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Abstract—The goal of this work is to gain a better under-
standing of the role that inter-agent variation plays in self-
organizing systems. We develop both continuous and discrete
models of a multi-agent coordination procedure based on
response thresholds and use these models to analyze the average
behavior of a system as well as examine the dynamics of single
instances of the problem. Results indicate that variation in the
behaviors of agents can lead to increased stability and more
effective self-organization in cooperative multi-agent systems.
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I. INTRODUCTION

When working with computational and robotic agents, we
often assume by default that error is bad and that variation
and noise in anticipated behaviors and outcomes should be
minimized or eliminated. Yet there are related disciplines,
namely the study of complex adaptive systems, in which it
has long been established that error or variation is not only
beneficial but essential to how some systems work [1], [2].
As the applications of self-organizing multi-agent systems
become more complex, we believe that variation will play
an increasingly important role in these systems. The goal of
this work is to gain a better understanding of the role that
variation plays in self-organizing multi-agent systems.
Specifically, we investigate the effects of inter-agent varia-

tion on the ability of a multi-agent team to solve a distributed
task allocation problem. The problem we investigate involves
a single task, and the team of agents solving this problem
must self-organize such that an appropriate number of them
are working and not working on the task at any given time.
Both the biological [3], [4], [5] and multi-agent [6], [7],
[8], [9], [10] literatures provide examples of systems where
behavioral differences among the individuals of a team help
the team as a whole reach its objective. We hypothesize that
inter-agent variation is not only beneficial but also essential
to a distributed team’s ability to self-organize.
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The importance of variation in self-organizing systems
may be better explained through the use of an example.
Honeybees maintain their nest temperatures within a desired
range to optimize brood development. If external forces such
as ambient temperature cause the nest temperature to fall
below the desired range, honeybees will shiver to generate
heat to warm up the nest [4]. The number of bees allocated
to the task of shivering determines the rate of heating within
the nest. In order to maintain a desirable nest temperature,
a colony must be able to maintain a “correct” number of
bees acting (shivering) at any given time as dictated by the
difference between the current and desired nest temperatures
at that time. Jones et al. [4] observe that there are differences
in the temperatures at which individual bees begin to shiver
and that these differences help to prevent all of the bees
from acting simultaneously, thus avoiding large fluctuations
in nest temperature. As a result, the nest as a whole is able
to make more gradual changes in the number of bees that
are and are not shivering, resulting in smoother adjustments
in nest temperature. Variation in individual bees leads to a
more effective and stable division of labor for the colony as
a whole.
Biology provides multiple examples of natural systems in

which variation in agent behaviors help distributed teams
self organize and complete their objectives. The sources of
variation in these systems may be genetic [4], [11], experi-
ential [5], morphological [12], [13], [14], [15], social [16],
[17], [18], or age-related [15]. Computational simulations of
natural systems support the hypothesis that variation among
individuals leads to more stable and effective teams [19],
[20]. Engineered multi-agent systems have also effectively
used variation to generate appropriate divisions of labor in
distributed teams. Variation may be manually inserted and
static throughout a run [7], [8] or dynamically evolved over
the course of a run [9], [10], [15]. In all of these examples,
variation in the behaviors of individual agents increases the
number of possible sets of agent actions that a team as a
whole can offer, thus increasing a team’s ability to adapt to
varying stimuli [1].
This work focuses on investigating the effects of inter-

agent variation on a multi-agent task allocation problem. In
particular, we examine how differences in the thresholds



that determine when each agent starts to work help to
promote a self-organized division of labor throughout the
system. We first analyze the behavior of systems without
any inter-agent variation, and then use a dynamical systems
approach to predict the behavior of systems where inter-
agent variation is present. This analysis is then used as a
way to program agents so that they work together to solve
the given multi-agent task allocation problem. Finally, we
discuss the importance of inter-agent variation and self-
organization based on a definition of self-organization given
by cyberneticist William Ross Ashby in 1947 [21]. When
taken together, these experiments and analysis support the
hypothesis that inter-agent variation can help cooperative
multi-agent systems to self-organize more effectively.

II. THE PROBLEM
The problem we investigate models situations where a

team of agents must work together to maintain the level of
a constantly changing resource or system variable, herein
referred to as “the task.” We assume that there is a single
task with a defined target value and an observable current
value. External forces can act on and change the current
value of the task. If the task’s current value drops below the
target value, agents can act on the task to raise its current
value. The number of agents that act on a task determines
the rate at which the current value increases. The goal of the
team, then, is to maintain an appropriate number of agents
acting on the task at any given time to counteract the changes
that move the current value of the task away from the target
value. We assume that agents are not able to communicate
with each other, and thus, must determine when to work
based only on their perceptions of the task’s current value.
This presents a challenge to the agents as they must decide
independently whether or not to act on the task at any given
time. If too many agents act at once, they can overshoot the
target; if too few act, then they may never reach the target.
Variation is added into this problem in the form of

a limited amount of error in the each agent’s ability to
correctly sense the current value of the task. This error
affects when an agent perceives that the current value has
fallen below the target value which determines when an
agent will work on the task. Without variation, all agents
behave in the exact same way and only one of two events can
occur: either all of the agents act on the task, or none of the
agents act. With variation, agents react over a wider range
of current values, thus increasing the number of possible
system-level responses to the task’s current value. Variation
among the individual agents is expected to allow the team
as a whole to temper their responses to the current task
value, and thus, allow the system to behave in a more stable
manner.
Algorithm 1 shows the simulation used here to investigate

the effects of inter-agent variation on the aforementioned
problem. The simulation consists of a task t and a set of

Algorithm 1 Simulation(A, t,maxT ime)

1: for i := 1..n do
2: ai.error := U(t.maxE)
3: end for
4: timestep := 1
5: totalDiff := 0
6: for timestep := 1..maxT ime do
7: t.current := t.current− t.δ
8: for i := 1..n do
9: if t.current+ ai.error < t.target then
10: ai.needsToWork := true
11: else
12: ai.needsToWork := false
13: end if
14: end for
15: for all i := 1..n do
16: if ai.needsToWork then
17: t.current := t.current+ t.contribution
18: end if
19: end for
20: totalDiff := totalDiff+abs(t.current−t.target)
21: end for
22: return totalDiff

n agents, A = {a1, a2, ..., an}. Associated with the task
are a target value −∞ < t.target < ∞, a current value
−∞ < t.current < ∞, a rate of change t.δ > 0, a con-
tribution value t.contribution > 0, and a maximum error
value t.maxE ≥ 0. Associated with each agent ai is an error
value −t.maxE ≤ ai.error < t.maxE. We examine two
distributions of error values between±t.maxE: uniform and
Gaussian. The Gaussian distribution assumes that t.maxE
is equivalent to three standard deviations of error denoted,
t.stdE.
The simulation begins by setting the error value of

each agent (Lines 1-3). The function U(t.maxE) returns
a random number in [−t.maxE, t.maxE) generated based
on the given distribution. By definition, U(0) = 0. The
value totalDiff records the sum of differences between the
current and target value of the task after each time step has
completed (Line 20). The goal of the agents is to minimize
totalDiff .
During each time step of a run, the following three events

occur. First, the current value of the task is decreased by the
rate-of-change value t.δ (Line 7). Next, each agent makes
a decision about whether or not to work on the task during
the current time step (Line 8-14). An agent remains idle if
it believes that the task does not require any work. Finally,
each agent that has decided to work increases the current
value of the task by t.contribution (Lines 15-19). These
three events repeat maxT ime iterations.



III. DEFINITIONS
Definition 1: The value tc = n ∗ t.contribution is the

total contribution of the team, i.e., the amount of work
that would go into the task if every agent were to act at the
same time.
Definition 2: A system is deemed feasible if tc ≥ t.δ and

infeasible if tc < t.δ. In an infeasible system, the agents
cannot contribute enough work to counteract the rate-of-
change value, t.δ, and thus, the t.current value will tend
towards −∞. Throughout this text, it is assumed that all
systems are feasible.
Definition 3: The state, sk, at timestep k is equal to

the t.current value before t.δ has been subtracted from
t.current, i.e., the t.current value before Line 7 of Al-
gorithm 1 is executed. The set s∗ = {s1, s2, ..., sl} is
the ordered set of all unique states for some system. By
definition, sk+1 refers to the state succeeding sk, even in
the situation where k = l.
Definition 4: The pre-state, pk, is the t.current value

after t.δ has been subtracted from t.current and before the
agents act, i.e., the t.current value between Lines 8 and
14 in Algorithm 1. The pre-state represents the actual state
of the system when the agents make their decisions about
whether or not to work and is used when determining the
expected behavior of the agents each time step. The ordered
set of all pre-states is defined as p∗ = {p1, p2, ..., pl}.
Definition 5: The post-state, dk, is the t.current value

after the contribution of each agent has been added to it,
i.e., the t.current value at Line 20 in Algorithm 1. The
post-state represents the state of the system when computing
totalDiff . The set d∗ = {d1, d2, ..., dl} is the ordered set
of all post-states. Note, the value of post-state dk is equal
to the value of the state sk+1.
Definition 6: The function actors(pk) is defined as the

set of agents that act when the system is in pre-state pk.
Definition 7: The value epk

is defined as the expected
proportion of agents to act on the task when the system
is in pre-state pk. This value is used when modeling the
behavior of Algorithm 1.

IV. NO INTER-AGENT VARIATION
Suppose we have a system with no error and a task with an

initial current value and a target value of zero.1 Assuming the
system is feasible, what is the the expected value returned
by the simulation? To compute this value, we determine all
values in d∗, compute their average, and multiply the average
by maxT ime.
The total number of states, l, for a system without error

is equal to the number of iterations needed for the system

1For simplicity, and without loss of generality, we assume that the
systems throughout the remainder of this text have an initial current value
and a target value of zero. These assumptions allow for a simpler and more
straightforward analysis of how variation can affect self-organization in a
distributed, decentralized system.

to reenter the initial state, i.e., a state where t.current = 0.
This amount of time is found by determining the minimal
l value that satisfies x ∗ tc − l ∗ t.δ = 0 for some positive
integers l and x. The smallest positive value of l that satisfies
the previous equation is

l =
LCM(tc, t.δ)

t.δ
=

tc

GCD(tc, t.δ)
, (1)

where LCM(a, b) returns the least common multiple of a
and b, and GCD(a, b) returns the greatest common divisor
of a and b. The average difference between the post-state
and the target value during any given time step is

d̄noV ar =
tc−GCD(tc, t.δ)

2
. (2)

To obtain Equation 2, we first determine the values in d∗,
sum those values, and then divide by l. If tc and t.δ are
relatively prime, then l = tc and d∗ = {0, 1, ..., tc− 1}.
In general, d∗ is the set of values equal to GCD(tc, t.δ)
multiplied by each value in {0, 1, ..., l− 1}:

d∗ = {0, GCD(tc, t.δ), ..., (l − 1) ∗GCD(tc, t.δ)}. (3)

By noting that l = tc
GCD(tc,t.δ) and

∑n−1
i=0 i = n∗(n−1)

2 , the
average value in d∗ becomes

d̄noV ar =

∑l
k=1 dk
l

=
GCD(tc, t.δ)

∑l−1
z=0 z

l

=
GCD(tc, t.δ) ∗ l(l − 1)

2l

=
GCD(tc, t.δ) ∗

(

tc
GCD(tc,t.δ) − 1

)

2

=
tc−GCD(tc, t.δ)

2
,

and thus, the expected return value of a run with no variation
andmaxT ime steps is d̄noV ar∗maxT ime. In the following
sections, we use both continuous and discrete models of the
system to show how variation in the agents’ response to the
task can result in a lower return value than the same system
without inter-agent variation.

V. UNIFORM VARIATION

We begin by examining how the system behaves when
variation is uniformly distributed within a radius of the
target value. Our model shows that systems with inter-agent
variation are able to reach a stable point where sk+1 = sk.
Systems with little-to-no variation are not able to reach such
a point.
The expected proportion of agents that act when a system

is in pre-state pk is

epk
=











0 if pk ≥ t.maxE

1 if pk < −t.maxE

1− pk+t.maxE
2∗t.maxE

otherwise.
(4)



The expected contribution of the agents is epk
∗ tc, and thus,

the expected post-state, dk, of a system in state sk is

dk =















pk if pk ≥ t.maxE

pk + tc if pk < −t.maxE

pk + tc ∗
(

1− pk+t.maxE
2∗t.maxE

)

otherwise.
(5)

Recall from Definition 5, that the post-state dk of state sk
is equal to the value of the successive state, sk+1. Thus,
Equation 5 is the recurrence relation mapping sk to sk+1.
Figure 1 uses Equation 5 to trace the trajectory of systems

with different values of tc and t.δ and an initial current
value of 0.0. In each plot, t.δ = 0.2, and for the first
three columns, t.maxE = 1, and for the right-most column,
t.maxE = 0. The tc values vary between the plots. By
tracing the trajectory of the system, we see that systems
with error eventually settle in to a state where sk+1 = sk.
This stable point can be found by setting sk+1 equal to sk
in the third part of Equation 5 and by solving for sk:

sk = t.maxE + t.δ − 2 ∗ t.maxE ∗ t.δ
tc

. (6)

When this value is plugged in to the third part of Equation 4,
we see that the system reaches a point where tc ∗ epk

= t.δ,
i.e., the system is stabilizing at a point where the contribution
of the agents each time step equals the rate-of-change value.
Without error, Equation 5 becomes discontinuous as there

exists no point where sk+1 = sk. Instead of settling to a
stable point, the system cycles between the states described
by Equation 3. Similarly, systems with small amounts of
inter-agent variation are not able to converge to a stable point
in the state space. Figure 2 plots the bifurcation diagram
[22] showing all of the states reached between time steps
1000 and 5000 for systems with tc = 1, t.δ = 0.2,
and 0 ≤ t.maxE ≤ 0.3. States before time step 1000
are not plotted in order to focus on if, and where, the
system eventually settles. With small amounts of inter-agent
variation, the systems shown in Figure 2 are not able to reach
a point where sk+1 equals sk because as t.maxE decreases,
so too does the likelihood of satisfying the third condition
in Equation 5.
Three types of behaviors can be seen in Figure 2: periodic

behavior where the system cycles through more than one
state, chaotic behavior, and stable behavior where the system
settles into a single state. When t.maxE = 0, the system
cycles between the states given by Equation 3, i.e., the states
0.8, 0.6, 0.4, 0.2, and 0. This behavior is illustrated in the
top-right plot in Figure 1. When 0 < t.maxE ≤ 0.1, the
system cycles between the states 0.9, 0.7, 0.5, 0.3, and
0.1. The behavior of these particular systems are given as
follows. First, the task’s current value is reduced to −0.2
and then increased to 0.8 because all of the agents find
that the task’s current value is below their perceived target
values. The state then proceeds to drop to 0.6, 0.4, and 0.2.

Figure 2. This plot shows how, under uniform distribution, systems with
small amounts of inter-agent variation are not able to reach a point where
sk+1 equals sk. Each system is run for 5000 time steps and only states
after time step 1000 are plotted.

When the task reaches a state of 0.2, and thus, a pre-state of
0.0, an average of half of the agents work on the task, thus
increasing its value to 0.5. From here, the state decreases to
0.3, and at state 0.1 (i.e., pre-state −0.1), all of the agents
act on the task and its value is increased to 0.9. Again, none
of the agents act and the task’s state reaches values of 0.7,
0.5, 0.3, and 0.1. At this point, the cycle repeats.
Chaotic-like behavior is seen when t.maxE is between

0.1 and approximately 0.25. After t.maxE has passed 0.25,
the system is able to reach a stable point where sk = sk+1.
Future work will look at exploring the chaotic behavior of
systems with low error in order to determine analytically
how much error is needed for the system to reach stability.
For now, the goal is to show how to take advantage of
systems with adequate amounts of inter-agent variation in
order to produce stability within such systems.

VI. GAUSSIAN VARIATION

Often, in real systems, variation occurs with a Gaus-
sian distribution. This distribution models imperfections and
physical limitations. Using a Gaussian distribution of error
may be more realistic. This model also shows stability where
sk+1 = sk with enough inter-agent variation.
In modeling Gaussian distribution, the third case of Equa-

tion 4, which calculates the expected proportion of agents
to act in pre-state psk , becomes

epk
=

1√
2π

∫

∞

z

e
−x

2

2 dx, (7)

where z = pk−t.target
t.stdE

. This is equivalent the statistical Q-
function evaluated at Q(pk−target

t.stdE ). Thus, the third case in
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Figure 1. These figures plot the recurrence relation between sk and sk+1 for a uniform distribution from Equation 5 and show how the trajectory of
systems with t.δ = 0.2 and an initial current value of 0.0 evolve under different conditions. For the first three columns t.maxE = 1.0, and in the fourth
column t.maxE = 0.0. From left to right, the columns show plots for tc values of 1.0, 2.0, 3.0, and 1.0, respectively. The diagonal line shows where
sk = sk+1.

Equation 5 for the expected post-state, dk, simply becomes

dk = pk +
tc√
2π

∫

∞

z

e
−x

2

2 dx, (8)

where again z = pk−t.target
t.stdE

. Figure 3 uses Equation 8 to
trace the trajectory of systems with different values of tc
and t.δ and an initial current value of 0.0.
Following the trajectories, we find that systems with error

are again able to find a stable state, such that sk+1 = sk.
This point can be approximated using the bounds for the
Q-function. A simple and relatively tight approximation is
the Chernoff bound

Q(x) ≤ e−(x)2

2
.

This approximation gives a simple equation for the finding
sk+1 = sk,

sk ≤ t.stdE

√

−2 ln
2 ∗ t.δ
tc

+ t.δ + t.target. (9)

This equation gives a complex number for t.δ
tc

≥ 0.5.
However, ignoring the imaginary part still gives an
approximation if the result from the square root is negated.
Using this value finds a point in the system where,
tc ∗ epk

≈ t.δ.
State behavior with Gaussian error distribution shows the

same general behaviors with increasing error as seen with
uniform error distribution. Figure 4 shows the Gaussian
bifurcation diagram for time steps 1000 to 5000 in a system
defined with tc = 0, t.δ = 0.2, and 0 ≤ t.maxE ≤ 0.9.
Again small amounts of variation lead to periodic behavior
and a stable state is not reached. Until enough error is
introduced to produce a stable system, chaotic and periodic
behaviors exist. Also, in each cycle found between chaotic
phases as t.maxE increases, the number of states that the
system cycles through decreases by one. In Figure 4, at
approximately t.maxE = 0.3, the system abandons chaotic
behavior all together before finding a stable point near

t.maxE = 0.42.
Comparing Figures 2 and 4, we find that the Gaussian

distribution appears to need a larger error range than the
uniform distribution in order to stabilize. With the Gaussian
distribution of error, a majority of the agents sense the
target as relatively close to the actual value. Since most of
the agents respond at values closer to the target, epk

has
greater fluctuations with small differences in the pre-state.
Larger spread of error gives less differences in epk

and less
drastic changes in states.

VII. EXAMINING INDIVIDUAL RUNS

We provide further evidence to show that variation in
agent behavior can improve a system’s ability to self-
organize by examining the behavior of individual runs.
Additionally, we describe how the analysis done so far can
be used to optimize a team’s behavior on the given multi-
agent task allocation problem.
The plots in Figure 5 show the average value returned

by Algorithm 1 for n = 100, t.contribution = 1, t.δ ∈
{10, 30, 60, 90}, and 0 ≤ t.maxE ≤ 150. Except for when
the error values are low (this case is described in the previous
section and illustrated in Figure 2), Equation 6 accurately
predicts the values returned by Algorithm 1. Specifically,
the top two plots in Figure 5 show that when t.δ equals
10 or 30, the average post-state of the system increases as
t.maxE increases. The bottom two plots show that higher
t.δ values result in a decreasing value of the average post-
state as t.maxE increases. Each point in Figure 5 is obtained
by running Algorithm 1 with the same set of parameters
fifty times. The only difference between the runs used for
a single data point is the assignment of the agents’ error
values. For each run, the post-state values are summed over
five-hundred time steps, and these fifty values are averaged
to obtain a single point on the plot. Error bars show the
standard deviation for these fifty values, and the line in each
plot shows the expectation given by taking the absolute value
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Figure 3. These figures plot the recurrence relation between sk and sk+1 for a Gaussian distribution from Equation 8 and show how the trajectory of
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Figure 4. This plot shows how, under Gaussian distribution, systems with
small amounts of inter-agent variation are not able to reach a point where
sk+1 equals sk. Each system is run for 5000 time steps and only states
after time step 1000 are plotted.

of Equation 6 and multiplying it by maxT ime = 500. For
Gaussian variation, the data is similar but with gentler slopes
due to the slower dispersion of agents away from the target
as error increases.
Recall that the goal of the agents is to minimize the

difference between the post-state and the target value of
the task. On the surface then, Figure 5 would indicate that
certain ranges of error values should be avoided because they
cause the system to perform worse than a system without
error. However, this is not necessarily the case, as we show
that a system with error and a high totalDiff value can
be desirable as long as two conditions are met: first, the
average post-state value must be predictable, and second, the
variance of the post-state values throughout each individual
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Figure 5. These plots show the average value returned by Algorithm 1
for systems with maxTime = 500, n = 100, t.contribution = 1,
t.δ ∈ {10, 30, 60, 90}, and 0 ≤ t.maxE ≤ 150. Values closer to zero
indicate better performance. The line in each plot shows the expectation
given by taking the absolute value of Equation 6 and multiplying it by 500.

run must be low. When these two conditions are met, we
can adjust the perceived target value of the agents so that
their actions cause the post-states to be at or near the actual
target value.
It can be seen from Figure 5 that the first condition

is satisfied because Equation 6 is a good predictor of the
average post-states in all cases except for where t.maxE
is low. Regarding the second requirement, Figure 5 says
nothing about the variance within a single run, since only the
average totalDiff values are used when plotting its points.
Figures 6 and 7 show the average standard deviation of the
post-states within each of the fifty runs for uniform and
Gaussian distribution, respectively. Lower values indicate
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Figure 6. The points in each figure show the average standard deviation
of the post-states for the uniform distribution runs given in Figure 5. Lower
values indicate that the system is able to settle down into a stable region
of the state space.
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Figure 7. The points in each figure show the average standard deviation
of the post-states for the Gaussian distribution runs. Lower values indicate
that the system is able to settle down into a stable region of the state space.

that the system is able to settle down in to a stable region
of the state space. Except for when the error values are low,
the post-states have low variance, thus indicating that the
agents are able to reach an area of the state space where
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Figure 8. These plots show the average value returned by Algorithm 1
when the agents’ perceived target values are adjusted to equal the negative
of Equation 6. Values closer to zero indicate better performance. Compare
these plots to those of Figure 5 where the agents’ perceived target values
are equal to the actual target value of the task.

an appropriate number of them act each time step in order
to counteract the t.δ value. In comparing the uniform and
Gaussian models, it is again apparent that more error is
needed for the Gaussian distribution model to have the same
performance as the uniform distribution model.
Given t.maxE, t.δ, and tc, we can use Equation 6 or 9

to compute the expected post-state of the system, and thus,
determine how to adjust the target value of each agent so that
their actions cause the post-states of the task to be at or near
the actual target value. This can be achieved by having the
agents perceive the target value as being equal to the negative
of Equation 6 or 9. Figure 8 shows the average value
returned by Algorithm 1 with a uniform distribution after
the agents’ perceived target values are adjusted. Adjusting
the point at which the agents react to the stimulus allows
for the system to settle at a point closer to the desired target
value. This result can be seen by comparing the plots in
Figure 8 to the corresponding ones in Figure 5.

VIII. A LINK TO ASHBY’S WORK
In 1947, cyberneticist William Ross Ashby used the

phrase self-organization to describe machines that undergo
a “self-induced change of organisation” [21]. In Ashby’s
description of self-organization it is assumed that the system
in question is deterministic, can be measured objectively, and
its variables can be described numerically. Ashby claims
that if at least one of the variables in the system is
a step-function of time, then a “spontaneous change of
organisation will appear to occur” [21]. To illustrate this
point, he gives an example of a system containing n binary
variables, {x1, x2, ..., xn}, where variable xn can take one



k 1 2 3

sk 0 5 10
pk −10 −5 0
actors(pk) A A {a1}
dk 5 10 5
f(sk) s2 s3 s2

Table I
STATE TABLE FOR SYSTEM WITH THREE AGENTS, AN INITIAL t.current
VALUE EQUAL TO ZERO, t.target = 0, t.contribution = 5, t.δ = 10,

a1.error = 2.5, a2.error = 0.0, AND a3.error = −2.5.

of two possible values {x1
n, x

2
n}. Because the behavior of

the system only depends on the values of its variables, i.e.,
no external influences, then it can described by the following
set of equations:

dxi

dt
= fi{x1, x2, ..., xn}, 1 ≤ i ≤ n. (10)

Equation 10 can be broken into the following set of equa-
tions based on the current value of xn:

dxi

dt
=

{

gi{x1, x2, ..., xn−1}, 1 ≤ i ≤ n if xn = x1
n

hi{x1, x2, ..., xn−1}, 1 ≤ i ≤ n if xn = x2
n.

The variable xn is considered to be absorbed by the
functions gi and hi since it is constant in both cases.
These two systems of n − 1 variables are considered to
be an organization in themselves and switch between each
other depending on xn’s value. In this sense, Ashby claims
the system has self-organized. Using Ashby’s definition of
self-organization to describe a task allocation problem, our
analysis supports the idea that inter-agent variation in a
cooperative multi-agent system creates more organizations,
thus allowing for the possibility of a wider range of possible
system-level responses to changing stimuli than are possible
without variation [1].
Except for when the error values are being set, Algorithm

1 is a deterministic process, thus allowing us to construct
a deterministic finite state automaton (DFA) that captures
the behavior of any feasible system. Function f : s∗ → s∗

maps each state to its successive state, and because s∗ is
finite for feasible systems, the DFA eventually enters in to a
cycle. The set s∗ and the function f can be constructed by
running the simulation and keeping a history of the states
and their transitions. The run can be stopped whenever a
state is reached that is already in s∗.
As an example, consider a system with three agents and

the following parameters: t.target = 0, t.contribution =
5, t.δ = 10, a1.error = 2.5, a2.error = 0.0, and
a3.error = −2.5. Table I shows the state transition table for
this system. Using Ashby’s definition of self-organization,
the DFA described in Table I can be seen to possess four
different organizations with respect to pk and the function
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Figure 9. These plots correspond to those in Figures 8 and 10 and show
the average length of the cycles that systems eventually settle in to.

actors(pk):

actors(pk) =



















∅ if pk ≥ 2.5

{a1} if 0 ≤ pk < 2.5

{a1, a2} if −2.5 ≤ pk < 0

{a1, a2, a3} if pk < −2.5.

In general, the number of different organizations that a
system has is equal to one plus the number of unique error
values that the agents have. A system without any variation
has only two organizations. A system containing agents all
with different error values has n+1 organizations. Variation
in agent behavior allows for a wider range of possible
subsets of agents that can act at each time step than does
systems without variation. Stability is achieved when the
system enters an organization that results in the contribution
of the agents equaling the rate-of-change value, i.e., an
organization where |actors(pk)| ∗ t.contribution = t.δ.
Because the error values are randomly assigned in Algo-
rithm 1, the conditions for entering the organization where
t.contribution ∗ |actors(pk)| = t.δ may be difficult or
impossible to meet; however, as t.maxE increases, so too
does the range of states defining each organization. Figure 9
shows the average lengths of the cycles that the fifty uniform
distribution runs from Figure 8 eventually settle in to, and
Figure 10 shows the proportion of those runs where the
cycle lengths are one. As t.maxE increases the average
cycle length decreases and the proportion of runs that reach
a stable point where sk = sk+1 increases. By creating more
organizations, inter-agent variation allows agents to temper
their reactions to the task-stimulus, thus stabilizing the task’s
state. By understanding the effects of inter-agent variation,
we are able to predict and adjust the behavior of the agents
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Figure 10. These plots correspond to those in Figures 9 and 8 and show
the proportion of runs where the system settles into an organization where
sk = sk+1

in a way that takes advantage of the stability caused by inter-
agent variation, and thus, provide a solution to the problem.

IX. DISCUSSION
The goal of this work is to gain a better understanding of

the impact of variation on distributed multi-agent systems.
We hypothesize that some levels of inter-agent variation
may be beneficial to the ability of the system as a whole
to self-organize. We investigate this hypothesis by studying
the behavior of a team of agents working together to solve a
multi-agent task allocation problem in which the agents must
maintain the level of some constantly decreasing resource
or system variable. When the value of the task drops below
some pre-defined target value, the agents react and increase
the task’s value in order to bring it closer to the target. Inter-
agent variation is introduced by giving the agents erred views
of the current value of the task. To explore the effects of
inter-agent variation on this problem, we begin by analyzing
the behavior of systems without any variation. This analysis
provides a way to determine the value returned by the sim-
ulation for systems without inter-agent variation and is used
in comparisons with systems where inter-agent variation is
present. A dynamical systems approach is used to predict
the behavior of systems containing inter-agent variation, and
we find that systems with an adequate amount of inter-
agent variation reach a stable point where the state of the
system at time t equals the state of the system at time t+1.
Furthermore, we are able to compute this point, and then use
these results to program the agents so that they work together
effectively to solve the given multi-agent task allocation
problem. Finally, we discuss the importance of inter-agent
variation and self-organization based on a definition of self-

organization given by cyberneticist William Ross Ashby in
1947 [21]. Specifically, we show how variation helps to
create more “organizations” of the state-space, thus allowing
for more combinations of agent-actions than are possible
without inter-agent variation. When taken together, these
experiments and analysis support the hypothesis that inter-
agent variation can help cooperative multi-agent systems
self-organize and complete their objectives.
In future work, we will look to determine the exact

amount of inter-agent variation needed for a system to
stabilize. Above, we state that systems need an “adequate”
amount of inter-agent variation to stabilize; however, the
amount inter-agent variation necessary for stability is not
currently known. Factors such as the task’s rate of change,
the agents’ contribution, and the team size will most likely
contribute to how much inter-agent variation is needed for a
system to stabilize. Additional directions for future work
include investigating problems containing more than one
type of task, problems where the rate-of-change value and
contribution values change over time, and problems where
agents must adjust their behaviors when teammates begin
to break down and can no longer work. This future work
looks to provide further evidence of the significant effects of
inter-agent variation on cooperative multi-agent systems. By
understanding how inter-agent variation affects the dynamics
of such systems, we can begin to harness the power of
variation and use it to our advantage.

X. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers

for their helpful feedback. This work was supported by ONR
grant N000140911043.

REFERENCES
[1] W. R. Ashby, “Requisite variety and its implications for the

control of complex systems,” Cybernetica, vol. 1, no. 2, pp.
83–99, 1958.

[2] R. Axelrod and M. D. Cohen, Harnessing Complexity. New
York: Free Press, 1999.

[3] D. E. Jackson, S. J. Martin, F. L. W. Ratnieks, and M. Hol-
combe, “Spatial and temporal variation in pheromone com-
position of ant foraging trails,” Behavioral Ecology, vol. 18,
no. 2, pp. 444–450, 2007.

[4] J. C. Jones, M. R. Myerscough, S. Graham, and B. P. Ol-
droyd, “Honey bee nest thermoregulation: Diversity promotes
stability,” Science, vol. 305, pp. 402–404, 2004.

[5] F. Ravary, E. Lecoutey, G. Kaminski, N. Châline, and P. Jais-
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