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Abstract—Self-organising systems are a popular engineering
concept for designing decentralised autonomic computing sys-
tems. They are able to find solutions in complex and versatile
problem domains, but as they capture more complexity in their
own design, they are becoming less and less comprehensible
to their users (be they humans or intelligent agents). We
describe a design challenge that relates to usability theory
in general and in particular resembles an observation made
by Phoebe Senger, who noted that software agents tend to
become incomprehensible in their behaviour as they grow more
complex. In the manifestation of self-organising systems, the
problem is more urgent (since we find ourselves using them
more and more) and harder to solve at the same time (since
these systems are not centrally controlled). We describe the
problem domain and propose three system properties that
could be used as quality indicators in this regard: Stability,
Learnability and Engageability. We demonstrate their usage in
a simple model of dynamic pricing markets (e.g. the electricity
domain) and evaluate them in different ways.

Keywords-Artificial intelligence, Self-organizing control, Sys-
tem analysis and design, User centered design, Optimization
methods

I. INTRODUCTION

When computer systems become more complex, their

shortcomings in usability become clearer to their users.

Phoebe Sengers [1] pointed this tendency out when she made

clear how artificial agents resemble schizophrenic humans

in their behaviour, being “fragmented“ and “incomprehensi-

ble“. This has never been stated for self-organising systems,

but they exhibit the same problems and we find ourselves

using them more and more.

Many contemporary examples of complex, automated

computer systems who self-organise in a complex domain

can be found in traffic control - for motorways (e.g.

Smulders [2] describes the Dutch system of variable speed

signs), public transport (e.g. Gershenson and Pineda [3]

describe how buses can avoid the platooning effect if they

follow system-internal schedules rather than to wait for all

passengers to board) or urban traffic (e.g. Dusparic et al

[4] model the interplay of inner city control mechanisms

which optimise for private and public traffic in parallel). In

Economics, complex trading systems have become reality

and more are planned, for instance in deregulated electricity

markets [5]. In addition, many models exist for applications

in security/surveillance [6], e-health or e-government [7].

We note that many of these systems are hybrids in that they

employ both artificial and human agents. We also make the

same assumption about (future) users: automated systems

should be comprehensible to external automated agents.

Many researchers seem to jump from the fact that self-

organising systems support emergent behaviour to the con-

clusion that they are inherently easier to interact with, since

they can adjust themselves to many circumstances. On the

contrary, properties brought about by complex behaviour are

hiding the systems inner states by abstraction, thus making

the interaction problem even harder to solve than for single

agents. To our best knowledge, this problem has not yet been

described in the literature.

While similar shortcomings have been identified by other

authors (e.g. [4], [8], [9], [10], [11]), our modelling of this

problem reflects systems which do not lend themselves to

semantic or game theoretic descriptions of all interactions.

We take a signal processing approach, where we are inter-

ested in the interpretation of the systems output by its users.

Our approach considers similar settings as Decision The-

ory, being concerned with the question how better decision

making can be enabled for actors in complex, uncertain

and inter-temporal environments. We are not interested in

usability concepts tailored specifically to humans (e.g. recent

HCI approaches [12]), but rather use simple statistic analyses

which could be performed by either humans or software. In

a similar approach, Holzer et al [13] model self-organising

systems as a multigraph and measure two system properties

(autonomy and emergence) via the entropy over signals on

the graph edges. We do not require a complete system model,

as we are only interested in the edge between the system and

a user.

In system design, current research focuses almost exclu-

sively on internal performance objectives or the possible

utilities achievable for users, each on its own. We propose

comprehensibility as a third perspective, asking to what

extent a system is dependable, learnable and engageable. A

comprehensible system reduces the overhead costs that arise

by using it and makes easier introduction and deployment

possible.

The contributions of this work are to motivate why

designing comprehensible self-organising systems is an es-

pecially hard task in the online, multi-user case, which we
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do in Section II, and to propose three system properties

(as perceived by its users) that could be used as quality

indicators for comprehensibility: Stability, Learnability and

Engageability, which we review in Section III. In section

IV, we model a simple example system to demonstrate how

these indicators could be modelled and evaluated in practice.

Section V concludes and Section VI discusses future work.

II. ONLINE, MULTI-USER, SELF-ORGANISING SYSTEMS

A. Definition

In this work, we treat self-organisation as an engineering

concept, which fits well into the domain of autonomic

computing [14]. Here, self-organisation can be seen as a

process which enables a system to modify its organisation

in case of changes in the environment, without explicit

external commands. Instead, agents act inside of the system

considering internal states, rules and constraints [15]. The

reorganisation will put the system in a new state. This state

can be vastly different from the previous state - the state

transition is considered an appropriate response if it brings

the system back to some internal performance objective.

In the sense of Von Foerster [16], the environment as an

external, contingent actor is crucial to the operation of any

self-organising system. Here, we are especially interested in

an environment consisting of the systems users and in their

ability to interact with the system. This relates to research

in open systems. De Alfaro [8] defines an open system as “a

system whose behavior is jointly determined by its internal

structure, and by the input it receives from the environment.”

The self-organising systems that are proposed in most

of the literature behave to their environment much like

distributed systems in that they abstract over their internal

states, hiding them from their users. A distributed system,

by design, provides its users a system view on itself which

abstracts over several aspects of its distribution (e.g. access,

location or failure)[17]. Thus, the user does not need to care

which parts of the system he is interacting with - to him,

the system is perceived as one single opponent.

We consider here self-organising systems that have mul-

tiple users, who are interested in states of the system at

different time points (in its online behaviour) from distinct

point of views. An example of an offline, single-user self-

organising system is a Swarm within a Particle Swarm

Optimisation [18]. There is only one user of such a system,

who is only interested in one state at one time: the best

position when the optimisation has stopped. Online multi-

user systems, on the other hand, present several states to the

outside world. Examples of multi-user systems are traffic

regulation systems and markets. Figure 1 illustrates how

design (’control’) and interests in system states (’read’) differ

in both cases. In fact, the designer of a multi-user system

faces a multi-objective optimisation problem as soon as the

objectives of the users do not align with his (optimisation)

objectives.

(a) Particle Swarm optimisation

(b) Traffic Control Scenario

Figure 1. Examples for an offline, single-user system and an online multi-
user system

In this paper, we demonstrate our ideas with a sim-

ple market model. Markets fit our case as they are often

described as self-organising systems (e.g. [19], [20]), and

consist of multiple autonomous actors, who influence supply

and demand via their actions over time [21]. In our model,

consumers act as the users, from whose point of view we

will evaluate the proposed indicators.

B. Problem Statement

The problem we outline here is rooted in the fact that a

multi-user self-organising system is not a single opponent to

its users. By definition, its agents act autonomously and not

on behalf of a single, central opponent, who would ensure

a stable behaviour that would be dependable or learnable.

These systems abstract over their internal states, meaning

that the causal connection between its outputs and inner

states is hidden or too complex to infer. Users will find it

hard to comprehend and thus depend on such systems. It has

in fact been noted that human users tend to refer to complex

self-organising systems in their language as single actors. In

[22], Morris et al describe how using the agent metaphor

(e.g. “the Nasdaq climbed”) over the object metaphor (“the
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Nasdaq bounced back”) changes the users interpretation of

the systems response. For lack of a better clue to the inner

workings of the system, users are employing Occam’s Razor

by rationalising the system’s response with a simple, but

inaccurate interpretation. This may be a serious source for

misunderstandings.

In addition to being dependable and learnable, several

multi-user system designs hope for the user’s active partic-

ipation. This can be seen in partly liberalised markets (e.g.

electricity markets), where hopes are high to create open

frameworks, such that many players are able to access the

market and drive it towards efficiency. The success of such

an open system might partly depend on its engageability,

the extent to which users are able to recognise the effect of

their actions in the interaction with the system. To describe

unengeaging user-system relations, Luhmann [23] suggests

to use the term ’confidence’ rather than the term ’trust’,

because trust “requires a previous engagement on your part“.

Users in a confidence relation “react to disappointment by

external attribution“ rather than to acknowledge their own

contribution to the situation.

Senger [24] introduces the concept of comprehensible

agents, who are not only supporting a function but are also

usable in that they are comprehensible to its users. We argue

that this concept needs to find its way into the design of self-

organising systems, i.e. we are in need of comprehensible

systems. This holds especially for systems whose users have

little choice but to use them, as is for instance the case with

traffic control systems and often for markets.

Any hidden complexity of current self-organising systems

can possibly make its outputs and behaviours incomprehen-

sible to its users. The hurdles which a design for compre-

hensibility would need to overcome lie at the heart of the

concept of self-organisation: Those systems are designed to

deal with very complex problems, thus their internal states

can often not be reduced to simple concepts. Any constraints

on state transitions might hinder the system in reacting

flexible and its quest for optimising internal performance

objectives. On the other hand, abstracting inner states and

objectives away from users can often be a problem rather

than a welcome feature for them. To feed the users desire

to depend on, learn to use and engage with the system,

some of these abstractions should be reconsidered, which

is a challenging engineering problem.

Relations to Market Theory: There is a well-established

discussion about hidden complexity in market theory: The

efficient-market hypothesis claims that the prices in a market

reflect the true value of products, i.e. all information about

them. There is growing evidence against the hypothesis in its

strong form (e.g. [25]), which claims that prices reflect even

non-public insider information. Returning to our discussion

of abstraction above, this would mean that markets abstract

over their internal states. Hence, abstraction towards users

must be seen as reducing this kind of informative efficiency:

Pagano and Roell [26] investigate the effect of abstraction on

liquidity and conclude “that if policy makers want to reduce

trading costs for uninformed traders, they should publicly

disseminate order flow information as promptly as possible”.

Their model predictions “may also help to understand why

lately dealer markets are under increasing pressure from the

more transparent automated auction systems.”

We stated that designing for both complexity and compre-

hensibility constitutes a trade-off situation. This is illustrated

by the concept of “Dynamic Efficiency” (e.g. [27]), denoting

how well a market policy prepares its participants for

possible future states, rather than (statically) optimising the

present. In this context, Potts [28] argues that some sufficient

amount of structural complexity is needed in a system to

enable it to arrive at viable solutions which enable both

adaptability to a current state and being prepared for change.

In our view, complexity alone will hardly be sufficient. We

think it is an important research question how (market)

systems can contain more complexity while still enabling

informed and cost-effective decision making for their users.

III. QUALITY INDICATORS

We propose three quality indicators and give some first

approaches to measuring them. They all are an interpretation

of the systems signals towards the user and use the concept

of utility [29] to quantify this interpretation in different

states. Thus, we use the term ’received utility’ to denote how

the systems output is interpreted by the user and the term

’action’ to denote the users behaviour towards the system.

We believe that these indicators make a contribution

towards more comprehensible self-organising systems, in

that they constitute a universal set of interests inherent to

most users who are interested in reducing their overhead

costs, be they human or automated, which is commonly

not captured by objective measures such as price. If they

are used in system design, the user utility in these systems

can become more comparable, at least the part which is

influenced by the systems behaviour.

A. Stability

One aspect of comprehensibility is Stability. We claim

here that a system with a low variance in transitions between

received utilities can be more reliable to the user and thus

the resources needed to use it can be reduced (or be put

to use less frequently). Of course, Stability works against

dynamicity, scalability and other desirable attributes of self-

organising systems. It is hard to achieve Stability in those

systems because they react to the dynamics of different

influences - the received utilities have to be interpreted in the

context of the environment. Often, the environment consists

of other autonomous system-agents. If a self-organising

system is decentralised, then another difficulty is that the

system responds with utilities via several of its agents whose

inner states might not be coherent. Cognitive Psychologists
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have developed relational complexity theory to describe this

problem. According to relational complexity theory [30], the

processing load of a cognitive task is determined by the

complexity of the relations that must be processed in a given

step.

A simple approach to measuring Stability could be done

via a time series of measured data points, e.g. the price in

a market system with dynamic pricing. The variance in this

series is a simple indicator of Stability as in Equation 1:

sX =

√

√

√

√

1

N − 1

N
∑

i=1

(xi − x̄)
2

(1)

where N is the number of received utilities, xi is an indi-

vidual utility received by the agent and x is the population

mean over all received utilities. Note that sX is ∈ [0, 1].

B. Learnability

The Learnability of a system is an established quality

indicator in software quality evaluation [31]. To generalise

this problem for all self-organising systems, we propose that

the Learnability of a self-organising system indicates how

well the likelihood of transitions between received utilities

can be learned by a user. For this, additionally available

local information might be helpful. A user can observe states

in the systems environment (including his own) or get to

know the intentions (i.e. inner optimisation objectives) of the

system and to some extent learn why a new received utility

supports these. Thus, we might also ask: How disentangled

is a received utility from any users’ local information?

Learnability does not come naturally to self-organising

systems because of their inherent abstraction over complex-

ity we discussed above. System agents do not expose all

information available to them. In the decentralised case, they

might even be restricted to giving only a partial account of

the systems state from their viewpoint. For example, when

a traffic-sign agent A on a Dutch motorway needs to signal

a lower speed limit, this is due to congestions in another

part of the system, but exact information about all problems

in the system is not available at the agents location. And

even if it were available, the response at A came about by

complex interactions - it might even be part of an emergent

high-level response and as such not easily reducible.

We present here the most simple approach to Learnability:

To measure how hard it would be for the user to forecast

utilities she receives from the system, given only other

contextual information she has. For stable systems, (i.e. with

low variance in received utilities) forecasting is not hard,

but even with high variance, a user might be able to infer

received utilities when she is given more information than

just the received utilities themselves. If a user can observe a

part of the environment (at the very least, each user knows

about her own actions), she is able to see and learn possible

correlations between changes in it and the received utilities.

For example, the traffic-sign agent at location A could

increase Learnability by telling slowed-down drivers about

the reason he does so: maybe an average congestion index

he derives from signals received from agents at location B,

C and D. A running sample correlation coefficient would be

computed like Equation 2:

rXY =
1

N − 1

N
∑

i=1

(
xi − x̄

sX

)(
yi − ȳ

sY

) (2)

where N is the number of pairs of system output xi and

local information yi. Note that rXY is ∈ [−1, 1], where 0

means no correlation.

From the user’s perspective, the Learnability problem

resembles the General Game Playing Challenge ([11], [32]),

where artificial agents have to play a game of which they

are told the rules only when the game begins: They are not

prepared to behave optimal (regarding their own utilities)

in the realm of the system. An even harder case is when

even the rules are unknown to the player - a situation which

Levinson [33] calls the ’blind player’. Note that even when

rules are accessible, blind players can be found in many

domains, when they are not willing or interested enough to

put in effort to learn the rules, for example in security or

surveillance scenarios.

C. Engageability

Many claims exist that interaction patterns with users

should matter. For self-organising systems, we can think of

two reasons in favour of this:

1) Whenever the actions of users matter to the system

context, the system design should give users incen-

tives to make it individually rational [29] to work

towards the systems objectives. In other words, the

self-organising system should provide a conclusive

relation between user actions and received utility,

encouraging actions from the user which help the

system and discouraging those that do not.

2) However, the system design should not only care about

quality of user actions, but also quantity. When users

feel they cannot do what they want or that their actions

do not have an effect, they are likely to decrease their

usage of the system or the efforts to engage.

If the systems user model is detailed enough and it engages

the user with the fitting utilities, the user will notice an

effect of a change in response to her actions. But this is

hard to achieve, partly because of the abstraction of inner

complexity, but also especially in systems with many users.

For example, the presence of the driver on any dutch mo-

torway at rush hour matters, but often only in infinitesimal

amounts.

For the purposes of this work, we will again take the most

simple view we can take to make a first approach to the this

indicator. Engageability measures how much a change in
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user behaviour (her actions towards the system) a matters

to the utility u received from the system in response. For

example, consider a market system that engages a user by

letting her know about a price peak in advance, suggesting

to lower demand (the systems objective being here to lower

overall demand). The amount of demand the user refrains

from would be the action, an immediate price reduction

(per unit) the received utility effect (in fact, this is how our

example will proceed in Section IV). The indicator measures

the ratio of changes in user action to effects in received

utility:

%△a/%△u

In practice, it might make sense to consider specific ranges

of time. Let T be a set of time points t at which the user

had opportunity to perform a change in his action towards

the system at (e.g. speed, usage amounts, price bids). We

assume a utility effect ut ∈ [0, 1] to every at ∈ [0, 1] (where

in both cases 0 denotes no change or effect and 1 denotes

the most complete change or effect possible), such that for

every considered time point set T , we can calculate the

rate of change in actions and the received utility effects

for each time step t in T . If there exist timing difficulties

in connecting utilities to actions, it might make sense to

compare the sum of actions to net utility achieved over the

course of a longer time period. We also assume that for both

actions and utilities base values ab and ub are known, so we

can compare the deviations (if no base value is known, one

could simply take zero or the last value). Thus, a possible

measure (in appropriate settings) could be:
∑T

t=1
dT−t((ut − ub)− (at − ab))

T
(3)

where d ∈ [0, 1] denotes a discounting factor, which can

discount older differences stronger than more recent ones.

Engageability gives us values ∈ [−1, 1], much as the

correlation coefficient does, which we used for Learnability.

If Engageability is zero, the received utility effect from

the system matches the change in action by the user. If

Engageability is lesser than zero, the utility effect does not

match the change in action and if it is bigger than zero, the

utility effect is even larger than the change in action. To

rule out that randomly returned utilities average to zero, one

should consider whether the variance in single Engagement

indices is not too high.

D. Evaluation

In such complex environments as the domains in which

self-organising systems are used, stochastic and parame-

terised simulations are a meaningful approach to study the

different configurations a system might find itself in and

then evaluate indicators based on the collected data. In the

next section, we will put forward an example market system

and simulate several scenarios in it. We will then use three

methods to evaluate our indicators:

• It is important to see how the indicators respond

to different system configurations. Which changes in

parameter values of the system configuration increase

or decrease them?

• For the comparison of system designs in multi-objective

optimisation problems like these, pareto fronts between

the three indicators can be a meaningful tool to study

how much the indicators compete. Pareto fronts allow

us to state if an indicator could be increased under

a different configuration without decreasing another

indicator (i.e. the new configuration pareto-dominates

the current one).

• Not every user is the same - for a meaningful analysis,

one should also look at distinct parts of the user

population to see if the indicators behave differently

to them.

Keep in mind that all indicators we propose denote a

perceived value, from the users perspective. Their relevancy

might differ, given the application or design situation. They

can become less clear by noise and even influence each

other (e.g. Stability decreases Engageability, as we will

demonstrate later). In addition, the importance users assign

to them are subjective and will vary between users.

IV. EXAMPLE

A. Model

To exemplify the indicators we proposed in the last sec-

tion, we model a simple market example (see Figure 2a for

illustration), where consumers consume a good continuously

(e.g. electricity, but also water, communication services)

and pay for it according to retail contracts. A supplier and

a retailer self-organise dynamic pricing. Interestingly, the

users of this system also constitute a significant part of

the environment for other users via their behaviour. We

will come back to this in the analysis. Note that in a full-

fledged market model, we would find several retailer agents

who would influence each other, rendering the situation far

more complex. We could of course also add suppliers with

different cost curves.

C consumers each consume an amount of the good

dc,h ∈ [0, 100] in 24 (hourly) intervals h. The typical

demand profile over the course of one day is shown in

Figure 2b, with two prominent spikes, one in the morning

and one in the evening. We vary the demand of each

consumer c in every hour h by a random amount ∈ [0, 15].
The system consists of a retailer agent and a production

agent. The retailer agent has contracts with the local con-

sumers. To match demand for the current hour, he buys the

needed amount of the good from the producer - for a supply

price ps
h per unit ∈ [0, 1]. The supply price reacts logarith-

mically to changes in average demand (see Figure 2c). Thus,

it has high marginal prices when consumption is high and

we write ps
h short for ps

h(
dC,h

C
), where dC,h =

∑C

c=0
dc,h.
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(d) Accumulated costs of the retailer in a flexible and an
inflexible consumer market

Figure 3. Flexible vs Inflexible consumer scenario

Algorithm 1 Demand negotiations

while h < runtime do

All consumers c announce their demand dc,h

Supplier calculates ps
h

Retailer calculates pr
c,h and announces results to all c

for all c ∈ C do

if c is flexible and pr
c,h > bc then

c delays 40% of dc,h to the night

end if

end for

Supplier calculates ps
h

Retailer calculates pr
c,h and bills all c

h← h + 1
end while

Figures 3c and 3d show the costs for consumer and retailer,

respectively. We first observe that flexibility in demand pays

off for the consumer. His cost curve is much smoother and

less steep. Note that this is even the case when he does not

profit from the retail price being limited by varc, as does

the inflexible consumer in this case. His spiking demand

behaviour is not only more costly to him, but also for the

retailer.

B. Measuring Indicators

We will now vary two important variables in our sys-

tem and its environment and observe how this affects the

indicators we proposed. We run several simulations with

combinatorial experiment design in order to demonstrate the

quality indicators we offered in Section III.

The retailer agent can hide some of the risk from the con-

sumers, which is in our case the risk of supply price spikes.

We modelled this by a maximal retail price deviation in

contracts. We will now vary this maximal deviation devc ∈

[0.0, 0.1, 0.2, 0.3, 0.4]. An important (and unobservable) part

of the environment are other consumers. Are they flexible

and thus good for supply prices or not? To study effects of

this part of the system environment, we vary the ratio of

flexible consumers Cf ∈ [0.04, 0.25, 0.5, 0.74, 0.958], such

that there are 1, 6, 12, 18 and 23 flexible consumers present,

out of 24. We thus use 5 ∗ 5 = 25 settings. The model runs

for 120 days and we conduct 10 runs per setting.

In our simple market example, a consumer has not much

information at hand. He knows his personal retail price pr
c,h

and he knows his own demand profile. In addition, he can

observe how much the system lowers the retail price when

he changes his demand profile. We always look at a time

window over the last 24 hours.

To measure Stability, we consider the normalised re-
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tail prices consumers paid (per unit). This tells us how

much fluctuation in prices is observed by a consumer. For

Learnability, we correlate the normalised demand profile of

consumers (before the flexible consumers delay parts of their

demand) with the normalised announced retail prices that are

based on them. This tells us how well the individual demand

profile of a consumer c predicts retail price announcements

he gets. For Engageability, the delays in demand which

flexible consumers perform are compared to the reduction

in retail price they achieve by this. This tells us about the

utility effect a flexible consumer can achieve for himself via

his actions. We compare deviations to known default states

(original demand, original retail price), with T = 24 and

d = 1 (we do not discount).

C. Results

1) System configuration analysis: Figures 4a, 4b and 4c

show the outcome for all three indicators when the two vari-
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ables are changing. In Figure 4a, we see that the significant

influence on Stability is devc. It is highest when devc = 0.0.

Retail prices are allowed to fluctuate by demand when

devc is increased and thus the perceived Stability decreases.

Learnability, in turn, is lowest when devC is low. When

prices do not respond to changes in demand, they do not

make sense to the consumers. Thus, Learnability increases

with devc, and interestingly, this increase is considerably

stronger when Cf is lower. This is due to flexible consumers

shifting demand to the night. Less sharper spikes mean that

the retail base price bc is surpassed less often and less

far, which leads to lesser correlations between demand and

retail price. Engageability is highest when all consumers are

flexible and the maximum retail price deviation is high and

thus allows them to save money by delaying their demand: as

the retailer will treat all consumers the same, the few flexible

consumers will still suffer when the majority is inflexible.

Note that −0.4 is the baseline for this indicator, as the delay

amount is 0.4 ∗ dc,h.

2) Pareto front analysis: In order to make a pareto

front analysis, we plotted all indicators against each other.

Figures 4e and 4f plot Engageability versus Stability and

Stability versus Learnability, respectively. In both plots, it

is desirable to move to the right (on the x-axis) and to the

top (on the y-axis). We see that between these indicators a

pareto front can easily be spotted. Experiments with much

more variable configurations and careful exploration of the

indicator space could produce more meaningful results, but

this will suffice for this demonstration. A planner of our

example market could make use of these trade-offs for

design decisions.

3) Inner-usergroup analysis: We now look at the flexible

and inflexible consumers distinctively. We are interested in

how much the indicators differ among them and how much

they change in relation to the prevalence of one group to

the other. We fixed devC = −0.4. Figure 4d shows the

only comparison with significant results: each user group

perceives the highest Learnability when they are among

consumers that behave just like them. This is again a direct

consequence of the retailers method of distributing his cost

among all consumers (if possible), without regard to their

contribution in demand delay. Interestingly, both graphs level

off after more than 80% of the consumers are flexible. Note

that this significant distinction would not become visible

when measuring only utility, as one lonely flexible consumer

would still suffer from high average supply prices. Our

proposed indicators make this clear.

V. CONCLUSION

In this paper, we have described a design challenge for

self-organising systems, stating that the increasing complex-

ity these systems are able to capture leads to decreasing

comprehensibility of its behaviour to its users. We describe

the kind of systems for which this problem arises and

offer three quality indicators: Stability, Learnability and

Engagement. We propose ways of computing them using

basic statistics and conduct a simple study in a retail market

model in order to demonstrate their evaluation. We analyse

the results by comparing the outcome regarding various

system configurations, plot pareto fronts and study how the

indicators behave to different groups of users. We believe

to have sufficiently motivated and shown in the results of

our example (see Section IV-C) that these indicators are

useful tools for planners of multi-user, online self-organising

systems in order to find the best design trade-offs with

respect to comprehensibility.

VI. FUTURE WORK

The calculations of indicators we proposed are far from

being optimal for every situation. For Learnability, agents

could actually try to predict future system behaviour. They

could use model selection over the results of a posteriori

machine learning technique, for instance Bayesian Learning

or Gaussian Processes. It would also be interesting for

some domains to measure the minimal description length

or entropy [13] of the systems responses to rate its Learn-

ability. For Engageability, there are possible pitfalls worth

studying. We already mentioned timing issues in comparing

actions and received utilities. In addition, the interpretation

of received utilities might be tricky (especially when dealing

with human users). For instance, in the city of New York,

pedestrian crossing buttons perform no actual function any

more for decades, but many argue that they still raise

Engageability for the pedestrians due to the placebo effect

[34] (though they certainly do not facilitate Learnability).

Overall, the trade-off between system goals and the dis-

cussed indicators is worthy of more discussion (e.g. Stability

most likely compromises adaptability). But this is not neces-

sarily a one-way street. In more intricate market models, one

could study if optimising towards these indicators actually

makes a market more dynamically efficient [27] when faced

with long-term change, as they empower users to adapt.
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