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Abstract

A difficulty in analyzing self-organizing decision-making systems is their high dimension-
ality which needs to be reduced to allow for deep insights. Following the hypothesis that such
a dimensionality reduction can only be usefully determined in an act of a low-scale scientific
discovery, a recipe for a data-driven, iterative process for determining, testing, and refining
hypotheses about how the system operates is presented. This recipe relies on the definition
of Markov chains and their analysis based on an urn model. Positive and negative feedback
loops operating on global features of the system are detected by this analysis. The workflow of
this analysis process is shown in two case studies investigating the BEECLUST algorithm and
collective motion in locusts. The reported recipe has the potential to be generally applicable
to self-organizing collective systems and is efficient due to an incremental approach.

1 Introduction

Self-organizing systems (SOS) are characterized by nonlinear dynamics, for example, due to posi-
tive and negative feedbacks and to the multitude of interactions between their components [1]. As
a consequence of nonlinearity and of the large quantity of microscopic details, they are difficult to
analyze. The challenging endeavor of trying to understand complex entities is common to science
in its entirety to a certain extent. However, SOS may be different from other complex entities
concerning the methods of reductionism because they are thought to be difficult to reduce, that
is, cause and effect seem difficult to distinguish. There is the well-known controversy whether
reductionism has the potential to explain everything [2] or maybe ‘more is different’ [3], that is,
novel phenomena emerge on higher levels which cannot be reduced [4].

In the following we deliberately take the reductionist perspective on our subject of analyzing
SOS. We report a method that focuses on the known properties of these systems and incremen-
tally divides the configuration space into structured subsections. However, we also consider the
fundamental difficulties one faces in the analysis of these systems. We assume that the effective
analysis of a particular SOS is similar to a low-scale scientific discovery in terms of the applied
methods. Hence, the analysis of SOS would include a certain degree of creativity similar to what
is commonly thought of a scientific discovery. This is supported by a study that identified un-
decidable macroscopic properties in Ising models [5, 6]: “The development of macroscopic laws
from first principles may involve more than just systematic logic, and could require conjectures
suggested by experiments, simulations or insight.” Consequently, the ideal of an algorithm that
automatically analyzes self-organizing processes seems unlikely to exist (cf. automatic abductive
scientists [7, 8]). Instead, the hypothesis is that the analysis of self-organizing processes has to be
a scientific endeavor and therefore cannot be efficiently automatized unless we find an algorithm
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for scientific discovery itself. Hence, for our approach we need to transfer methods of scientific
discovery to our domain. We do this following Hanson [9] and assume that scientific discovery is
done by reasoning from data to hypothesis (cf. abductive reasoning and pragmatism [10]). We
assume that the process of ‘hypothesis-catching’ [9] is driven by empirical data and an iterative
process of catching a hypothesis, testing it, followed by refining or discarding it and starting over.

A difficulty in analyzing SOS, for example a swarm consisting of N moving individuals, is the
high-dimensional configurations γ = (x0, . . . ,xN ,v0, . . . ,vN , s0, . . . , sN ), for position xi, velocity
vi, and state si of individual i. The task is to find a mapping g that projects the high-dimensional
configuration space Γ (γ ∈ Γ) to a low-dimensional space Φ (g : Γ → Φ with dim(Φ) � dim(Γ))
while Φ still represents the key features of the original system, in particular its evolution in
time [11] and allows to assign causes and effects to regions of configuration space. The dimension
reduction could, for example, be done with principal component analysis (PCA). The time series
of configurations γt, γt+1, . . . could also be seen as a hidden Markov model inference problem [12]
or one could use ε-machines [13]. With these statistical methods one tries to find system states
that have statistically equivalent futures, that is, one searches for the most predictive states.
Although general features of the resulting Markov chains, such as the overall number of identified
states, are helpful for the analysis of the system, a particular state of such a Markov chain will
typically have not much explanatory power (e.g., the state does not represent a typical behavior
or a comprehensible feature of the system). That would probably be asking for too much to have
an automatic process that gives novel insights about a complex system.

Instead most reported methods to model SOS rely on non-automatic processes. For example,
in swarm robotics one can start with a finite state machine that describes an individual robot’s
behavior from which probabilistic finite state machines (Markov chains) are derived that describe
the state of an individual robot and its environment or even fractions of the swarm [14]. In the
latter case each state represents the average number of robots in a particular state at a given time.

In this paper, we report not an automatic, statistical analysis tool, but a recipe of how SOS
can incrementally be modeled and how cause and effect can be identified and separated in order
to achieve models with high explanatory power. Instead of finding the most predictive states,
we structure the configuration space by defining subsets that are dominated by the same kind of
feedback (positive or negative). The underlying hypothesis is that a valuable theory should assign
different causes to positive feedback processes on the one hand and negative feedback processes
on the other hand. These two kinds of processes should not be mixed. The reported method
could optionally be transferred into a (semi-)automatic brute-force approach that tests a number
of pre-defined hypotheses which would, however, limit the range of possible solutions.

In the following we introduce the two self-organizing decision-making systems that we take as
examples to apply our method of analysis.

1.1 Case study 1: BEECLUST

The first case study is based on the BEECLUST algorithm which is a model algorithm for robot
swarms. It is based on observations of young honeybees and was analyzed in many studies (e.g.,
see [15, 16, 17]). The algorithm implements the aggregation of a swarm at a maximum of a potential
field without the application of a greedy gradient ascent. Controlled by this algorithm 3 agents
stop (this threshold is varied in other studies) when they approach each other, they measure the
local value of the potential field, and wait for some time proportionally to this measurement.
Clusters start to form and eventually the majority of the swarm aggregates close to the global
optimum of the potential field. See Fig. 1a for a definition of the BEECLUST algorithm.

The setting used in the following experiments is shown in Fig. 1b. The potential field is
symmetric with peaks at the two short sides of the rectangular arena. Initially all N = 25 robots
are moving and scattered according to a random uniform distribution. There is noise in the agents’
sensors: only 90 percent of agent–agent approaches are detected by the agents.

The difficulty in analyzing BEECLUST is the complexity of microscopic processes in clusters of
aggregated robots. Small clusters form and disappear fast. Big clusters persist much longer once
they have formed because, for example, robots can get trapped within. Similarly to condensation
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1) Each agent moves straight until
it perceives an obstacle O within
sensor range.

2) If O is a wall the agent turns away
and continues with step 1.

3) If O is another agent and there
is a third agent as well, the agent
measures the local potential field
value. The higher the potential
field value the longer the agent
stays still. After this waiting
period, the agent turns away from
the other agent and continues with
step 1.

(a) algorithm (stop threshold of 3)

 0

 50

 0  50  100  150

(b) setting, positions of stopped agents (circles) and
moving agents (triangles) with trajectories of the last
20 time steps, contours show levels of the potential field

Figure 1: The BEECLUST algorithm and the used setting.

3



processes, there is a break-even in the average expected in- and outflow of robots depending on
the cluster size. A particular difficulty of this setting is the symmetric potential that provokes a
symmetry break due to initial fluctuations. Hence, the macroscopic feature of interest is whether
the majority of agents gather at the left half or at the right half of the arena.

1.2 Case study 2: Collective motion in locusts

The desert locust, Schistocerca gregaria, shows collective motion, often called ‘marching bands’,
in the growth stage of a wingless nymph [18]. The collective motion is expressed in the directional
alignment of a majority of locusts, it is density-dependent, and individuals seem to change their
direction as a response to neighbors [18]. In experiments the complexity of the collective motion
is reduced to a pseudo-1-d setting by using a ring-shaped arena. Microscopic [19] and macroscopic
models [20] of this behavior have been reported. Here we use a microscopic model similar to
the self-propelled particles model of Czirók et al. [19]. The system is defined in 1-d space, hence
a particle i has coordinate xi ∈ [0, 1) and discrete, dimensionless velocity ui ∈ {−1, 1}. The
dynamics is defined by

xi(t+ 1) = xi(t) + v0ui(t), (1)

ui(t+ 1) =


G(Li(t), Ri(t)), with probability Pd

−ui(t), with probability Pn

ui(t), else

, (2)

where Li and Ri are the numbers of neighboring particles j located in the interval [xi−∆r, xi+∆r]
with uj = −1 (neighbor is moving to the left) or uj = 1 (neighbor is moving to the right)
respectively, perception range of a particle ∆r = 0.045, and nominal velocity v0 = 0.001. Pd =
0.1 is the particle’s probability of reconsidering its direction of movement. Pn = 0.015 is the
particle’s probability of inverting its direction of movement spontaneously, hence, it implements
noise. With G we implement a local majority decision

G(L,R) =


−1, L > R

+1, R > L

ur, R = L

, (3)

where ur ∈ {−1,+1} is a random tie breaker choosing −1 or +1 with equal probability. The
initial condition is a random uniform distribution for both the particles’ coordinates xi and their
velocities ui. The following experiments were done with a population of N = 45 particles.

2 Hypothesis-catching recipe

The recipe is based on two main concepts, Markov chains and an urn model. The aim of this
procedure is to discover the main causes that trigger the observed behavior and that have as much
explanatory power as possible.

2.1 Markov chains

In this work the investigated collective systems are modeled as Markov chains. The challenge is
to determine a set of Markov states S = {s0, s1, . . . } that usefully structure the above mentioned
configuration space Γ into subsets Γsi ⊂ Γ. The assumed Markov property is only an approxima-
tion because not necessarily each configuration γ ∈ Γsi shows the exact same dynamics and there
might be correlations with the past dynamics. The states in S are associated with agents that
have certain local and global properties, that is, the states of the Markov chain combine micro-
scopic and macroscopic properties. S itself is structured according to a feature f that describes
the key feature of the observed phenomenon (e.g., ‘in favor of option 1’ in opinion dynamics) and
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(b) transition probability in the model
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eq. 6 and data shown in (a)
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(d) positive-feedback probability in the
model, P+FB(k) = 0.7 − 0.3(cos(4πk) +
1)− 0.2|0.5− k|
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+FB

+sFB

−FB

−sFB

−FB

−sFB

+FB

+sFB

(e) 8 sectors assigned to positive (+FB)
and negative feedback (−FB); pos.
(+sFB) and neg. super-feedback (−sFB)

Figure 2: Transition probabilities Ps,sf between feature-states and the respective positive-feedback
probabilities P+FB .

can be assigned to each agent a out of the set of all agents A. For simplicity we restrict this
study to discrete, binary key features (on or off, left or right, etc.) but the proposed method
can be generalized to more complex cases (e.g., by discretizing continuous features). The Boolean
function f determines whether an agent a has the key feature. The subset of agents with key
feature at time t is given by Af (t) = {a|f(a, t)} (e.g., agents that move to the left) and the key
feature ratio k is the fraction of agents with key feature: k = |Af (t)|/|A|. The set of states S is
separated into two symmetrical halves according to the key feature: Sf and S \ Sf . We call the
two sets Sf and S \ Sf feature-states and transitions sf → s and s → sf between states sf ∈ Sf

and s ∈ S \ Sf feature-transitions because these are of relevance to the macroscopically defined
observed phenomenon.

Each feature-transition between states sf and s can take one of two types: those pointing
towards key feature states (s→ sf ) and those pointing away from them (sf → s). The probabil-
ity P (s→ sf , k) that a certain feature-transition occurs for a given key feature ratio k is measured
empirically using simulations of the actual collective system. By normalizing

Ps,sf (k) =
P (s→ sf , k)

P (s→ sf , k) + P (sf → s, k)
(4)

we get the probability that one out of these two feature-transitions occurs for a given k (notice
the symmetry Ps,sf (k) = 1−Psf ,s(k)). A typical example of such transition probabilities is given
in Fig. 2a.
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placement:
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pos. Feedback
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Figure 3: Swarm urn model; having the key feature is represented by blue and lacking the key
feature by red. The diagram shows the 4 cases: drawing an agent with key feature followed by
positive or negative feedback and drawing an agent without key feature followed by pos. or neg.
feedback.

2.2 Urn models

The above defined transition probability Ps,sf (k) can be modeled and understood by an urn
model [21, 22] (see Fig. 3 for a schematic overview) similar to common urn models such as the
Ehrenfest urn model [23] and the Pólya urn model [24]. An urn is filled with |A| marbles of two
types: |Af |marbles representing agents with key property and |A\Af |marbles representing agents
without key property. An initial draw of a marble from the urn with replacement has hence linear
dependence on the current key feature ratio k and resembles the frequency of agents with key
feature |Af |. In a second step, a second marble from the urn is replaced which either implements
positive feedback by reinforcing the agent group represented by the first marble (say a blue marble
was drawn first, then positive feedback is implemented by replacing a red marble from the urn
with a blue one) or negative feedback by reinforcing the other agent group (say a blue marble was
drawn first, then negative feedback is implemented by replacing a blue marble from the urn with
a red one). The feedback is implemented by a probability of positive feedback P+FB and hence
the subsequent respective increase with probability P+FB and decrease with probability 1−P+FB

of the two agent groups.
In former works, this ‘swarm urn model’ was applied to simple Markov chains (mostly 2-state

Markov chains) but it can also be applied to more complex Markov chains by focusing on pairs of
states at a time. For such a pair of states it is possible to determine a transition probability Ps,sf

for a given positive-feedback probability P+FB by summing over the two respective cases

Ps,sf (k) = kP+FB(k) + (1− k)(1− P+FB(1− k)), (5)

and also the inverse procedure is possible, that is, to determine positive-feedback probability P+FB

based on an empirically obtained probability of the corresponding transition Ps,sf (k). Rearranging
eq. 5 and using the assumed symmetry P+FB(k) = P+FB(1− k) yields

P+FB(k) =
Ps,sf (k)− 1 + k

2k − 1
, (6)

see [21, 22] for details. Fig. 2c shows the positive-feedback probability obtained from the mea-
surements shown in Fig. 2a using eq. 6. Fig. 2d shows a produced positive-feedback probability
that generates the transition probability Ps,sf shown in Fig. 2b using eq. 5 which is similar to that
shown in Fig. 2a.

Two properties noticed in the diagrams shown in Fig. 2 are of importance here. First, a
positive-feedback probability of P+FB(k) > 0.5 means that positive feedback is predominant for
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the given k. If we have both predominant pos. feedback (∃k0 : P+FB(k0) > 0.5) and predominant
neg. feedback (∃k1 : P+FB(k1) < 0.5) within one transition, then we call the transition ‘mixed’ (as
in Fig. 2c and d). Second, we have accordingly several local maxima in Ps,sf with Ps,sf > 0.5, that
is, sub-intervals k ∈ If ⊂ [0, 1] with a majority of transitions to sf and sub-intervals I ⊂ [0, 1] with
a majority of transitions to s. In analogy to multi-modal probability distributions, we interpret
these local maxima as indicators for having mixed several causes of different origin within a pair
of states sf and s. Our reasoning is that this mixing of causes has to be resolved either by sub-
dividing these two states into at least four states or by choosing two alternative states, that is,
choosing a different structure of configuration space. We say that we are only satisfied by states
that do not mix causes, that is, we have either only positive feedback (∀k ∈ (0, 1) : P+FB(k) ≥ 0.5,
∀k, 0 < k < 0.5 : Ps,sf ≤ 0.5, ∀k, 0.5 < k < 1 : Ps,sf ≥ 0.5) or only negative feedback. The ability
to detect this quality of state pairs in Markov chains implements the main guidance in the reported
recipe for the analysis of self-organizing decision-making systems.

In this study we discover a different kind of feedback that was not found in the former studies
of these models and systems [21, 22]. Therefore, we distinguish between standard feedback, which
cannot increase above P+FB(k) = 1 with consequent transition probability Ps,sf (k) = k and
cannot decrease below P+FB(k) = 0 with consequent Ps,sf (k) = 1− k, and super-feedback that is
nonlinear in k (e.g., Ps,sf (k) < k for k < 0.5). The nonlinearity in k means that drawing a marble
with key property is more likely than a mere random draw with probability k in the urn model.
When doing measurements based on trivial 2-state Markov chains, super-feedback seems not to
be common in natural and artificial systems [22]. Hence, its occurrence seems to depend on the
selective definition of states based on local and global features. In order to model super-feedback
the before reported swarm urn model [21, 22] needs to be extended. This is done by substituting
the initial draw of a single marble with a majority or minority decision of a randomly arranged
group of a given size. That way the model gains similarity to voter models by Galam [25].

Positive super-feedback is modeled by a majority decision. For a given group size G, G marbles
are drawn in the first step (to avoid ties we assumeG is odd). The majority of this group determines
which agent type is reinforced by positive feedback in the second step. Say the majority of that
group has key property, then in the subsequent step positive feedback would be the reinforcement
of the key property. The group decision introduces the above mentioned nonlinearity in k because
for k > 0.5 the probability of a majority in a group of G > 1 is bigger than k. The transition
probability for positive super-feedback for a group size of G is a generalization of eq. 5 and is
defined by

P+sFB
s,sf

(k) = ∑
n∈{dG/2e,...,G}

(
G

n

)
kn(1− k)G−n

 (1− P−FB(k))

+

 ∑
n∈{dG/2e,...,G}

(
G

n

)
(1− k)nkG−n

P−FB(1− k), (7)

which is obtained by the appropriate combinatorics of summing over all possible compositions
of majorities and the two cases out of four in the swarm urn model that contribute positively
(see Fig. 3). Hence, eqs. 5 and 6 are only special cases of eq. 7 for G = 1. The qualitative
influence of group size G, how to determine it, and whether it is directly connected to actual
microscopic processes is discussed below. Note that differently from eq. 5, we explicitly model
the negative-feedback probability because for positive super-feedback it is the negative feedback
probability P−FB that takes shapes similar to the positive feedback probabilities P+FB in standard
feedback.

Negative super-feedback is just the opposite of the above P−sFB
s,sf

(k) = 1−P+sFB
s,sf

(k). It can be
viewed as a minority decision to illustrate the antagonism. The minority of the group determines
which group is reinforced by positive feedback in the second step. Say the minority of that group
has key property, then in the subsequent step positive feedback would be reinforcement of the key
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property. The transition probability for negative super-feedback and a group size of G is defined
by

P−sFB
s,sf

(k) = ∑
n∈{1,...,bG/2c}

(
G

n

)
kG−n(1− k)n

 (1− P+FB(k))

+

 ∑
n∈{1,...,bG/2c}

(
G

n

)
(1− k)G−nkn

P+FB(1− k). (8)

According to this extended swarm urn model we define 8 feedback sectors in the transition–
probability diagrams as shown in Fig. 2e. Keeping these sectors in mind, the transition proba-
bilities can be classified directly depending on the sectors into which they extend (see Fig. 5 for
examples): positive feedback (only +FB sectors involved), negative feedback (only −FB sectors),
positive super-feedback (only +sFB sectors), negative super-feedback (only −sFB sectors), and
mixed (sectors with different signs).

2.3 Recipe for analysis

The recipe is a simple 3-step instruction and implements an iterative approach to probabilistic
abduction [7, 8]. It is driven by two dominant features: the hypothesis-catching abilities of the
human mind and the guiding method of feedback analysis using the swarm urn model.
Step 1: Initial design of a Markov chain
This is done along two dimensions: the key feature dimension which is mirror symmetric (here:
horizontally) and a mix of other global and local features (here: vertically).

a) Start with the micro-level Markov chain. If micro-states already address the key property,
then arrange these states horizontally, otherwise vertically.

b) If the micro-states do not address the key property, then add feature-states which catch the
macroscopic key property of the observed phenomenon along with the respective feature-
transitions.

c) Possibly add additional states that represent combinations of other global and local features
according to the current hypothesis.

Step 2: Check feedbacks
Analyze pairwise the mutually symmetric feature-transition probabilities. Check whether they
have non-mixed feedback and whether they are time-invariant or at least limited time-variant.
Step 3: Refinement or re-start
Refine your hypothesis if the results are encouraging or re-start the process with step 1. In the
case of refinement, catch a hypothesis that defines additional/alternative states for each pair of
states that belong to the feature-transitions with inhomogeneous feedback. Continue with step 2.

In the following case studies the key feature is left in both cases. In the BEECLUST system
left represents the property of staying at the left half of the arena. In the locust system left
represents the property of moving to the left which is associated with moving counter-clockwise in
the ring-shaped arena. Hence, in the following illustrations of Markov chains the horizontal key
feature dimension represents nicely the mirror symmetry and the left vs. right dichotomy.

3 Results

Before the results are reported some practical aspects of the implementation of the simulation and
the analysis of the data are discussed. An option is to separate the simulator and the analysis
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of the data in a process sequence which then necessitates to store the chronological sequence of
all seen system configurations. This is, however, a large amount of data because SOS are high-
dimensional and many samples are needed to get meaningful data (many gigabytes and samples in
the order of 105 in the case of the presented case studies). However, once this data is available the
complete analysis is quick because the simulator does not need to be re-run for each iteration of the
recipe. A compromise is to do a 2-step dimensionality reduction: first, data from the simulator is
reduced to reduce the amount of data to be stored; second, during the analysis the dimensionality
is further reduced according to the defined Markov chain. The idea of the first dimensionality
reduction is to optimize the tradeoff between reducing the amount of data considerably but at
the same time still allowing for as many ways of later analysis as possible. In the case of the
BEECLUST scenario this is easily done by storing a chronological sequence based on only four
states for each agent: moving at the left/right half, stopped at the left/right half. The subsequent
analysis according to the Markov chain then reassigns these sequences of simple states to the
respective states of the Markov chain. In the case of the locust scenario it is more challenging
to usefully reduce the data because as many graph-theoretic methods of analysis should still be
applicable to the data as possible. That implies, however, that adjacency matrices or lists need to
be saved. For the BEECLUST scenario the 2-step approach was implemented and for the locust
scenario an all-in-one solution was preferred1.

In the following, diagrams of the empirically obtained transition probabilities and positive
feedback probabilities are given. To allow the presentation of two case studies, the discussion is
limited to a qualitative analysis that documents the feasibility of the reported approach. Hence,
an in-depth investigation of statistical significance is out of this paper’s scope. The diagrams show
multiple lines for different time steps to allow for a rough estimation of time-variance in the shown
values.

3.1 Case study 1: BEECLUST

At the microscopic level the BEECLUST scenario is described by a 2-state Markov chain consisting
of state M for moving and state S for being stopped, see Fig. 4a. In a first approach, we start with
the simplest macroscopic Markov chain, that is, we duplicate each micro-state and get four states:
feature-states left and right each with moving and stopped (see Fig. 4b). The resulting transition
probabilities for Mr → Ml are shown in Fig. 5a and indicate a mixed transition. In a second
approach, we refine the above Markov chain by introducing states HS of agents that had stopped
on the respective side but are now moving again and are still on the same side (see Fig. 4c).
Such a state makes use of an agent’s history, increases the memory of the Markov chain, and
introduces elements of a second-order Markov chain but does not change the approach qualitatively.
The resulting transition probabilities for HSr → Ml are shown in Fig. 5c which indicates a
mixed transition and the probabilities are also very time-variant. Also the transition Mr →
Ml is still mixed (Fig. 5d). In a third approach, we further refine the above by introducing
states HSM of agents that had stopped on one side before but are now moving on the other side.
The resulting transition probabilities for HSr → HSrMl are shown in Fig. 5e and indicate positive
super-feedback combined with positive feedback. The probabilities are time-variant but show
positive feedback for all measurements. The resulting transition probabilities for HSlMr → HSl

are shown in Fig. 5f and indicate negative super-feedback which is almost time-invariant. The
transition Mr → Ml is not plotted again because it is similar to that of the second approach
shown in Fig. 5d, hence, it is still mixed. However, the states Ml and Mr are drained over the
course of time (no return from states Sl and Sr, see Fig. 4d) as shown in Fig. 6a which gives the
relative frequency of states (due to symmetry only values for left are shown). For completeness,
Fig. 5b shows the transition probabilities for a control experiment which used up and down as
global feature (upper and lower half of arena) instead of left and right. It shows the data for the
transition Mu →Md. As expected the transition probabilities are independent from the incorrect
key feature.

1source code available online: http://heikohamann.de/saso2013
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Figure 4: BEECLUST scenario, Markov chains for micro- and macro-level, feature-states are left
and right separated by dotted line, micro-transitions (gray), feature-transitions: mixed feedback
(orange), positive feedback (red), and negative feedback (blue).
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Figure 5: BEECLUST scenario, transition and feedback probabilities; k gives fraction of swarm
with key feature (being in left half); arrows indicate direction towards later measurements.
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Figure 6: left, BEECLUST: relative state frequencies over time; right, locusts: histogram of
connected component sizes for transition RR → LR (median of 33 and mean of 27.9 for last
shown time step t = 2000).
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Using the measured transition probabilities the underlying feedback probabilities are calculated
using eq. 6 in the case of standard feedback and with respective conversion using eqs. 7 and 8 in the
case of super-feedback. For the probabilities of the transitions HSr → HSrMl and HSlMr → HSl

this was done. Both of these transitions show super-feedback in which case we have group size G
as a free parameter in eqs. 7 and 8. The appropriate group size is found in a simple procedure.
In the case of super-feedback, one starts with the smallest group size of G = 3 (only odd group
sizes are used to avoid ties). If parts of the resulting feedback probability are negative or above
one (∃k : PsFB(k) < 0 or ∃k : PsFB(k) > 1), this is an indicator for a too small group size.
Accordingly the next bigger group size G + 2 is tested. The procedure is continued until the
minimal group size with ∀k : 0 ≤ PsFB(k) ≤ 1 is found. Still, the appropriate group size is not
unique because also bigger group sizes may give valid probabilities. Hence, the found group size
is only a lower limit. For both of the investigated transitions the determined group size is G = 9
and the feedback probabilities are given in Fig. 5g and h. Whether this result implies directly the
neighborhood sizes of agents in states HS or HSM prior to their transition or possibly rather the
differences between involved group sizes is left for future work but a similar case is investigated in
more depth in the other case study. Also note that deviations for k ≈ 0.5 are expected because
the equations for the feedback probability have singularities at k = 0.5 for all group sizes (e.g.,
see denominator of eq. 6 for G = 1).

The findings of this first application of the analysis recipe as represented by Fig. 5e-h are
interesting because they exclusively focus on individual, moving robots. Without these results
one was tempted to focus the analysis on the duel between competing clusters at the right and
the left half. Instead the above analysis points to the positive feedback generated by individual
robots that are lost to a cluster on one side when they switch sides as moving robots. The
interpretation of the resulting Markov chain is non-trivial but a few direct conclusions can be
drawn. The positive super-feedback in the transitions HSr → HSrMl means that each agent
taking the transition from HSr to HSrMl (i.e., leaving the half of the arena at which its former
cluster is placed) helps to drive the system towards the formation of a majority (either k � 0.5
or k � 0.5) and especially outside the interval k ∈ [0.3, 0.7] this drive is intensive (indicated by
low negative feedback in Fig. 5g). In turn, each agent taking the opposite transition from HSlMr

to HSl (i.e., returning to the half of the arena at which its former cluster is placed) slows down
the progress of the system. With such analyses at hand, SOS might be optimized. For example,
the system can be improved by trying to decrease the number of agents that take negative super-
feedback transitions. The determined group size of G = 9 is relatively high (total number of agents
is 25). Thus agents taking a super-feedback transition contribute much more to the system’s global
dynamics than other agents taking standard feedbacks because the strong bias in the transition
probability corresponds directly to big average changes in the key feature.

3.2 Case study 2: Collective motion in locusts

On the microscopic level the locust scenario is also described by a 2-state Markov chain (‘left’ and
‘right’ referring to counterclockwise and clockwise motion on the ring respectively, see Fig. 7a). In
contrast to the BEECLUST scenario, however, the two states represent already the key feature.
If this Markov chain is used, the transition probabilities for R → L are mixed [21, 22]. The first
hypothesis, that is tested, is based on the concept of the largest connected component (LCC).
The distances between particles and their perception range ∆r define neighborhoods which imply
a graph (particles are vertices and neighborhood determines edges). Connected components are
subsets of vertices that are connected by a single edge directly or by a path consisting of a number
of edges. The rationale is that in those cases when the LCC represents a vast majority of the
swarm, it possibly dominates the collective decision. Hence positive feedback could be based on
whether a particle belongs to the LCC. The size C of the LCC is classified by three states of the
Markov chain in dependence on the population size N : 2N

3 < C (C1), N
3 < C < 2N

3 (C2), and

C < N
3 (C3). The total number of states doubles to 6 because each state exists in two types:

left (L) and right (R). However, only one transition shows pure negative feedback and is almost
time-invariant (transition RC1 → LC1, see Fig. 8a). A second transition possibly also shows
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(b) macro-level, 3rd approach

Figure 7: Locust scenario, Markov chains, mixed feedback (orange), positive feedback (red), neg-
ative feedback (blue)

negative feedback (transition RC2 → LC2, see Fig. 8b), and all remaining 7 feature-transitions
are of mixed feedback (data not shown). We do not discuss statistical significance here because
even if transition RC2 → LC2 is showing statistically significant positive feedback, there is a big
interval k ∈ [0.2, 0.8] with neutral transition probability of 0.5 which limits this hypothesis’ value.
Also other separations of LCC sizes into states have been tested without improvements.

With the second hypothesis we drop the idea that the LCC is important. Instead we focus
only on the connected component to which the respective particle belongs. We distinguish between
components with a majority of particles in state left and components with a majority of particles in
state right. As tie-breaker rule we count ties as components with a majority of state right to avoid
dedicated ‘tied states’. Hence, we get 4 states: particle state left and component majority left (LL),
particle state right and component majority left (RL), similarly LR and RR. We get negative
super-feedback for transition RL→ LL which is also almost time-invariant (see Fig. 8c), positive
super-feedback for transition RR → LR which is more time-variant (see Fig. 8d), and all other
transitions are mixed. We give only data for one mixed transition that is of interest, RR → LL
(see Fig. 8e), because it is close to negative feedback except for the intervals k ∈ [0.2, 0.37]
and k ∈ [0.63, 0.8].

The third hypothesis is a refinement of the former. We add states L<3 and R<3 for components
of size 1 and 2 without considering the majority within these small components (i.e., L and R
give the considered particle’s state). This increases the total number of states to 6. The Markov
chain with all feature-transitions is shown in Fig. 7b. By adding these two extra states, the
above mentioned transition RR → LL has improved and shows arguably negative feedback now
but is still considerably time-variant (see Fig. 8f). Also note the negative super-feedback within
the interval k ∈ [0.42, 0.58]. There are still several mixed transitions but all transitions that
include L<3 or R<3 are infrequent and also transition LR → RL is infrequent (data not shown).
The transitions RL → LL and RR → LR do not change considerably in comparison to those
shown in Fig. 8c and d (data not shown). For two transitions we determine the positive feedback
probability based on eq. 7 and follow the above procedure to determine an appropriate group
size G. The results are shown in Fig. 8g for RL→ LL and h for RR→ LL. Both diagrams show
deviations again due to the singularity at k = 0.5. The determined group size in both cases is G =
31. In order to investigate whether this determined group size has only a theoretical meaning
within the urn model or can be related to microscopic features, the distribution of connected
component sizes is measured. The implementation of the locust model detects particles that
take the transition RR → LR. At that time, the size of the particle’s connected component
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Figure 8: Locust scenario, transition and feedback probabilities; k gives fraction of swarm with
key feature (going left); arrows indicate direction towards later measurements.
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is determined. This data is shown as histogram in Fig. 6b. The different lines give the data
for different times. Early in the simulation there is a peak at C = 8 and when the system has
converged there is a peak at C = 38. For the last shown time step (t = 2000) the mean is 27.9 and
the median is 33. Hence, we can speculate that the above determined group size of G = 31 would
correspond to the average situation. However, note that the connected component is not identical
to the neighborhood of an individual and its local majority decision (eq. 3) because the component
can extend over a bigger distance. A component’s majority may only influence a particle over a
sequence of time steps by bridging longer distances in a series of particle decisions. That way the
majority decision of the urn model with group size G = 31 can be interpreted as a macroscopic
representation that averages microscopic behavior over space and time. Still, the investigation of
group sizes is left for future work.

The findings of this second application of the analysis recipe are of interest because the analysis
of the locust scenario is a difficult scientific problem itself. The found importance of majorities
in connected components of sizes bigger than two reveals that the alignment process in locusts
is not a competition for the dominance of the largest connected component only or for the mere
overall ratio of one of the two directions but a distributed, concurrent competition in and between
all bigger connected components. The importance of three-body processes in this locust model
was reported before [26]. The situations when the majority in a component is counteracted seem
to be of particular importance (positive super-feedback in transition RR → LR). However, also
those moments when the majority in a component switches are relevant, especially for situations
when the swarm is undecided k ≈ 0.5. The negative super-feedback in transition RR → LL for
k ∈ [0.42, 0.58] stabilizes the system at the undecided state. However, leaving that state would
actually be important for the system’s effectivity. Hence, the results for transition RR → LL
raise interesting new questions for future research. For example, it should be tested whether these
switches in the majority of a component rely on spontaneous switches of individuals or maybe on
merging with other components with opposite majorities.

4 Conclusion

In this paper the former swarm urn model [21, 22] is extended to include the concept of super-
feedback which is a feedback that is nonlinear in the current ratio of the considered key feature.
Majority decisions in randomly arranged groups of a certain size are introduced to the swarm
model to include this extended concept of feedback. Using this urn model and Markov chains,
a recipe is reported that gives a guideline on how to define hypotheses and how the Markov
chains should be designed following the detection of feedbacks. The recipe implements Hanson’s
philosophy that scientific discovery is driven by empirical data [9] and can be interpreted as an
incremental abduction process [10]. The iterative analysis process defined by the recipe gives
the researcher, who is analyzing self-organizing decision-making systems, a direct response to
formulated hypotheses. That way it gives new impulses and triggers the creation of new approaches
of how to structure the configuration space appropriately. The structuring is implemented by
defining appropriate states for the Markov chain. The states represent subsets of configuration
space which are characterized by mixtures of local and global properties. Purely microscopic
causes would not have enough explanatory power while focusing on purely macroscopic causes
would lack the links to the micro-level.

The analysis in two case studies has generated non-trivial results. In the case of the BEECLUST
algorithm the results point to the importance of individual agents (e.g., agents that had stopped
but then changed sides) in contrast to basing the analysis on the growth and decay of particu-
lar clusters. In the case of the locust scenario the results point to the importance of changing
majorities in all connected components of size 3 or bigger and to the importance of majorities in
components that are counteracted or reinforced. These findings are the result of an abductive rea-
soning process and hence have the status of unverified hypotheses. The required next step is their
verification to determine whether the found Markov chains truly point to the most explanatory
system configurations.
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In future work this approach will be applied to additional scenarios and a brute-force approach
will be implemented that picks the best hypothesis of how to separate configuration space out of
a pre-defined list of hypotheses. Also a reversion of this method into a constructive guidance for
the design of collective decision-making systems will be investigated.
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