
An Extremum Seeking Algorithm for Message Batching in Total Order Protocols

Diego Didona
IST/INESC-ID, Lisbon, Portugal

Daniele Carnevale, Sergio Galeani
Rome University Tor Vergata, Italy

Paolo Romano
IST/INESC-ID, Lisbon, Portugal

Abstract—Message batching is a well-known optimization
technique to maximize throughput of networked services. The
manual configuration of the appropriate batching level is
however a time consuming and not trivial task. Too low
batching values can in fact render the system unstable in
presence of high loads; excessively high batching values, on the
other hand, can lead to high latency at low load, which may be
unacceptable for delay sensitive applications. The problem is
further exacerbated in presence of fluctuating workloads,as in
these scenarios the optimal batching level varies dynamically
over time, and pursuing optimal performances demands the
employment of self-adaptive mechanisms.

In this paper we study the problem of self-tuning the
message batching level adopting an interdisciplinary approach
that employs methodologies from control theory community
to optimize the performance of Total Order Broadcast (TOB),
a fundamental building block to build dependable distributed
systems.

Specifically, we introduce an innovative self-tuning algorithm
based on extremum seeking optimization principles. We pro-
vide theoretical results on its convergence properties and an
extensive experimental analysis aimed at assessing the actual
effectiveness of the new algorithm in a state-of-the-art group
communication system.

I. INTRODUCTION

Message batching [1] (also known as message packing
[2] or message aggregation [3]) is a simple, yet very
effective, optimization technique that is based on the idea
of buffering messages for some time, so to be able to
process multiple messages together. This allows amortizing
the costs of processing each individual message in the batch,
reducing the header overhead per message, the contention
on the network and the CPU load [4]. Indeed, several works
have highlighted the striking impact of batching in boosting
system throughput. On the other hand, at low load, waiting
for additional messages to form a batch induces unnecessary
stalls that can hamper the performance of delay sensitive
applications, e.g., interactive, real-time applications.

The problem is exacerbated in the presence of dynamic,
fluctuating workloads. In this (in practice quite common)
case, the optimal batching factor actually varies over time,
making any static configuration policy clearly suboptimal.

In this paper we address the problem of designing and
implementing a self-adaptive scheme for dynamically tuning
the message batching level employing techniques and math-
ematical analysis methodologies originated in the control
theory community. The proposed self-tuning mechanism is

based on the extremum seeking method, a model-free control
technique that aims at optimizing the steady-state relation-
ship between the system input parameters and its perfor-
mance output. Being a model-free approach, this relationship
is assumed unknown, and the optimum is searched relying
exclusively on the monitoring of the system under control.
In an iterative fashion, this control technique perturbs the
input parameters, observes the response, and tunes them
accordingly.

Our self-tuning algorithm, which we call Adaptive Ex-
tremum Seeking Controller (AESC), uses multiple instances
of extremum seeking optimizers: each instance is associated
with a distinct value of batching b and learns the correspond-
ing optimal waiting time for a batch of size b. The simul-
taneous usage of multiple instances of extremum seeking
optimizers ensures high responsiveness to quick variations
of the message arrival rate. Further, the exploratory nature of
the extremum seeking technique makes the controller robust
to external perturbations, possibly of transient nature, which
may induce dynamic shifts of the speed/efficiency of the
machine hosting the sequencing process (due, e.g., to the
activation of additional software processes). As a further
optimization, AESC employs an adaptive exploratory step,
computed as decreasing function of the batch size, which
allows minimizing both overshooting phenomena and the
amplitude of oscillations around the optimal value.

We provide a rigorous analytical characterization of the
convergence properties of the proposed self-tuning algo-
rithm, which allows us to outline the assumptions necessary
to ensure both the optimality of the solution found as well as
its stability. Our theoretical analysis considers first an ideal
controller, capable of enforcing the control law with perfect
timing accuracy. As software-based implementations of such
an ideal controller are infeasible on off-the-shelf platforms,
we extend our analysis to consider a more realistic controller
model, whose logic is triggered asynchronously, i.e., upon
the reception of a new message, or synchronously, but with
a coarse grain periodicity.

We apply the proposed self-tuning technique to optimize
the performance of a Total Order Broadcast (TOB) algorithm
[5]. TOB represents a fundamental problem in distributed
systems, which requires a group of distributed processes to
reach agreement on a common order of delivery of messages,
in presence of concurrent broadcasts by any process of the
group. The relevance of TOB stems from the fact that it

represents an essential building block for a wide range of
distributed coordination problems, and has been employed
in a wide range of heterogeneous application domains
[6]–[9]. In this paper we focus on Sequencer-based TOB
(STOB) algorithms [10]. This is a class of algorithms that
is particularly popular as it guarantees theoretically optimal
latency [11]. On the other hand, its maximum throughput is
upper bounded by the capacity of the sequencer to generate
sequencing messages. Interestingly, the sequencer capacity
can be greatly increased by using an adequate batching level.
Hence, STOB represents an ideal candidate for assessing the
effectiveness of the proposed mechanism for self-tuning the
batching level.

We integrated AESC in the Appia Group Communica-
tion System [12], and performed an extensive experimental
evaluation aimed at assessing its performance both in terms
of responsiveness (overshooting and convergence speed) to
input signal variations, as well as steady state optimality.

The rest of the paper is structured as follows. Section II
discusses related works. In Section III and Section IV, we
provide an overview of the (S)TOB algorithms and ex-
tremum seeking control technique, respectively. The AESC
algorithm is presented in Section V. Its convergence analysis
is introduced in Section VI, whereas Section VII presents the
result of our experimental study. Section VIII concludes the
paper.

II. RELATED WORK

Message batching is a well known optimization that is
commonly employed in several domains [1], [3], [4]. TCP
Nagle’s algorithm [13] is a notorious instance of such a
technique.

The effects of batching on the performance of TOB
protocols was first studied empirically in [4] and later
mathematically in [3].

The work in [1] was one of the first ones to define a
lightweight, not intrusive architecture for message batching
in TOB protocols. However, the techniques proposed in this
work require the explicit setting of additional parameters,
e.g. the duration of timers used to wait for messages to be
batched. Hence, they do not fully automatize the tuning of
the batching mechanism.

The only self-tuning solutions for message batching that
we are aware of are those presented in [2], [14]. The first
one can be seen as an adaptive optimization discrete time
algorithm that performs on-line searches to retrieve the
optimal batching b?(t) changing periodically the batching
levels of one unit. However, the approach that we propose
here is quite different for several reasons. First, AESC does
not change (probing) directly the batching level. It probes
the response of the system while varying the waiting time Tb
associated with a given level b of batch, in order to identify
the optimal time to wait, since the processing of the last
batch, before processing the next batch of b messages. By

employing multiple, extremum seeking optimizers associ-
ated with different batch levels, AESC maintains (although
in an indirect way) memory of the previously identified ideal
level of batching for a given arrival rate. Further, AESC
uses an adaptive probing step, combined with a dithering
signal, rather than a static adaptation step. As it will be also
confirmed by our evaluation study, these design differences
allow AESC to achieve significantly higher performance,
in terms of robustness to noisy measurements, convergence
speed and stability.

The solution in [14] presents a reinforcement learning
based optimization technique that is bootstrapped by an
analytical model that exploits queuing theory arguments. Re-
inforcement learning is used to ensure eventual convergence
to the optimal batching configuration, correcting possible
initial errors of the analytical model. The analytical model
allows increasing the convergence speed of the reinforce-
ment learning, reducing the chances of exploring very likely
suboptimal batching configurations. AESC differs from this
solution for two fundamental aspects. It uses a model
free approach, which spares from the need of conducting
off line benchmarking experiments to identify the system-
dependent parameters necessary to instantiate the analytical
model. Also, the solution in [14] requires to gather stable
statistical average on the message arrival rate, which requires
observation windows of the order of seconds, limiting the
responsiveness of the controller. By discretizing with respect
to the batching level, instead than on the message arrival rate,
AESC avoids a priori this issue.

Our work is also related to performance evaluation and
modelling studies of TOB [15], [16] (and related agreement
problems, consensus in primis [17], [18]).

Finally, our work has also relations with the ones explor-
ing the usage of machine learning techniques to forecast the
performance of computer systems in several contexts. These
include solutions aiming at forecasting the throughput of
TCP flows [19], Pub-Sub systems [20], and Atomic Broad-
cast protocols [21], at automatically classifying traffic based
on semi-supervised learning techniques [22], at automatizing
the allocation of resources in cloud-computing infrastruc-
tures [23], and at generating software ageing models [24].

III. OVERVIEW OF THE STOB ALGORITHM

As already discussed in the Introduction section, STOB
algorithms are probably among the most widely deployed
TOB protocols [12], as they achieve the minimum bound
on message latency for the TOB problem. Different variants
of STOB protocols have been compared in the literature,
e.g., with fixed and dynamic leader [4] or with and without
uniform delivery guarantees [25]. In this work we focus
on the simplest of the STOB algorithms, namely a STOB
algorithm which does not guarantee message uniformity, and
in which the sequencer role is statically assigned (unless
in presence of group membership changes). This choice is

made essentially for the sake of simplicity. Nevertheless,
all of the aforementioned variants can exploit the batching
optimization without additional difficulties, and the self-
tuning techniques described in this paper could be adapted
to be integrated in more complex variants of this family of
TOB algorithms. In the remainder of the paper we shall refer,
for simplicity, to the nonuniform, static STOB algorithm
described in the following simply as to STOB.

In failure-free runs of the STOB algorithm, if no processes
leave or join the group, the processes agree on the identity
of a single process, before starting to totally order broadcast
(TO-Bcast) messages. Such a process, called sequencer, has
the role to impose a common total order of delivery on
messages to all processes in the group. If a process wants to
totally order broadcast a message, it executes a plain broad-
cast of the message. When a process receives a message
from the network, however, it cannot immediately totally
order deliver (TO-deliver) it to the application. In order to
guarantee group-wide agreement on the final delivery order,
in fact, it has first to wait to receive from the sequencer the
corresponding sequencing message, and to ensure that all
previously ordered messages have been delivered.

The batching level, denoted in the remainder as b, defines
how many messages the sequencer waits to receive before
generating a sequencing message. As already discussed,
setting b to 1 ensures minimal latency at low load. At high
loads, however, higher values of batching allow to amortize
the cost of sequencing each message, and the sequencer to
sustain much higher throughput rates.

IV. OVERVIEW OF EXTREMUM SEEKING CONTROLLERS

Extremum seeking controllers were introduced in the
early ’50s (see [26] and [27]), and have been largely studied
by the control community as a mechanism to synthesize
adaptive controllers for maximizing/minimizing certain sys-
tem performance indexes. Nevertheless, a formal proof of
the classical extremum seeking scheme has been given only
recently in [28]. This work proved local stability properties
of an extremum seeking feedback scheme for general non-
linear systems and motivated further interesting researches
and applications [29], [30], [31], [32], [33]. More recently,
a nonlocal result has been proposed in [34] and a unifying
approach using adaptive schemes based on the estimation of
output derivatives are given in [35], that together with [36]
and [37], link the classical extremum seeking algorithms
with the tools for static optimization [38] such as gradient-
based [39], Newton [39] and line-search [40] algorithms.

In the classical extremum seeking algorithm the input that
improves a cost/performance index J , which is a function
of the state of the system, is mainly obtained by evaluat-
ing the approximate directions (descending/ascending) that
improve the index J exploiting a two time scale separation
[28] among the system (also called “plant”) and controller
dynamics. In general, the controller is set to be “slower”

long T = 0 // current (at iteration k) batch waiting time
perfIndex J = 0 // value of the target performance index

// at previous iteration (at iteration k − 1)
int δ = 1 // current probing direction (1=inc., -1=dec.)

UPDATE(long new J value)
// confirm δ if the current T yielded a better (lower) J value
// otherwise, invert δ
d = generateNewDitheringValue()
δ = sign(δ) · sign(J − new J value)
γ = max{γmin, γ0b }
T = T + δ · γ + d
J = new J value

Figure 1. Pseudocode for the Extremum Seeking Optimizer (ESO)
associated with batch size b

than the controlled system, such that the plant output, on
which the index J is evaluated, can be considered to be in
“steady-state” with respect to the slowly changing input of
the extremum controller. This allows to have a measure of
the index J that essentially is not affected by the transients
induced by the plant dynamics, which may potentially ruin
the approximate evaluation of the descent/maximizing direc-
tions. Such directions are then exploited by the controller to
define the correct input to the plant.

A key ingredient of the extremum seeking scheme is the
dithering signal, which is a time varying signal that probes
different directions in the input space of the plant, providing
an approximate gradient of J . Common dithering signals are
sinusoids and square waves.

As in [33], the dithering signal can be substituted by noise
acting on the system that continuously changes the plant
input. As will be discussed next, we do exploit such noises
in the technique we propose to optimize the plant latency
through the “best” selection of the batching values.

V. THE AESC ALGORITHM

Fig. 1 and Fig. 2 report the pseudocode describing the
AESC self-tuning algorithm, assuming, to simplify presen-
tation, an ideal, event-based controller which is activated
instantaneously whenever the conditions of its triggering
event become valid. In Section V-A we shall discuss how to
adapt the logic of the AESC algorithm to allow its efficient
implementation using a purely software-based approach.

As already mentioned, AESC relies on a series of inde-
pendent extremum seekers optimizers, denoted as ESOs in
the following, each one associated with a different batching
level b, where b ∈ B , {1, . . . , bmax}. The behavior of each
ESO is defined by the pseudocode in Fig. 1.

The state of an ESO associated with batching level b is
composed of the three following pieces of information: the
current (say at iteration k) waiting time, denoted as T , for
a batch of size b; the value J of the target performance
indicator at the previous iteration (namely at iteration k−1);

δ ∈ {−1, 1}, namely the current direction (increasing vs
decreasing) of the exploratory step.

The ESO’s state is updated by using the simple logic
defined by the UPDATE() method. This method takes as
input parameter the value (measured from the system) of the
performance index obtained using the current batch waiting
time T , and confirms/inverts the seeking direction based on
whether the just measured performance index (at iteration
k) is better than the one that had been measured at the
previous iteration (at step k − 1). The update rule includes
also a dithering signal, over whose generation we abstract
with the generateNewDitheringValue() primitive.
For example, the dithering can be a random noise, a sinusoid
or a square wave signal of “small” amplitude that allows
continuous probing of the descending directions.

The width of the exploratory step used to update the
value of T at iteration k + 1, denoted as γ, is computed
as the maximum between γ0

b and γmin, where γ0 and
γmin are two algorithm parameters that allow to tune the
reactivity of the optimizers and whose recommended settings
will be discussed in the following. This update rule is
aimed at reducing the amplitude of the exploratory step for
large batching values, and is motivated by the following
rationale: large batching values result optimal (and hence
likely to be used by the AESC algorithm) at high load,
i.e., in presence of high message arrival rates; narrowing the
probing step associated with large batching values allows
therefore achieving a finer grained granularity precisely in
load scenarios where small variations of the batch waiting
time have a high impact on the probability of receiving
additional messages. As we will see in Section VII, this
optimization allows to enhance significantly the dynamic
performances of our controller, reducing both overshoots
and oscillations. Further, the update rule of γ guarantees that
γ ∈ [γmin,

γ0
b]. Based on our experimental study, in fact, we

noticed that enforcing a lower bound on γ was necessary in
order to prevent the optimizer from getting stuck in local
minima due to the choice of excessively small exploratory
step in presence of (unavoidably) noisy measurements.

The main control logic of the AESC algorithm is defined
by the pseudocode of Fig. 2. It assumes an ideal controller
whose logic is triggered whenever the time elapsed since
the delivery of the last batch grows larger than the batch
waiting time determined by the ESO instance associated with
a batch value equal to the number of messages batched so
far (and stored in a message buffer denoted as msgQ). In
this case, the current batch of messages is delivered, using
the deliver() primitive, which we assume to return also
the performance index measured upon the delivery of the
batch.

AESC adopts the self-delivery latency measured at the
sequencer side as performance index to evaluate the good-
ness of the current setting of the waiting time for batch
size b (namely, ESb.T). Note that in principle one may

array of ESO ES[1 . . . bmax]
Set msgQ = ∅ // buffer for batching msgs
timestamp lastDelTime = 0 // last batch delivery time

upon msgQ.size() > 0 ∧
(now()− lastDelT ime > ESmsgQ.size().T)

int b=msgQ.size()
perfIndex J =deliver(msgQ)
ESb.UPDATE(J)
ENFORCEMONOTONICITY(b)
lastDelTime=now()

ENFORCEMONOTONICITY(int b)
if (ESb.J > 0)

foreach(b′ > b)
ESb′ = max{ESb′ .T, ESb.T}

else
foreach(b′ < b)
ESb′ = min{ESb′ .T, ESb.T}

Figure 2. Pseudocode of the Adaptive Extremum Seeker Controller

use alternative performance indexes, but the self-delivery
latency has the appealing property of being measurable
instantaneously, differently, for instance, from throughput (as
in [2]), which requires an observation over an appropriately
sized time window.

The measured value of the performance index is then used
to update the state of the corresponding ESO. Finally, an
additional check is performed to enforce the monotonicity,
and specifically the not decreasing nature, of the function
that correlates the batch size and the batch waiting time
(which we denote as Tb in the following). This is necessary
to guarantee the meaningfulness of the batch waiting time
information stored across the various instances of Tb and to
enforce the obvious correctness conditions that, given two
batch sizes b and b′, with b′ > b, the waiting time for a
batch of size b′ has to be larger than that for a batch of size
b′, i.e., Tb′ > Tb.

A. Non-ideal controller

The above described controller assumes that the condition
triggering the delivery of a batch can be evaluated instanta-
neously, namely as soon as it becomes verified.

In practice, however, the evaluation of the batch delivery
condition has to be implemented using a periodic timer.
In commodity, software-based implementations (e.g., in the
JAVA-based Group Communication Toolkit used in our
evaluation study [12]), the period granularity is typically
on the order of at least several milliseconds, due both to
accuracy issues and to the overhead imposed by mechanisms
that do support high frequency samplings (such as spin-
locking).

Hence, a more realistic AESC implementation (such as the
one we developed) can evaluate the batch delivery condition
only when a new message arrives, or when a certain amount

of time T (normally on the order of a few milliseconds)
elapses since the last batch has been sequenced.

This implies that the batches are closed with a delay
eb(k) ≥ 0 with respect to the selected waiting time Tb(k).
Similarly to [33], where a noise acting on the plant is used
as a dithering signal, also AESC exploits the delay eb(k) to
generate the dithering, which our experiments have revealed
to be sufficiently small not to compromise the probing of
the descending direction of J .

VI. CONVERGENCE ANALYSIS

In this section we analyze the convergence properties of
the AESC algorithm. We start by precisely identifying the
necessary assumptions for AESC convergence (whose valid-
ity in a system will be confirmed in our experimental study
of Section VII). Next we demonstrate the global asymptotic
stability of AESC, i.e. that each individual instance ESb
of the extremum seeking optimizers identifies, after a finite
time, a batch waiting time ESb.T that is within an estimable
distance from the optimal waiting time for batch size b,
namely ESb.T ∗.

In order to simplify the notation, in the following we will
use Tb to refer to ESb.T , and Tb(k) to denote the value of
Tb after the k-th update of ESb. Further, we will use the
notation J(b, T) to refer to the value of the performance
index (i.e., the self-delivery latency as measured at the
sequencer side) perceived when adopting a waiting time Tb
for a batch size b.

Note that, since we use the self-delivery latency as our
performance index, we need to prove that AESC correctly
minimizes the function J(b, T) for any value of b ∈ B

We can now introduce the two necessary assumptions
that are instrumental to prove the convergence of AESC.

Assumption 1: There exists a class-K function1 αl(·) and
a unique T ?b such that

J(b, T ?b + δ)− J(b, T ?b) ≥ |δ|αl(|δ|), (1)

for all δ ∈ R and b ∈ B. �

Inequality (1) implies that J(b, ·) is in the incremental
sector2 (0,∞) around T ?b , yielding also that T ?b minimizes
the cost function J(b, ·) : B × R>0 → R>0, i.e.

T ?b , arg min
T∈R>0

J(b, T). (2)

Assumption 2: The dithering signal db(k) is such that 0 <
|db(t)| ≤ d0 for all k ≥ 0 and b ∈ B. �

In the next proposition we prove that the algorithm de-
scribed in the previous section, implemented using an ideal

1A class-K function α(·) : R≥0 → R≥0 is continuous, monotonically
increasing and such that α(0) = 0. See [41] for further details.

2A function f : R→ R is in the incremental sector (0,∞) if ∇f is in
the sector (0,∞).

controller and a fixed probing step of amplitude γ0, allows
to continuously minimize the cost function J(b, Tb(k)) via
the update of Tb(k) and the dithering signal db(k). We relax
the assumption of ideal controller and static gain γ(k) = γ0
in the remainder of this section.

Proposition 1: (ideal case) Let Assumption 1 and As-
sumption 2 hold and select the update law of the waiting
time as

Tb(k + 1)= Tb(k)− γ0 sign (J(b, Tb(k))−J(b, Tb(k−1)))×
sign (Tb(k)− Tb(k − 1)) + db(k),

(3)

with d0 < γ0 and set

Tj = max
j=b+1..bmax

(Tb, Tj) , and Tj = min
j=1..b−1

(Tb, Tj) , (4)

then the set Ab , [T ?b − 2γ0 − d0, T
?
b + 2γ0 + d0] is

globally asymptotically stable and there exists κ(T (0)) such
that Tb(k) ∈ Ab for all k ≥ κ(T (0)) and any initial waiting
time Tb(0).

Proof: Since

sign(J(b, Tb(k))−J(b, Tb(k−1))) sign(Tb(k)−Tb(k−1))

is positive when an increment of the Tb produced an
increment of the cost function J or, equivalently, when
a decrement of Tb induced a decrement of J , then by
Assumption 1 the waiting time at the next step is decreased
to minimize J . On the other way round, when a decrement
of the Tb produced an increment of the cost function
J or, equivalently, when an increment of Tb induced a
decrement of J , then by Assumption 1 the waiting time at
the next step is increased to minimize J . The asymptotic
stability proof of the set Ab directly follows from the
above considerations, Assumption 1, and d0 < γ0 yields
V (Tb) = J(b, Tb) − J(b, T ?b) to be a positive definite
Lyapunov function [41] such that

V (Tb(k + 1))− V (Tb(k)) ≤ −(2γ0 + d0)α(distAb
(Tb(k)))

(5)
holds for any Tb(k) /∈ Ab, where distAb

(Tb(k)) is the
distance of Tb(k) from the set Ab defined as distAb

(T) ,
infs∈Ab

|s − T |. Then, since V is positive definite and the
right-hand side of (5) is negative as long as distAb

(Tb(k)) >
0, the distAb

(Tb(k)) has to go to zero as k grows to infinity,
i.e.

lim
k→∞

α(distAb
(Tb(k))) = 0.

Furthermore, defining δ0 > 0 such that γ0 = δ0 + d0, then
for any Tb(0) /∈ Ab the maximum number of steps k such
that Tb(k) ∈ Ab for all k ≥ k is given by

k =
distAb

(Tb(0))

δ0
.

Remark 1: Note that the procedure described by (4) guar-

antees better transients based on the monotonicity condition
T ?b+1 ≥ T ?b in Assumption 1 and does not affect stability of
the overall procedure.

Remark 2: The inequality γ0 > d0 is not a necessary
but a sufficient condition that renders easier the proof of
Proposition 1. If d0 ≥ γ0, then we need further assumptions
on db(k), such as zero mean value, and this requires more
involved mathematical tools for stability/attractivity analy-
sis. �

Let us now consider the case of nonideal controller in
which the closure of a batch size of size b can be affected
by a generic delay eb(k). The next proposition provides
stability conditions under which such a nonideal controller
yields global asymptotic stability of a new set Ab.

Proposition 2: Define δe,b(k) = eb(k)− eb(k− 1) as the
difference of two consecutive delays affecting the closure of
the batch of size b, and δT,b(k) = Tb(k)− Tb(k− 1) as the
difference of two consecutive waiting times selected for the
batch of size b. Let Assumption 1 and Assumption 2 hold
and select the update law of the waiting time as in (3) with
db(k) ≡ 0; then if |δT,b(k)| > δ0 ≥ |δe,b(k)| holds for all
k ≥ 0 and some δ0, the set Ab , [T ?b −2γ0− δ0, T ?b +2γ0]
is globally asymptotically and there exists κ(T (0)) such that
Tb(k) ∈ Ab for all k ≥ κ(T (0)) and any initial waiting time
Tb(0).

Proof: The delays renders (3) as

Tb(k + 1) = Tb(k)− γ0 sign
(
J(b, Tb(k) + eb(k))−

J(b, Tb(k − 1) + eb(k − 1))
)
sign

(
Tb(k)− Tb(k−1)

)
,

(6)

which is still useful to move along the minimizing directions
of J if

sign
(
Tb(k) + eb(k)− (Tb(k − 1) + eb(k − 1))

)
=

sign
(
Tb(k)− Tb(k−1)

)
, (7)

and, by |δT,b(k)| > δ0 ≥ |δe,b(k)|, it holds

sign(δT,b(k)) = sign(δT,b(k) + δe,b(k)). (8)

To conclude, arguments similar to the ones of the proof of
Proposition 1 can be used to state the global asymptotic
stability of the set Ab and the existence of κ(T (0)).

The condition |δe,b(k) < δ0|, defining with m(k) the
arrival rate of messages, can be rewritten as |1/m(k) −
1/m(k − 1)| < δ0. This implies that if the arrival rate
of the messages changes sufficiently slowly the results of
Proposition 2 holds. It will be shown by the experimental
tests that the algorithm of Proposition 1 is very robust even
if such instantaneous condition on the derivative of the inter-
arrival rate is not satisfied (abrupt changes of message arrival
rate is forced).
Note that the sets of Proposition 1 and Proposition 2 have

been obtained under conservative conditions. Furthermore,
note that the set of Proposition 2 is asymmetric due to the
fact that e(k) ≥ 0 (delays). There might be the possibilities
to obtain narrow sets exploiting mean value analysis. If the
delays can be measured, the update law (3) can be easily
modified as

Tb(k + 1) = Tb(k)− γ0 sign
(
J(b, Tb(k) + eb(k))−

J(b, Tb(k − 1) + eb(k − 1))
)
sign

(
Tb(k)+ eb(k)−

(Tb(k−1) + eb(k − 1))
)
, (9)

to obtain the results of Proposition 1 with Ab , [T ?b −2γ0−
emax, T

?
b + 2γ0] where e(k) ≤ emax for all k ≥ 0, which

is potentially larger than the set in Proposition 2 but the
constraint |δT,b(k)| > δ0 ≥ |δe,b(k)| is no longer required.

Remark 3: It is noteworthy to highlight the robustness
of the AESC algorithm even during transients in which the
initial values of Tb might be inappropriate. Unlike previous
solutions, e.g., [2], AESC does not probe on the levels of b to
estimate the gradient of J , which could be very inefficient in
presence of significant variations of the arrival rate and if the
update of b is relatively too slow. This would led to both very
high levels of queued messages when the arrival rate quickly
grows, or to high values J when the load quickly drops. On
the contrary, assume that with AESC the level of Tb happens
to become much lower than the optimal configuration T ?b
(e.g., due to high measurement errors) and to determine the
inappropriate delivery of too small batches. In this case, the
sequencer will start to quickly saturate, which implies that
the amount of messages unprocessed by the sequencer will
quickly grow. These messages will result as immediately
available for the subsequent batch, which will consequently
be able to buffer very likely a much higher number of
messages than in former batches.

In other words, the design choice of associating a level of
waiting time Tb with the actual level b of queued messages
makes AECS inherently more robust than solutions, such as
[2], which perform exploratory steps directly on the batching
level b, as it will be also confirmed by our experimental study
in Section VII.

Remark 4: As already hinted, the adaptive probing step
of AESC allows to enhance significantly the dynamic per-
formances of our controller. The above convergence proofs
clearly still hold in case we use an adaptive gain γ(k),
defined as

γ(k) =

{
max

(
γmin,

γ0
b(k)

)
, if b(k) > 0,

γ0 elsewhere.
(10)

given that γ(k) ∈ [γmin, γ0], as required by Proposition 1
and Proposition 2. The selection γ0/b(k) is quite natural
since the increment of the waiting time Tb(k) needs to be
smaller as b grows (high levels of b are associated with high

levels of messages arrival rate).

VII. EVALUATION

In this section we evaluate the performance of AESC,
providing an assessment of the most important performance
metrics for the controller, namely messages self-delivery
latency perceived by the application, responsiveness (evalu-
ated in terms of convergence time and relative overshooting
amplitude) and stability (evaluated as the ability to cope
with strong, abrupt shift of the input signal and in terms of
intensity of oscillatory patterns in the output signal).

A fully fledged prototype of AESC has been integrated
with the Appia Group Communication System [12], an open
source layered communication toolkit fully implemented in
Java. In particular, AESC has been designed to be a plug-
and-play module for such framework, thus resulting in its
employment to be transparent both to the application layer
as well as to other modules of the architecture.

The test platform is a cluster composed of 10 machines
equipped with two 2.13 GHz Quad-Core Intel(R) Xeon(R)
processors and 16 GB of RAM, interconnected via a private
Gigabit Ethernet and running the Linux OS 2.6.23-33.

A. Validating Assumption 1

We start by showing the results of an experimental study
aimed at validating Assumption 1 of Section VI, which is
a necessary condition underlying the convergence proofs
given in Proposition 1 and Proposition 2. In order to do this
we measured the self-delivery latency of the system when
subject to constant message arrival rates m and statically
setting, in each experiment, the batching value b to fixed
values in the domain {1,2,4,8,16,32,64}.

The plots in Fig. 3 show that, once selected an arrival rate
m ∈ {1K, 5K, 10K, 15K, 20K} messages per second, the
function J∗(b) has a global minimum, thus meaning that, for
each arrival rate m, a unique optimal batching value b∗(m)
exists. Hence, given b and m, there exists a unique value
Tb that minimizes the self-delivery latency J(b, Tb). The
plots also confirm that, for very low arrival rates, batching
hampers performance introducing unnecessary latencies and
that, at high load, batching is essential to prevent the system
from saturating.

B. Comparison with optimal, statically identified, configu-
rations

Let us now proceed in assessing the performance of
AESC, by running the same battery of tests described in
the previous section (i.e., generating messages with constant
arrival rates), and compare the results obtained using AESC
with those produced using a static batching configuration
that is optimal for the considered message arrival rate. Fig. 4
reports the results of this study, plotting both the mean
self-delivery latency and the mean batching value obtained
running the two systems.

 0

 5000

 10000

 15000

 20000

 10 20 30 40 50 60

S
e

lf
 D

e
liv

e
ry

 L
a

te
n

c
y
 (

µ
s
e

c
)

Batch Level

1K 5K 10K 15K 20K

Figure 3. STOB performance while varying mean arrival rate and batching
level.

As shown by fig Fig. 4, AESC behaves as well as the
the optimal static configuration at very low arrival rates and
outperforms it at higher arrival rates, achieving up to a 4x
improvement in the case of highest load (20K msgs/sec).
This result would clearly be trivial if a variable load had
been injected. On the other hand, in this case we used a step
signal as input, which makes these results quite surprising.

We argue that the explanation for this phenomenon is
that our workload generator introduces some unavoidable
fluctuations, whose amplitude grows as the target arrival
grows. In other words, the actual input signal is de facto not
constant, but, rather, it oscillates around the desired target
value. This reasoning is clearly backed by observing that the
bottom plot of Fig. 5 that reports the dynamics of two step
input signals having amplitude of 10K and 20K messages per
second. Another confirmation of this argument is obtainable
by noticing the improvements achieved by AESC vs a static
batching configuration at high load, when the amplitude of
the input’s signal oscillations is higher.

 8

 16

 24

 32

 1 5 10 15 20

Mean Arrival Rate (Kmsgs/sec)

B
a

tc
h

 L
e

v
e

l

 0

 2000

 4000

 6000

 8000

S
e

lf
 D

e
liv

e
ry

 L
a

te
n

c
y

 (
µ

s
e

c
)

Fixed
Adaptive

Figure 4. Performance of optimal static configuration vs adaptive tuning.

C. Dynamic behavior assessment

In this section we describe the dynamic behavior of the
controller, by analyzing its response when dealing with
varying incoming workloads. The test we designed consists
in injecting in the system an arrival rate which is composed
of steps of different amplitudes: Fig. 5 depicts two cases in
which the message arrival rate is 1000 per second for the
first 45 seconds and then it becomes approximately ten or
twelve times bigger. The very steep ramp up characterizing
the change in the workload allows us to assess the respon-
siveness and the stability of the system when the batching
level is controlled by AESC.

Note that the results plotted in Fig. 5 were obtained using
a simple, static (rather than adaptive) exploration step γ =
γ0. We refer to this variant of AESC as to ESC. This choice
was done in order to allow isolating the benefits provided
by the adaptive exploration step used by AESC.

From the plot, we can see that ESC reacts very quickly
to the varying workload. During an initial transitory, the
controller exhibits overshoots, moving towards too high
batching levels. This is caused by the fact that the update of
the waiting time Tb is performed each time via the same γ0,
which is very big compared to the inter-arrival time of the
messages when the arrival rate is high. Then, the controller
converges to the optimal value, slightly oscillating around
it till the end of the test. The short overshooting period is
due to the fact that ESC is forced to operate in zones still
unexplored, whose values for Tb have been initialized with
suboptimal values relevant to the only states excited so far.
This yields to an initial accumulation of messages in the
queue, which in turn induces an abrupt increase of the self-
delivery latency. To compensate it, the controller operates a
series of consecutive exploration steps aimed at increasing
the level of batching and quickly serve all the messages in
the queue; in the meanwhile, the controller moves to the
optimal batching value.

Let us now observe the results reported in Fig. 6, which
contrast the response to two subsequent step signals having
amplitude 20K msgs/sec when using AESC and ESC. The
plots allow to draw two interesting conclusions.

First, the adoption of the adaptive probing step, in AESC,
allows to significantly reduce the amplitude of the over-
shooting phenomenon that affects ESC. This is a direct
consequence of the possibility of setting a finer grained
exploration step for high batching values, which allows to
improve significantly the speed of convergence towards the
optimal batching value at high load levels.

Second, the stateful nature of AESC, which maintains a
memory of the optimal batch waiting time for the various
feasible batch values b ∈ B, allows to avoid the occurrence
of overshooting phenomena when the second step is gener-
ated in input (at time 125 sec). In this case, in fact, AESC
can take advantage of having already learnt the optimal

 0

 4000

 8000

 12000

 16000

 20000

 20 40 60 80 100 120 140

Time (sec)

A
rr

iv
a
l
R

a
te

 (
M

s
g
s
/s

e
c
)

 0

 16

 32

 48

B
a
tc

h
 L

e
v
e
l

10K
20K

Figure 5. Dynamic response of the adaptive scheme to step input signals.

 0

 4000

 8000

 12000

 16000

 20000

 20 40 60 80 100 120 140

Time (sec)

A
rr

iv
a
l
R

a
te

 (
M

s
g
s
/s

e
c
)

 0

 16

 32

 48

B
a
tc

h
 L

e
v
e
l

Fixed γ
Adaptive γ

Figure 6. Dynamic response of the adaptive scheme to step input signals.

batching value for this load level during the first step input
signal (which took place, approximately, since second 50
until second 90).

D. Determining γ0 and γmin

Let us now discuss a possible methodology for deter-
mining adequate values for the parameters γ0 and γmin.
The setting of these two parameters is clearly an important
choice, as they drive the research for the optimal value T ?b
and, as stated in Proposition 2, they contribute to define the
amplitude of the oscillation around it. It is, thus, important
to pick values that ensure that exploratory steps are large
enough at low load to guarantee the actual exploration of
higher batching levels, but also small enough to avoid ample
oscillations around the optimal T ?b for high message arrival
rates.

In order to automatically detect the right value for γ0, it is
sufficient to run a simple benchmark that injects messages at
increasing rates, with batching values set to one and two, till
it determines the lowest arrival rate m at which the system
benefits from increasing the level of batching. The inverse
of this value represents the minimum amount of time the

controller has to wait to create, on average, a batch of size
2 in presence of the lowest load level that would benefit
from such a batching level configuration. We found this
arrival rate to be about 4000 messages per second for our
experimental test-bed, thus yielding to γ0 = 250µsec.

The dual reasoning applies to γmin: via an initial bench-
marking phase the maximum throughput achievable by the
system (using the maximum batching value) is determined,
and its inverse is chosen as minimum step to guarantee
explorations also at very high loads. In our test case, we
found γmin to be 50 µsec.

E. Comparison with approximate gradient descent algo-
rithm

In this subsection we compare the performance of AESC
with that of a simple approximate gradient descent algo-
rithm, denoted as AGD in the following, which closely
resembles the one presented in [2]. This algorithm attempts,
at each iteration, to alter the batching value (increasing or
decreasing it by one) on the basis of feedback gathered
monitoring the same performance index used by AESC,
namely the self-delivery latency measured at the sequencer
side. This simpler, exploration-based self-tuning technique
differs from AESC in two fundamental aspects:
• it attempts to optimize directly the level of message

batching b, unlike AESC, which conversely optimizes
the batch waiting time;

• it is “stateless”, in the sense that it does not maintain
any memory of the optimal batching values identified
in the past, while being subject to different load levels.

The plots in Fig. 7 and Fig. 8 report the results of a
sensibility analysis in which we vary the filtering level,
namely the time after which the performance index is
deemed to have reached steady state, and is used to convey
a feedback to the controller. In this case, in fact, we found
out, experimentally, that, given the design choice of opti-
mizing directly the batching level, this solution is extremely
sensitive to the setting of this parameter.

Specifically, the plots in Fig. 7 highlight that filtering can
have a beneficial impact on the stability of the controller,
avoiding to incur in strong fluctuations that instead affect
the algorithm in case no filtering is used. On the down
side, filtering clearly introduces latencies that hinder the
responsiveness of the controller.

The results presented in Fig. 8, on the other hand,
show that, when faced with very abrupt variations of the
input signal, the latencies introduced by the filtering can
severely affect the convergence of this algorithm toward
the optimal solution. Indeed, if we use input step signals
having amplitude equal to 20K messages per second, the
only configuration in which AGD succeeds in sustaining
the load is the one in which filtering is disabled. When
filtering is on, the latencies it introduces do not allow the
controller to react sufficiently fast to the quick load surge,

 0

 4000

 8000

 12000

 20 40 60 80 100 120 140

Time (sec)

A
rr

iv
a
l
R

a
te

 (
M

s
g
s
/s

e
c
)

 0

 4

 8

 12

 16

B
a
tc

h
 L

e
v
e
l

No avg
500 ms avg

1 sec avg

Figure 7. Dynamic response of the AGD algorithm with 10K msgs/sec
input step signals, while varying the filtering level.

 0

 4000

 8000

 12000

 16000

 20000

 20 40 60 80 100 120 140

Time (sec)

A
rr

iv
a
l
R

a
te

 (
M

s
g
s
/s

e
c
)

 0

 10

 20

 30

 40

 50

 60

B
a
tc

h
 L

e
v
e
l

No avg
500 ms avg

1sec avg

Figure 8. Dynamic response of the AGD algorithm with 20K msgs/sec
input step signals, while varying the filtering level.

rendering it unable to ever converge, and leading the group
communication system to eventually collapse.

Finally, we conclude by contrasting directly the self-
delivery latency perceived when using AGD (without fil-
tering) and AESC, in presence of input signals of amplitude
20K messages per second. These plots clearly highlight the
superior performance achieved by AESC, which ensures
self-delivery latencies that are, on average, one order of
magnitude smaller that for AGD.

VIII. CONCLUSIONS

We have proposed an Adaptive Extremum Seeking
Controller (AESC) to optimize the performance of the
Sequencer-based Total Order Broadcast (STOB). The con-
troller performs (approximated) gradient-like searches to
continuously select the best waiting times Tb associated to
each batching level b. Stability results on the convergence
domain of the algorithm have been given under different
conditions and its effectiveness has been shown via extensive
experimental evaluation through the Appia Group System.

 100

 1000

 10000

 100000

 20 40 60 80 100 120 140 160

S
e

lf
 D

e
liv

e
ry

 L
a

te
n

c
y
 (

µ
s
e

c
)

Time (sec)

AGD (no avg)
AESC

Figure 9. Comparing the dynamic response time (self-delivery latency) of
AGD and AESC, with 20K msgs/sec input step signals

ACKNOWLEDGMENTS

This work has been partially supported by the
project “Cloud-TM” (co-financed by the European Com-
mission through the contract no. 257784), and by
FCT Fundação para a Ciência e a Tecnologia, under
project ARISTOS (PTDC/EIA-EIA/102496/2008) and PEst-
OE/EEI/LA0021/2011.

REFERENCES

[1] R. Friedman and E. Hadad, “Adaptive batching for replicated servers,” in Proc.
of the IEEE International Symposium on Reliable Distributed Systems (SRDS),
2006.

[2] A. Bartoli, C. Calabrese, M. Prica, E. A. D. Muro, and A. Montresor, “Adaptive
message packing for group communication systems,” in Proc. of the Workshop
on Reliable and Secure Middleware (WRSM), 2003.

[3] B. Carmeli, G. Gershinsky, A. Harpaz, N. Naaman, H. Nelken, J. Satran, and
P. Vortman, “High throughput reliable message dissemination,” in Proc. of the
Symposium On Applied Computing (SAC), 2004.

[4] T. Friedman and R. V. Renesse, “Packing messages as a tool for boosting
the performance of total ordering protocols,” in Proc. of the International
Symposium on High Performance Distributed Computing (HPDC), 1997.

[5] D. Powell (ed.), Special Issue on Group Communication. ACM, 1996, vol. 39,
no. 4.

[6] K. Ostrowski, K. Birman, and D. Dolev, “Live distributed objects: Enabling
the active web,” IEEE Internet Computing, 2007.

[7] P. Romano, D. Rughetti, F. Quaglia, and B. Ciciani, “Apart: Low cost active
replication for multi-tier data acquisition systems,” in Proc. of the IEEE
International Symposium on Network Computing and Applications (NCA),
2008.

[8] F. Pedone, R. Guerraoui, and A. Schiper, “The database state machine ap-
proach,” Distributed and Parallel Databases, vol. 14, no. 1, 2003.

[9] N. Carvalho, P. Romano, and L. Rodrigues, “Asynchronous lease-based repli-
cation of software transactional memory,” in Proc. of the ACM/IFIP/USENIX
International Middleware Conference (Middleware), 2010.

[10] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems, vol. 16, 1998.

[11] ——, “Lower bounds for asynchronous consensus,” Distributed Computing,
vol. 19, no. 2, 2006.

[12] A. Pinto, “Appia: A flexible protocol kernel supporting multiple coordinated
channels,” in Proc. of the International Conference on Distributed Computing
Systems (ICDCS), 2001.

[13] J. Nagle, “Congestion control in ip/tcp internetworks,” ACM SIGCOMM
Computer Communication Reviews, vol. 14, 1984.

[14] Paolo Romano, Matteo Leonetti, “Self-tuning Batching in Total Order Broad-
cast Protocols via Analytical Modelling and Reinforcement Learning,” in
Proc. of the IEEE International Conference on Computing, Networking and
Communications, Network Algorithm & Performance Evaluation Symposium
(ICNC), 2012.

[15] F. Cristian, R. D. Beijer, and S. Mishra, “A performance comparison of
asynchronous atomic broadcast protocols,” Distributed Systems Engineering,
vol. 1, 1994.

[16] R. Ekwall and A. Schiper, “Modeling and validating the performance of atomic
broadcast algorithms in high-latency networks,” in Proc. of the International
European Conference on Parallel and Distributed Computing (Euro-Par), 2007.

[17] A. Coccoli, P. Urban, A. Bondavalli, and A. Schiper, “Performance analysis
of a consensus algorithm combining stochastic activity networks and mea-
surements,” in Proc. of the Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2002.

[18] N. Santos and A. Schiper, “Tuning paxos for high-throughput with batching and
pipelining,” in Proc. of the International Conference on Distributed Computing
and Networking (ICDCN), 2012.

[19] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning approach
to tcp throughput prediction,” in Proc. of the ACM Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), 2007.

[20] L. Garces-Erice, “Admission control for distributed complex responsive sys-
tems,” in Proc. of the International Symposium on Parallel and Distributed
Computing (ISPDC), 2009.

[21] M. Couceiro, P. Romano, and L. Rodrigues, “A machine learning approach
to performance prediction of total order broadcast protocols,” in Proc. the
IEEE International Conference on Self-Adaptive and Self-Organizing Systems
(SASO), 2010.

[22] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Offline/realtime
traffic classification using semi-supervised learning,” Performance Evaluation,
vol. 64, no. 9-12, 2007.

[23] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “Autonomic resource
management in virtualized data centers using fuzzy logic-based approaches,”
Cluster Computing, vol. 11, no. 3, 2008.

[24] A. Andrzejak and L. Silva, “Using machine learning for non-intrusive mod-
eling and prediction of software aging,” in Proc. of the IEEE/IFIP Network
Operations and Management Symposium (NOMS), 2008.

[25] R. Guerraoui and L. Rodrigues, Introduction to Reliable Distributed Program-
ming, 2006.

[26] C. Drapper and Y. Li, “Principles of optimalizing control systems and an
application to the internal combustion engine,” ASME, vol. 160, 1951.

[27] I. Morosanov, “Method of extremum control,” Automation and Remote Control,
vol. 18, 1957.

[28] M.Krstić and H.H.Wang, “Stability of extremum seeking feedback for general
nonlinear dynamic systems,” Automatica, vol. 36, 2000.

[29] K. Ariyur and M. Krstić, Real-Time Optimization by Extremum-Seeking Con-
trol, 2003.

[30] M. Guay, D. Dochain, and M. Perrier, “Adaptive estremum seeking control of
continuous stirred tank bioreactors with unknown growth kinetics,” Automatica,
vol. 40, no. 5, 2004.

[31] K. Peterson and A. Stefanopoulou, “Extremum seeking control for soft landing
of an electromechanical valve actuator,” Automatica, vol. 40, 2004.

[32] M. Sassano, D. Carnevale, and A. Astolfi, “Extremum seeking-like observer
for nonlinear systems,” in Proc. of the IFAC World Congress, vol. 18, 2011.

[33] D. Carnevale, A. Astolfi, L. Zaccarian, L. Boncagni, C. Centioli, S. Podda, and
V. Vitale, “Maximizing radiofrequency heating on ftu via extremum seeking:
parameter selection and tuning,” Book chapter, “From physics to control
through an emergent view”, vol. 15, 2010.

[34] Y. Tan, D. Nesic, and I. M. Y. Mareels, “On non-local stability properties of
extremum seeking control,” Automatica, vol. 42, no. 6, 2006.

[35] D. Nešić, Y. Tan, W. H. Moase, and C. Manzie, “A unifying approach to
extremum seeking: Adaptive schemes based on estimation of derivatives,” in
Proc. of the IEEE Conference on Decision and Control, 2010.

[36] L. Fu and ı. Özgüner, “Extremum seeking with sliding mode gradient estimation
and asymptotic regulation for a class of nonlinear systems,” Automatica, vol. 47,
no. 12, 2011.

[37] A. Teel and D. Popovic, “Solving smooth and nonsmooth multivariable
extremum seeking problems by the methods of nonlinear programming,” in
Proc. of the American Control Conference, 2001.

[38] J. Nocedal and S. Wright, Numerical Optimization, 1999.
[39] I. K. Argyros, Convergence and application of Newton-type Iterations, 2008.
[40] C. D. Fiore, S. Fanelli, and P. Zellini”, “Low complexity secant quasi-newton

minimization algorithms for nonconvex functions,” Journal of Computational
and Applied Mathematics, vol. 210, no. 12, 2007.

[41] H. K. Khalil, Nonlinear systems, 2002.

