route based on the simple binary feedback. As
we have confirmed in the evaluation, an overlay composed of
independent FFP nodes continuously self-organizes to increase
the routing reliability. When message loss (§V-A) or excessive
delays (§V-B) occur in the network, the paths are rapidly
readjusted to route around the faulty peers and overlay links.
Bandwidth efficiency. The performance data accumulated

at each peer about its neighbors is key to FFP’s reliability.
The other approaches do not keep track of their neighbors’

3http://pdos.csail.mit.edu/p2psim/kingdata/

0 500 1000 1500 2000
0.95

0.96

0.97

0.98

0.99

1

time [s]

lo
ok

up
 s

uc
ce

ss
 ra

te

FF with chrun
FF without churn

Fig. 10. FFP performance under churn. An FFP system is running a multi-
source multi-destination workload. At 800s 40% of the 1024 peers become
droppers. The time resolution is 60s. Feedback message loss caused by churn
and the constant joining of new uninitialized peers do not affect FFP’s ability
to recover from the failure.

performance and instead rely on message redundancy to deal
with the failures. As we have confirmed in the measurements
this comes at a significant bandwidth cost. Knowing the
neighbors’ performance allows FFP to choose more reliable
paths which allows our protocol to reach higher success rate
than the existing approaches.
However, despite the high bandwidth cost, the usage of

redundant routing paths in iterative and multipath routing
allows for reduction in the median lookup latency. In contrast,
FFP is better suited for bandwidth-constrained environments
and applications in which latency minimization is not the
highest priority.
Convergence time & suitability for high-rate traffic.

Convergence time in FFP is directly dependent on the rate at
which the peers are forwarding the traffic. The higher the the
traffic rate the more feedback is available and the more reliable
the routing decisions are. As we observed (§V-D) convergence
is significantly faster when the traffic is less diverse, with fewer
source-destination pairs . The peers are able to respond to
changing conditions faster since the feedback accumulates in
a smaller set of success estimators. The fact that the more peers
forward the quicker they converge on reliable routes as well as
FFP’s low bandwidth overhead make this protocol particularly
suitable for applications with high-rate traffic.
Although the biggest factor affecting FFP’s convergence

time is the workload, it is not the only factor. We are currently
running a more detailed quantitative study to determine the
other factors (success estimator update rules, different desti-
nation zoning functions etc.).
Combining the routing approaches. So far we have looked

at our solution to fault-tolerant overlay routing as an alternative
to the existing approaches. However, an interesting possibility
is the integration of our solution with the multipath or iterative
routing protocols. Every time the next hop is chosen in one of
these protocols, it is chosen greedily to minimize the distance



to some destination ID. This greedy next hop choice can
be replaced with our failure-aware choice (§III-C) taking the
feedback into account. This would combine the fault-tolerance
gains from both the message redundancy of iterative and
multipath routing and the failure-awareness of our routing
approach.
Under abundant bandwidth the system could reap the full

benefits of all approaches, when bandwidth became scarce the
system could reduce the amount of message redundancy (the
k parameter of MULTIk and ITERk) or entirely fall back on
routing only with our bandwidth-efficient method.
Feedback suppression & incremental deployment. In FFP

a service request is always followed by a feedback message.
But does it have to? We have indirectly measured that mod-
erate feedback loss does not prevent FFP from converging on
reliable routes (§V-A). This brings up an interesting question:
How much of the feedback is necessary for reliable routing?
The system could suppress feedback generation to conserve
bandwidth. It would be possible in such a system to precisely
control the tradeoff between reliability and the amount of
bandwidth invested in maintaining reliable routes.
If the system can tolerate feedback dropping then it will

tolerate a fraction of peers that do not support the FFP protocol
and ignore the feedback messages instead of forwarding them.
This opens up the possibility of incremental deployment of
FFP in already running overlays, which could proceed as
follows. Initially, the isolated FFP peers do not receive any
feedback and rely on the traditional overlay routing. As more
FFP-compatible peers are deployed and start forming larger
connected components in the overlay topology they begin
exchanging feedback, soon they accumulate enough feedback
to exit the warmup stage and begin routing using their success
estimators.
Unstructured vs. structured vs. FFP overlay routing.

Unstructured overlays (e.g. [7]) do not assign any identifiers
to the peers and do not maintain any global overlay topology.
Instead of routing they rely on random walks or flooding for
message delivery. Similarly to the unstructured overlays, the
FFP peers do not need to know their neighbor’s identifiers
to be able to route. Also, just as the unstructured overlays,
FFP can operate in the topology-oblivious mode in which it
finds the destinations using random walks, however unlike the
unstructured overlays, FFP learns from its routing mistakes
and the random walks are over time replaced with more
reliable faster paths.
Even though FFP makes no use of the neighbor identifiers

each peer locally uses its own identifier as the input to
the zoning function (§III-C). The zoning function makes the
assumption that the destination IDs close to one another in the
ID space are also likely to be topologically close in the overlay
graph. This is a property shared by all structured overlays [24],
[2], [27], [23], [20] and allows FFP to scale.
Richer signalling. The proposed feedback mechanism is

general enough to be used in applications other than overlay
routing fault-tolerance. Feedback messages can be used to
signal any Boolean property of the routing path, not only

when it satisfies the Ts latency constraint. Forwarders can
route around those peers that consistently cause the property of
interest to become false. For example, when service requests
pass through forwarders or service providers close to reaching
their throughput saturation point, these peers can signal it by
setting a congestion control bit in the service requests (as in
[17]). The source then finds out about the congestion via the
service response and sends negative feedback along the path
to notify the forwarders that some peers on the path are close
to being overloaded and should be avoided.
Feedback can be used to signal not only the Boolean

properties of the routing path but others as well. For example,
if feedback messages contain the delay information, then the
success estimators can be modified to be delay estimators and
the system can potentially be turned into a latency-minimizing
overlay [1], [9].
Beyond overlay routing. We have applied FFP to solve

the problem of fault-tolerance in recursively routing overlays.
However, FFP is general enough to be layered on top of any
recursively routing network. For example, we have already
obtained several promising results from applying FFP to multi-
hop wireless networks. In such networks, FFP provides both
the routing functionality and the route discovery functionality,
which uses FFP’s random walks to locate the destinations. In
wireless networks we do not need to rely on zoning (§III-C)
for scalability, success estimators can simply be stored per-
destination. In general, FFP can be adapted to the needs of a
specific application or a network by modifying the granularity
of the success estimators and assigning some meaning to the
Boolean success flag carried by the feedback.

VII. CONCLUSIONS

We have presented a solution to the problem of message loss
and excessive delays during lookups in structured overlays.
We have shown how nodes acting completely independently
can self-organize into a reliably routing overlay using only
the binary feedback messages as the signalling mechanism.
We have confirmed the effectiveness of our solution in an
Internet deployment under a variety of failure scenarios and
workloads. The FFP protocol has up to 30% higher delivery
success rate than the existing approaches while using 2-5 times
less bandwidth.
Our protocol can readily be integrated into most of the

modern structured overlays to provide fault-tolerance at low
bandwidth cost. For additional fault-tolerance the protocol can
be combined with either the iterative or multipath approaches.
However, fault-tolerance is not the only area of application.
FFP can be viewed as a general signalling protocol and can
be used for overlay congestion control or lookup latency
minimization. FFP can also potentially be adapted for use in
other networks such as multi-hop wireless or the Internet.

REFERENCES

[1] “Meridian: a lightweight network location service without virtual coor-
dinates,” in SIGCOMM’04. ACM, 2005, pp. 85–96.



[2] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt, “P-grid: a self-organizing structured P2P
system,” SIGMOD Record, vol. 32, no. 3, pp. 29–33, 2003.

[3] K. Aberer and Z. Despotovic, “Managing trust in a peer-2-peer infor-
mation system,” in CIKM. ACM, 2001, pp. 310–317.

[4] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan, “Best-path vs.
multi-path overlay routing,” in IMC ’03. New York, NY, USA: ACM,
2003, pp. 91–100.

[5] M. S. Artigas, P. G. Lopez, and A. F. G. Skarmeta, “A novel method-
ology for constructing secure multipath overlays,” IEEE Internet Com-
puting, vol. 09, no. 6, pp. 50–57, 2005.

[6] S. Bianchi, S. Serbu, P. Felber, and P. Kropf, “Adaptive load balancing
for DHT lookups,” in ICCCN, 2006, pp. 411–418.

[7] F. Bustamante and Y. Qiao, “Friendships that last: Peer lifespan and its
role in p2p protocols,” 2003.

[8] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach,
“Secure routing for structured peer-to-peer overlay networks,” ACM
Operating Systems Review, vol. 36, no. si, p. 299, 2002.

[9] F. Dabek, R. Cox, M. F. Kaashoek, and R. Morris, “Vivaldi: a decen-
tralized network coordinate system,” in SIGCOMM’04. ACM, 2004,
pp. 15–26.

[10] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris,
“Designing a DHT for low latency and high throughput,” in NSDI’04.
USENIX, 2004, pp. 85–98.

[11] G. Di Caro and M. Dorigo, “AntNet: Distributed stigmergetic control for
communications networks,” Journal of Artificial Intelligence Research,
vol. 9, no. 2, pp. 317–365, 1998.

[12] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, and W. Zwaenepoel,
“Denial-of-service resilience in peer-to-peer file sharing systems,” SIG-
METRICS Perform. Eval. Rev., vol. 33, no. 1, pp. 38–49, 2005.

[13] M. J. Freedman, E. Freudenthal, and D. Mazières, “Democratizing
content publication with coral,” in NSDI’04. USENIX, 2004, pp. 239–
252.

[14] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Stoica, “Non-
transitive connectivity and dhts,” in WORLDS’05. Berkeley, CA, USA:
USENIX Association, 2005, pp. 10–10.

[15] W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer, “Authentication-
free fault-tolerant peer-to-peer service provisioning,” in DBISP2P 2007.
Springer, 2007.

[16] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust
algorithm for reputation management in P2P networks,” in WWW, 2003,
pp. 640–651.

[17] F. Klemm, J.-Y. Le Boudec, D. Kostic, and K. Aberer, “Improving
the Throughput of Distributed Hash Tables Using Congestion-Aware
Routing,” in IPTPS, 2007.

[18] Li, Stribling, Gil, Morris, and Kaashoek, “Comparing the performance
of distributed hash tables under churn,” in IPTPS, LNCS, vol. 3, 2004.

[19] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” in IPTPS, ser. LNCS, vol. 2429.
Springer, 2002, pp. 53–65.

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in Computer Communication
Review, vol. 31, Berkeley, CA, USA, 2001, pp. 161–172.

[21] S. Rhea, B. Chun, J. Kubiatowicz, and S. Shenker, “Fixing the embar-
rassing slowness of opendht on planetlab,” 2005.

[22] S. C. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn
in a DHT,” in USENIX. USENIX, 2004, pp. 127–140.

[23] A. Rowstron and P. Druschel, “Pastry: scalable, decentraized object loca-
tion and routing for large-scale peer-to-peer systems,” in Middleware’01,
Nov. 2001.

[24] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM’04, 2001, pp. 149–160.

[25] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in IMC’06, J. M. Almeida, V. A. F. Almeida, and P. Barford,
Eds. ACM, 2006, pp. 189–202.

[26] L. Xiong and L. Liu, “Peertrust: Supporting reputation-based trust for
peer-to-peer electronic communities,” IEEE Trans. Knowl. Data Eng,
vol. 16, no. 7, pp. 843–857, 2004.

[27] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry: a fault-tolerant
wide-area application infrastructure,” Computer Communication Review,
vol. 32, no. 1, p. 81, 2002.


