An advisor concept for distributed self-organizing
systems acting in highly connected environments

Philipp Grosselfinger
Department of Computer Science
University of Augsburg,
86135 Augsburg, Germany

Jorg Denzinger
Department of Computer Science
University of Calgary,
Calgary Canada T2N 1N4

Bernhard Bauer
Department of Computer Science
University of Augsburg,
86135 Augsburg, Germany

Email: philipp.grosselfinger@gmail.com Email: denzinge@cpsc.ucalgary.ca Email: bauer @informatik.uni-augsburg.de

Abstract—We present an extension to the concept of an advisor
for distributed self-organizing systems that allows to improve the
efficiency of such systems that act in environments where the
actions of a system component have an influence on the whole
environment or large parts of it. An advisor periodically reviews
the history of the system and identifies recurring tasks that the
system did not perform well. For these tasks it then computes
exception rules for the agents that indicate how to perform these
tasks better. These rules are communicated to the agents when
communication is possible and are from then on used if they are
triggered. To deal with highly connected environments so-called
group exceptions are needed that consist of individual rules for
several agents and that require the agents to signal to the other
agents that in their local view the group rules should be triggered.

We instantiated this group advisor concept to a self-organizing
system for controlling water distribution networks that is based
on digital infochemical coordination. In our experiments, using
the group advisor resulted in improvements in energy use
between 1 and 21 percent, with an average savings of $ 5,000
per day for randomly generated water demand behaviors for the
real network of a small North-American city.

I. INTRODUCTION

Dynamic distributed optimization problems, like controlling
a group of pickup-and-delivery vehicles, controlling the power
plants in a power grid, or controlling the pumps in a water
distribution network or a pipeline, are a very important prob-
lem class in todays world. While until recently these problems
have been mostly dealt with by human controllers, perhaps
with some help by static optimization software (if enough
time was available), in the last few years self-organizing and
self-adapting systems have shown to possess many useful
properties for the solution of these optimization problems.
Among these useful properties are scalability, flexibility and
robustness.

Concepts like Digital Infochemical Coordination (DIC), see
[8], or field-based coordination, see [10], have shown these
properties in a number of applications. Unfortunately, from
the economical perspective, these approaches all have one
big problem, namely the quality of the produced emergent
solutions. While due to the dynamic nature of the problems it
can not be expected that optimal solutions are produced (this
would require the ability to look into the future), the emergent
solutions can be substantially worse than the optimal solutions
([6] reports instances that are 3 to 4 times worse than known

121

very good solutions).

Recently, in [14] the concept of a so-called Efficiency
Improvement Advisor (EIA) was presented to deal with the
inefficiency of basic self-organizing systems. As the term “ad-
visor” suggests, the EIA is not directly part of the basic self-
organizing system and its operations in solving instances of
dynamic optimization problems. Instead, the EIA periodically
collects information from all of the components of the self-
organizing system, the agents, about their history, uses this
information to construct a global history of the system, tries to
detect recurring tasks for the system, determines if the system
solves these tasks efficiently, and if not, devises advice in
the form of exception rules for the agents that is aimed at
improving the efficiency of the system when these recurring
tasks occur in the future. [14] presented one type of exception
rules, that aimed at keeping an agent away from a particular
task, while [15] introduced pro-active exception rules that
forced agents to do a particular task. Both works showed that
the EIA leads to efficiency improvements, if enough of the
tasks in a working period (like a day) are recurring over several
periods.

So far, in all of the applications of the EIA, both the
detection of a recurring task and the performing of a task was
done locally, i.e. a single agent was capable to determine if an
exception rule should be applied and to perform the action(s)
necessary to complete the detected task. Unfortunately, there
arc cnvironments, for example the hydraulic system in a
pipeline, where the actions of an agent do not just influence
the environment locally but globally and where therefore an
exception needs to be triggered based on information from
more than one agent (all agents in the worst case).

In order to deal with this problem of highly connected
environments, in this paper we present an extension to the EIA
concept that we call Group Efficiency Improvement Advisor
(GEIA). The general work cycle of the GEIA is similar to EIA,
but if GEIA detects recurring situation sequences that the basic
self-organizing system does not handle well it creates a group
of exception rules for a group of agents that aim at improving
the behavior of these agents for the situation sequences (or
similar sequences). While each of these exception rules is
for a specific agent, so that the modifications to agents are
mostly similar to EIA, triggering such a rule obviously requires

some kind of compacted global view of the system. In order
to keep the robustness of the basic system, we achieve this
compacted view by having all the agents of such an exception
rule group periodically send a “rule triggered” signal while
the local conditions for the group exception rule are fulfilled.
And if an agent receives these signals from all other agents
(and has its local condition fulfilled), it executes the action
sequence determined by the triggered exception rule instead of
its usual reactive behavior until either the sequence is finished
or at least one agent is not sending the rule triggered signal
anymore.

We instantiated the GEIA concept for the self-organizing
system for controlling water distribution networks (WDNs)
based on DIC presented in [5]. Our experiments with the
resulting system and several different WDNs showed improve-
ments in the energy required to ran the networks under dif-
ferent randomly created demand run behaviors (with recurring
constant demand periods) between 1 and 10 percent. Selected
demand behaviors were even improved by 10 to 21 percent.

II. BASIC DEFINITIONS

In this section, we provide some basic definitions around
agents, multi-agent systems and the kind of dynamic dis-
tributed optimization problems we are interested in. A very
general definition of an agent Ag that we use to structure
the description of our agents is as a 4-tuple Ag = (Sit, Act,
Dat, fag), where Sit is the set of different situations the
agent can perceive, Act is the set of actions the agent can
perform, Dat the set of possible value combinations of the
agent’s internal data areas and fa, : Sit x Dat — Act is
Ag’s decision function, describing how it selects an action
based on its current situation and the current value of its
internal data areas. A multi-agent system (MAS) is a set of
agents A = {Agy, Ago, ..., Ag,} that arc acting in a shared
environment Enw.

The class of problems that we are interested in tries to solve
tasks from a set 7" that are announced in Env during a time
interval T'ime. A sequence ((tai, t1), (tas, t2), ..., (tam,,
tm)), with ta; € T, t; € Time and ¢; < t;41 is called a
run instance where the {; are the times at which the tasks ta;
appear in Enw. Typically, a problem consists of a sequence
of run instances. A sequence of run instances of length k is
then (riq,rio,...,ri;). A solution sol generated by a group
of agents A for a run instance is again a sequence sol = ((ta},
Agi, 1)), (tah, Agh, th), ..., (tal,, Agl,, t',)) where ta) €
{tar, ... tan}, taj # taj for all i # j, Ag; € A, t} <t 4,
and t; € Time.

To determine the efficiency of A in solving a run in-
stance, we associate with each solution sol a quality measure
qual(sol) that, depending on the problem, needs to be either
maximized or minimized. Since usually the agents need to start
fulfilling tasks before all tasks of a run instance are known to
them, it is not possible to guarantee optimality for emergent
solutions.

122

Advisor
Extract Optimize
recurring tasks solution of
Transform from global — recurring Derive
local agent histories history tasks rules from

into global history

optimal solution

Data model
(advisor states, agent knowledge,

Receive environment knowledge, rule sets, Send
local agent intermediate results, ...) derived rules
histories to agents
4 T

- |
| histories rules v

Basic MAS

Fig. 1. Functional architecture of EIA
I11. THE EIA CONCEPT

In this section, we will first present the requirements on a
distributed system in order to be able to use an EIA. Then
we will go through the general working cycle of the EIA and
finally concentrate on how the agents of the basic system need
to be modified to use the advice generated by the EIA.

There are three basic requirements on a distributed self-
organizing system that need to be fulfilled in order for the
EIA to be useful in improving the efficiency of the generated
solutions over time.

1) Every agent is capable to send its local history to the EIA

at least once during or after a run instance is performed.

2) Every agent’s decision function should be extendable to

handle exception rules, and it should be possible to store
these rules in an internal data area of the agent.

3) There must be quite a number of (similar) recurring tasks

in most run instances.

The first two requirements are easy to fulfill, even in systems
where single agents cannot perceive the whole environment.
And in many dynamic distributed optimization problems of
relevance, there are quite a number of tasks that keep recurring.
The general working cycle of the EIA is depicted in
Figure 1. For many of the different steps in the working cycle
there are many possible ways how these steps can be realized.
In the following we will provide a high-level description
of these steps, including the necessary arguments (using the
definitions from the last section) to perform a step and the
results of each of the steps (see also [14]).
receive(Ag;,((s},d},al),....(s¢,d¢,ag))) collects the local his-
tory H; for each agent Ag;, when Ag; is able to communicate,
while A performs a run instance. H; = ((s}, d}, al),...(s?, dg,
a?)), with sﬁ- c Sit;, dﬁ € Dat;, aﬁ € Act;, is the history
of Ag; (described by the situations the agent was in and the
values of its internal data areas) since the sequence of run
instances started (or a sliding window of instances).
transform(/,,...,H,) creates the global history GHist
of the whole system out of the received histories from all
agents. GHist essentially contains the sequence of run in-

stances (r1,....r1x) = ((taiq, tll),...,(tamll, tmll)),...,((talk,
t1)se sty k> Ly k)) A has solved so far and the solution
sol; for each run instance ri; that A created for it (the so-
called emergent solution).

extract(G Hist) extracts from this history, more precisely
the sequence of run instances (rii,...,ri;), a sequence of
recurring tasks (taj®c....ta;™). In order for a task to be
recurring, it, or a task that is similar enough to it according to
an application dependent similarity measure sim, has to occur
in most of the last few run instances A solved. The sequence
of recurring tasks can be empty, in which case the EIA does
nothing more until new data has arrived.

optimize(ta{ec,...,ta;ec) first computes the optimal solu-
thIl Opt'r’ec - ((tagec’ ./4!]/17‘667 t/l’V‘CC)P“’(ta;‘)EC, A.{];)T667 t;)TGC))’
Ag;-’”“ c A, t;’“ € T'ime, assuming that taj®’,...,ta;* were
the only tasks A had to perform and they would be all known at
the beginning of 7“me (which makes this a static optimization
problem). It then compares qual(opt™®) with the quality
qual(last) of the last emergent solution last for the tasks
(ta'®°,....ta;°°) A has created. If qual(last)/qual(opt™°) >
qualthresh, then the work of Aggra is done until new
information arrives, since A performs well. Else

derive(optr“,(taqec,...,ta;“),GH ist,last) creates for each
agent Ag; a set R; of exception rules, where R; can also
be empty. While there are different types of exception rules,
in general each exception rule consists of a condition cond
on the current situation s and the current value d of the
internal data areas of an agent that triggers the execution of
one or several actions or prohibits the agent from executing a
particular action. The exception rules are created by comparing
opt"¢¢ and last and finding the first assignment of task to agent
where the two solutions differ. Then the exception rule targets
either the agent of this assignment in opt"“ and assigns to it
the task from opt™®° or it targets the agent of this assignment
in last and prohibits it from doing the task it does in last.
Usually, cond abstracts the tasks in the situation s and the
contents of d to reflect the similarity measure sim that was
used in extract.

send(Ag;,R;) communicates the set R; of exception rules
to an agent Ag; the next time communication with Ag; is
possible.

For an agent Ag;, its decision function f4,, needs to be
modified in order to allow for using its set R; of exception
rules. Since we might have several rules with their conditions
being fulfilled at a time (and suggesting different actions), we
require the use of a conflict resolution function cr; : 2% —
Act;. If in a situation s an agent Ag; has as current value of
its Dat; d, then Rf’d is the set of all exception rules in R;
with fulfilled conditions. Thus, the modified decision function

JEIA is defined as
FEIA(s,) —{ fag,(s,d), i R =1
gi \Tr7)

cri(Rf’d), else

As with the different actions of EIA, there are many possibil-
ities for defining cr;. For an example, please refer to [15].

123

IV. THE GROUP EIA CONCEPT

The EIA concept presented in the last section is centered
on providing individual agents with rules for which just
the individual agent can decide whether the rule should be
applied. For environments in which performing a task does
not influence much other areas of the environment this is
sufficient to use exception rules to influence the efficiency of
the system. But there are environments and tasks in them that
have an impact on many if not all of the other areas of the
environment than the one in which the task is fulfilled. An
example are pipelines for liquids or gas where tasks usually
are injecting or withdrawing liquid or gas at one point in the
pipeline. This results in a change in pressure in the whole
pipeline or at least all parts that are not shielded by valves
from the part where the task was performed and this change
in pressure also depends on the pressure and flow in all these
parts. Additionally, the same pressure within a pipeline can
be generated by many different setting combinations of the
components of the pipeline, usually at rather different costs.

So, as for example shown in [5], controlling task fullfill-
ment in such highly connected environments is a dynamic
distributed optimization problem and can profit from applying
self-organizing distributed systems. And having a variant of an
advisor for such systems should improve them (in fact, it does,
as can be seen in Section VI). But the advisor concept needs to
be extended to allow for the need to have exception rules that
need to be triggered based on information from more than the
local view a single agent has on the environment and usually
also more than one agent needs to have an exception rule to
improve the handling of a particular task. So, this extension has
to deal with groups of exception rules for groups of agents,
which is why we call it the Group Efficiency Improvement
Advisor (GEIA).

The GEIA goes through the same 6 steps as the EIA, in fact
the first 4 steps (receive, transform, extract and optimize)
are identical with respect to input and output. We only require
for the extract step that the recurring tasks are not interrupted
by non-recurring tasks between them (there might be several
such sequences and each of them will be looked at by its own
application of derive). Naturally, the step derive needs to be
changed in order to create the groups of exception rules and
determine what is needed to trigger an exception rule group.
More precisely, after establishing that opt”“® is substantially
better than the last emergent solution last, opt™*® will serve
as the basis for a group exception rule gr. All agents occuring
in opt”¢¢ together with all agents that are known to influence
these agents' form the group Ay, of agents that get their own
exception rule to form the group exception rule. For an agent
Agt € Agy, its exception rule has the form
condy (s1,du, to); conds(s2, da, t1); ..; condy (sp. dp, tp—1) —

ti:af,tyab, ...ty al

where s; € Sil’, d; € Dal® , and (177 € Act", and the cond;ﬂ

IThe set of agents that influence an agent is, naturally, application depen-
dent. While the smaller this set the better, when in doubt considering all agents
as being able to influence all other agents is always a solution.

are conditions that the current situations s; and values d;
before time ¢; have to fulfill in order for a’ to be executed
at time t;. The times ¢; indicate offsets to the time ¢o, which
should be considered as a variable that is instantiated when
cond? becomes true. So, in its general form, such an exception
rule is, in fact, a sequence of exception rules that tell agent
Ag® how (o behave through the whole sequence of recurring
tasks (if the whole group of agents in Ag. do fulfill their
conditions the whole time). The conditions cond;'- arc derived
from the situations and values of the internal data areas that
Ag® has at the appropriate times in opt”*¢ and usually include
a local similarity measure sim! for this particular agent. This
definition of an exception rule is a generalization of a pro-
active exception rule from [15], where we have a sequence of
conditions and associated actions instead of just one. send is
similar to the EIA, again.

In order to make use of the advice of the GEIA, an agent
Ag' needs to be modified a little bit more than for EIA. Since
an agent needs to inform other agents whenever according to
its local view a particular exception rule should be triggered,
respectively should be continued to be considered triggered,
we need to include sending signals to the actions of such an
agent. Such a signal sig(Ag’, gr,t) needs to provide the iden-
tity Ag? of the agent and the group exception rule gr for which
Ag?’s local conditions are fulfilled at time t. Naturally, several
group exception rules might be triggered at any time and
therefore several signals might have to be sent. If Sig(Ag®)
is the set of all possible signals, then Act’ of Ag® needs to
be modified to Act»GFIA = Act? x 2519(A9") We also need
to add to Dat’ a data area that holds the information that a
particular group exception rule has been triggered and was
selected by the conflict resolution function cr’ to be the rule
that should be used. We just indicate that rule gr is the current
value of that additional data area by ¢riggered(gr). Naturally,
if this data area is empty, then triggered(gr) = false
for every rule gr. In order to avoid confusion within the
whole system about what group exception rules are currently
triggered, cr® has to select the same exception rule in each
agent”.

Due to having to keep track of so many things, the definition
of fGETA contains several cases that we will go through one
by one. In the following, let ¢ be the current time, when FGEt
has to make its decision. Then
TG (s, d) =

(fagi(s.d), Sig(Ag")"), if no exception rule has
been triggered and Sig(Ag')! is the set of
all exception rules gr of Ag' for which
condt (s1,dy,to) = true for s and d.

(fagi(s,d),sig(Ag', gr,to)) and triggered(gr) :
true, if cond:(sy,d1,to) true and
sig(Agt, gr,tg) have been received from
all Ag’ € Ay, Ag’ # Ag' and gr was selected
by crt.

2This might not always be casy, if not all agents are in Aygy for each group
rule gr.

124

(aj,sig(Ag', gr,t1)), if & < t <ty
triggered(gr) = true, sig(Ag’,gr,t;_1) have
been received from all Ag? € A,,, Ag’ # Ag’
and cond’(s;,dy, lj-1) = lrue.

(fagi(s,d),{}) and triggered(gr) = false, else.

Less formally, as long as no group rule has been triggered,
the agent Ag® sends signals for all its exception rules where
the initial condition cond;(s,d;,ty) = true. If for one of
these rules all other agents send their signals that this rules
could be triggered before the time ¢y indicated in this rule,
then the agent considers this particular rule to be triggered
and starts working on the action sequence indicated by the
rule (as, obviously, will do all other agents of the group for
this rule). At the subsequent time steps, the agent checks if
the appropriate condition on its side is fulfilled and that it still
gets signals from all other agents that their local conditions
are fulfilled and if all this is the case, it continues performing
the appropriate actions from the rule. The moment one agent’s
local conditions are not fulfilled anymore, in the next step of
each agent all the necessary conditions are not met anymore
and the agent stops following the action sequence of its rule
(and the rule gets “untriggered”). Naturally, this also means
that in case of an agent “crashing”, the whole system stops
using any group exception rules of which this agent was part of
immediately and switches to the basic self-organizing behavior
if it was currently following a triggered rule.

V. USING GEIA AND DIC FOR CONTROLLING WDN's

In this section, we first briefly present digital infochemical
coordination (DIC), the concept for distributed self-organizing
systems we have used to control water distribution networks
(WDN), which we will present in the second sub-section. After
that, we will present the instantiation of DIC for WDN from
[5] and in the last sub-section we will present our instantiation
of GEIA for this application.

A. Digital infochemical coordination

Digital infochemical coordination (DIC) is a generaliza-
tion of pheromone-based coordination (see [2]) and aims
at providing a framework for the development of emergent
self-organizing systems (see [8] for an in-depth description
of DIC, including a design pattern). The general idea is to
achieve coordination between the agents in A using so-called
digital infochemicals that are propagated through Env. An Ag;
accesses all the infochemicals at its current location and bases
its decisions purely on this local view of the environment.
The DIC model adopts the general principles behind the
communication and coordination by means of chemical stimuli
between organisms in biology. These organisms may be of the
same or from different species. In particular, the DIC model
allows for the combination of multiple infochemicals having
different semantics, dynamics, and functions, which in turn
allows for more efficient self-organizing emergent solutions
and solution processes.

In a system based on the DIC model, an agent of a
certain type reflects a living organism of a certain species,

able to interact indirectly by emitting and perceiving (digital)
infochemicals. A (digital) infochemical ic is defined as

ic = (77,\/15]11”631175767,#/))

v is the current concentration of ic and reflects the dynami-
cally changing concentration of diffusing biological infochem-
icals. y*7esh is the threshold concentration of ic and reflects
the behavioral threshold concentration of living organisms
reacting to a specific infochemical. In other words, /" 5"
determines whether an agent should react to the infochemical
or not. ¢ is the diffusion coefficient of ic and reflects the
chemical diffusion coefficient that allows for a very fine-
tuned propagation radius and evaporation time specific to each
infochemical. ¢ is the emitter of 4c and reflects a biological fact
of an infochemical, namely that it reveals information on its
emitter. Finally, ¢, the “payload”, is individual information
encapsulated by ic and reflects the biological role of an
infochemical as a dynamic information carrier. The content
of 1) depends on the concrete application the system using the
DIC model was designed for.

B. Water distribution networks

Water distribution networks (WDNs), as they are used in
our cities to bring water to both, residential and commercial
customers, on a high level can be considered as a graph (V, F)
of nodes v € V of various types connected by edges e €
FE, also of various types. More precisely, the elements of V'
include junctions ju € Ju, reservoirs re € Re, and tanks
tk € Ta (or water towers). The elements of E are pipes pi €
Pi and we also treat pumps pu € Pu and valves va € Va as
edges.

Operating a WDN is all about providing/maintaining pres-
sure, which is called in water hydraulics head. If the head in
the right places in the WDN is sufficient enough, a sufficient
flow of water towards the demand sites will be present. One
basic way of producing sufficient head in a place in the
network is by using gravity, i.e. having these places sufficiently
elevated compared to the nodes at which a certain flow of
water is leaving the network. The obvious nodes in a network
that should produce sufficient head are the reservoirs Re, since
they are the nodes where water enters the network (in this
work we will assume that each reservoir can produce unlimited
amounts of water). But given that the role of a reservoir in a
WDN is usually played by lakes, rivers, or even wells, having
the reservoirs elevated higher than the nodes the water has
to flow to is usually not an option. This is where tanks and
pumps come in.

A tank tk is placed into a WDN to provide head and to act
as a buffer allowing the WDN to take some time to react to
changes in demand due to the water stored in tk. A tank is
characterized by its elevation in the WDN, by the minimum,
maximum, and current operation water level as well as its
volume-height curve that provides the amount of water stored
in the tank given its current water level. Since tanks do not
provide unlimited amounts of water, it is necessary to get water
from the reservoirs to a tank, which is accomplished using

125

pumps. While in theory using only one pump to connect a tank
with one reservoir is enough (which is why we treat a pump
as an edge in the graph), in reality some kind of redundancy is
required to deal with the need for maintenance and scheduled
repairs/upgrades, but also with unforeseen events like a broken
pipe. As a consequence, a tank usually can be replenished by
several pumps, but often at different costs. These costs are
measured either with regard to wear and tear of equipment as
well as other criteria, or with regard to energy use, which we
will be using as our qual-measure in this paper.

A pump pu injects mechanical energy into a WDN to move
water from lower elevations to nodes with higher elevation,
which are the aforementioned tanks. A pump, as a directed
edge in the graph representing a WDN, creates head at the
“receiving” end of the edge dependent on the flow through the
pump from the reservoir side. This dependency is described by
a so-called pump curve, which is also dependent on the energy
put into the system by the pump (in case of the commonly used
centrifugal pumps this energy depends on the speed of the
rotating impeller of the pump [4]). Modern pumps allow for
different amounts of energy created by the pump, which means
that a pump operator can choose the pump curve he prefers
for the current network conditions (achieving the appropriate
efficiency of the pump), introducing a second way to influence
the energy usage by the WDN (in addition to the choice of
pump). Naturally, the mechanical energy put into the WDN
by a pump does not equal the electrical energy used by the
pump, because of heat loss due to friction.

The influence of a pump and its performance on a par-
ticular WDN is governed by a set of complex equations,
taking into account the network, the characteristics of all
nodes (for example, elevation, demand at junctions, which
are normally used to provide exit points for the water), and
the characteristics of the edges (for example, pump curves,
diameter, or pipe lengths). Furthermore, by opening or closing
valves, the network structure can be changed. Fortunately, the
operation of a WDN does not really require the continuous
solving of this set of equations reacting to changes in demand
and trying to find a solution that requircs minimal energy
(which would require quite some time to compute). A reactive
approach looking at the fill levels of the tanks (and using
operational minimum A,,;, and maximum /.., water levels
for each tank) is usually sufficient to meet the demands by the
customers. Experienced human operators often also are able to
operate the pumps in reaction to the fill levels of the tanks with
a "not so bad” energy consumption. Even designing WDNs
is nowadays not using the set of equations directly, instead
simulators, such as the EPANET toolkit, are used to provide
feedback about what is happening in a WDN.

While the main purpose of a WDN is to fulfill the demands
by the customers at all times, keeping the energy consumption
as low as possible is naturally in the interest of the organization
or company responsible for a particular WDN. Since the cus-
tomer demands are usually not fully predictable, keeping the
energy consumption low is a dynamic distributed optimization
problem that is well suited for being solved by a distributed

self-organizing system.

C. DIC for WDNs

The use of digital infochemicals allows for fine-tuning the
timing of communications and which agents receive informa-
tion, while naturally having not to know all of the agents
within A, hence guaranteeing the flexibility and scalability of
the system. [5] made use of this by developing two control
modes for WDNs based on DIC, namely the greedy mode
(GM) and the coordinated greedy mode (CGM). Since the
experiments in [5] clearly showed that CGM is better than
GM, we will in the following only present CGM and also
extend only this mode by GEIA.

In CGM, the agents in A consist of tank agents Ag;y, for
cach tank tk; in the network, who are constantly monitoring
the head A in their tanks, and pump agents Ag,,, for each
pump pu; € Pu. As already stated, for a tank there are two
limits, the minimum head limit A,,;, and the maximum head
limit /,,4,. Every Agyj, continuously predicts the future head
value of its tank based on the past head values and pressure
fluctuations using linear regression. This way it can detect
that h converges against one of the limits before this limit is
actually reached and if this is detected it sends out a so-called
help infochemical icy,:

- thresh -
1Ch = (’Yhs’yh res 76h7ZdAgu\»7qtk)7

where vy, 7i#¢*" and d), are as before, id_,,, is the unique

id of the emitting tank agent .Agy), and ¢, is the current inflow
of the tank tk.

A help infochemical, as all infochemicals in the system, is
propagated between locations in the environment under the
control of a propagation function. This function reduces the
concentration ~ proportional to the length of the pipe connect-
ing the locations multiplied by the diffusion coefficient J. As
soon as v < 7*"7°s" _{he propagation is stopped. Infochemicals
evaporate following a defined evaporation function: in every
time step, the concentration 7y is reduced depending on the
diffusion coefficient &, again. And, as soon as vy < y‘hresh,
the infochemical will be removed from the environment.

When a help infochemical ic, reaches a pump agent Ag,,
associated with a pump pu; € Pu, this agent needs to figure
out if pu; is able to help with the request by the tank agent.
This means determining the most efficient speed level the
pump’s impeller would have to be set in order to provide the
required help. By taking into account the current head at pu;’s
discharge side, the current flow of the pump g, as well as
the information about the inflow/outflow ¢, included in the
perceived help infochemical emitted by Ag;x, and the given
pump curves, Ag,,, can not only determine il pu; can be set
to a speed level that can produce the additional flow needed
by the requesting tank while maintaining the current head at
the pump’s discharge side, it can also determine the speed
level with the best energy efficiency ef f,., (see [4] for more
details about this computation). Before Agpu] is changing its
impeller settings, it first sends out a so-called job infochemical

126

iCjobI
- (. thresh Y id id ff)
Cjob = Yicjors Vicjo, 2 %icjonr? AGpuj s Agir; > € Jpu,;
where i, 7 %" and d;.,,, are as before, idag,, is the

id of the pump agent, id 44, the id of the tank agent that sent
out the help infochemical Ag,,, could react to and ef fp,; is
the efficiency that can be achieved by pu;. This infochemical
indicates to all other pump agents that might have gotten the
original help infochemical that pu; is able to fulfill the request
at “cost” e f fpu, -

All pump agents wait for a given amount of time to see if
they can perceive job infochemicals by other agents. If this is
the case, they use a comparison function to determine which
agent will in the end react to the initial help infochemical.
For CGM, this comparison function, which is the same for
every pump agent, simply selects the pump with the best
efficiency, if the help infochemical required an increase in
flow, and the pump with the least current efficiency if the help
infochemical indicated that the tank is in danger to reach its
maximal limit. So, the agent that is selected by the comparison
function is aware of the fact that it is selected and will make
the necessary change to its pump, while all the other agents
know that they do not have to do anything. Additionally, the
tank agent with the initial help infochemical will also receive
the job infochemicals and will therefore know that help is
on the way. This tank agent will continue emitting the help
infochemical until it has gotten at least one job infochemical
that references its request.

D. GEIA for DIC for WDNs

As we will see in this section, instantiating the GEIA
concept for a self-organizing system for controlling WDNs
based on DIC is mostly straightforward, although the first
step of the instantiation is changing the set A of agents in
the system to also include agents for junctions. These agents
are necessary to provide information about the whole WDN,
since tank and pump agents have only a very limited view of
the WDN and rather different global situations can look, from
the perspective of tanks and pumps, very similar, so that the
junction information is needed to distinguish these different
situations. As stated above, the quality criterion qual that is
of interest in a WDN is the energy consumption by the pumps
and the goal is to minimize this consumption. In the following,
we will first go through the different steps in the working cycle
of the GEIA and then look at the changes to the different types
ol agents.

The receive action of the GEIA is performed by receiving
so-called history infochemicals from all other agents in regular
intervals. These infochemicals follow the standard pattern
presented in Section V-A, with 1) being a sequence of history
information, with an element for each time step the agent went
through since the last time it sent an history infochemical.
The concrete information in ¢ depends on the type of agent:
a junction agent ju sends only the demand dem;(ju) at
the junction for each time step ¢, a tank agent tk sends its
tank level lev,(tk) and information on when it sent out any

help infochemicals, and a pump agent provides the energy
consumed by its pump for each of the time steps (which allows
to compute qual of the emergent solution) and additionally the
information on all changes of the impeller speed it made.

Given that the GEIA has the information about the histories
of all agents for each time step, it is very easy to implement the
transform action of the GEIA, it essentially just creates a table
Gist with the information from each agent for each time
step. As we will see in the following, it is not even necessary
to partition this table into a sequence of run instances, due to
the continuous nature of the work of the WDN.

The extract step has to produce a sequence of recurring
tasks out of the table GHist. As already mentioned, we are
interested in sequences of tasks that immediately follow each
other, which means that for WDNs a task is the demand to be
fulfilled by the network at a particular time step. We will call
a sequence of immediately following tasks a pattern, which
means that extract has to find a set of recurring patterns
Pre¢. While we could allow such a pattern to be any recurring
waveform in the demands on a WDN, for our proof-of-concept
system we defined a pattern to be a sequence of time steps of
constant demands at the junctions. A pattern is recurring, if it
or a similar pattern with similar tank levels at the beginning
of the pattern occurs at least a given number minocc of times
in GHist (respectively the last & time steps of this history).

The similarity measure simm used to compare patterns
must reflect that an agent in A has to determine locally
that an exception rule should be triggered, respectively
stays triggered. Therefore two patterns 1 and 2 are sim-
ilar if for each junction ju; at each of the time steps
¢ the relative demand difference between the two patterns
(.e. |[dem](ju;) — dem?(ju;)|/dem} (ju;)) is within a de-
mand threshold threshge,, and if for each tank tk; at
each time step ¢ the water level of the second pattern is
within a relative interval around the level of the first pat-
tern (ie. |lev} (thy) — lev? (th;)|/levi (tkj) < threshia—iow
if lev}(tk;) > lev?(tk;) for a threshold threshia—iow
and |lev? (th;) — lev}(th;)|/lev} (th;) < threshia—_pign if
lev} (tk;) < le*{)zz(tk,’j) for a threshold threshyq—pign). Finding
the recurring pattern consists then simply of finding all pattern
with constant demand in GHist of a given minimal length
Nminpat. dividing them into sets of similar patterns and
checking if the size of the sets is greater than minocc.

The step optimize requires a method to determine an
optimal or at least very good solution to a recurring pattern
(as already mentioned, if there are several recurring patterns,
each of them is treated as is described in the following).
While there are several methods proposed to solve the static
control problem of WDNs, nearly all of them come with
limitations that we were not willing to accept. Methods
that, in theory, are able to generate the optimal solution are
usually not able to deal with networks that have more than
one pump, which is naturally not acceptable to us (in fact,
[9] states that in practice optimal methods can not handle
realistic WDNs without simplifications). Nearly all methods
for finding approximate solutions have been tried for WDNs,

127

usually using network simulators like EPANET, see [12], to
evaluate potential solutions. We followed the approach from
[17], which uses particle swarm optimization, modified to
use Goal Ordering Structures (see [11]) to better deal with
solutions that are not valid. Since we only optimize individual
pattern, which realistically are only a few hours long in most
WDNs, this optimizer was sufficient for our system. But
it was not able at all to produce very good solutions for
demand curves that spanned days. The result of optimize,
i.e. opt™©c, is for each pump a sequence of actions with pe-
riods of the form ((pump — speedy , durationy), ..., (pump —
speed,,, duration,)) and naturally the energy consumption
qual(opt™©) that this solution produces. Please note that
despite the fact that we use only constant demand pattern, this
does not mean that the optimal solution consists of a single
period of constant pump impeller speed. Changes to the speed
are possible, although we usually see quite long periods of
constant speed.

If the energy consumption of the solution for a demand
pattern is substantially less than what the self-organizing
system A produced in the past, then the step derive uses
the action sequences for the pumps for this better solution,
together with the demands at each time step and the tank
levels at each step (both demands and tank levels should not
vary much, given that we are only looking at patterns with
constant demand) to create a group exception rule gr. For all
grs, we have Ay, = A. If the pattern has a length of p*, then
the exception rule to gr for a junction agent ju consists only
of a sequence of checks that the current demand dem(ju)
is similar (using the local part of sim as defined for step
extract) to the demand at that step in time in the optimal
solution. Formally, this means

sim(dems (ju), dem(ju));...;sim(demp. (ju), dem(ju)) —.
The exception rule created for a tank agent tk is similar to
this, namely

sim(levy (tk), lev(tk))s...;sim(levy. (tk), lev(tk)) —,
with lev(tk) being the current tank level. Finally, in contrast,
the exception rule to gr for a pump agent is not using
any conditions, it is just the direct translation of the action
sequence for this agent from opt™“® into the rule form from
Section IV, formally
— to + 1 : pump — speeds, duration; : pump — speeds,

durationy + durations : pump — speeds,...,
Zf;ll duration; : pump — speed,,.
Note that p is usually much smaller than px.

send is using an inform excep rule infochemical ic;e, to
inform each of the agents in A about their particular exception
rule as part of a group exception rule gr. In addition to the
usual elements v, 475" and 4, its ¢ part gives the id of the
GEIA agent and the content v consists of the id of the agent
the exception rule is for and, naturally, the exception rule as
defined above.

All agents in A are using their exception rules as described
in Section IV, except that the signals are sent via cond fulfilled
infochemicals ic.y. This infochemical has as content ¢ just
an identifier for the particular group exception rule and the

time at which the infochemical was sent (all other parts of the
infochemical are as before, which includes e providing the id
of the agent sending the signal). Since all agents are involved
in every group exception rule, there can only be one rule that
is triggered by all these agents, so that cr’ of an agent just
selects this rule. Note that no infochemicals are sent out if an
agent does not have signals to communicate.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate a system based on the instan-
tiation of the GEIA concept for DIC for WDNs described
in the last section in several experiments. We first describe
the general setup, including the values for all parameters
and then present some individual experiments that highlight
the potential of the GEIA concept. In the last subsection
we report on results for randomly created network demands,
which should provide a realistic view of the usefulness of
GEIA.

A. Setup

In all of our experiments, a time step is 1 minute. The
minimal length for a pattern 1n,,;,p4; Was set to 3 hours
and we gave the GEIA 48 hours before it became active,
with minocec = 2. The thresholds for the similarity measure
were set (0 threshgem = 95%, threshig—iow = 8%, and
threshig—pign = 9%. The solution opt™¢¢ needed to be 10
percent better than the emergent solution last for the GEIA
to create a group exception rule. On the infochemicals side,
we wanted a quick distribution of the GEIA related messages
and therefore selected for all new infochemicals v = 1.0,
ythresh — (.05, and 6 = 0.94.

We used 3 different WDNs in our experiments. The first one,
manyP is taken from [5] and was artificially created to have
a network with a lot of choice with regard to pumps reacting
to tasks from tanks. More precisely, the network consists of
5 pumps placed near 5 reservoirs, 2 tanks, 11 junctions and
15 pipes. All of these components are at elevation level 0.
Both tanks have an h,,;, of 9 and an h,,,, of 11, but one
tank has a diameter of 30 and the other a diameter of 20. The
pumps have different pump and efficiency curves providing,
as already stated, a lot of possibilities in the network.

The second WDN is also a small network that was presented
in [16] by van Zyl et al. The network has two tanks and two
pump stations, one of which has two pumps and the other
only one. One tank is located 5 meters higher than the other,
which is 70 meters higher than the reservoir. The network also
has 6 junctions and 14 pipes of different length and diameter.
The tanks have otherwise the same properties and both have
an Ay, of 86 and an hyy,4, of 88 (which produces a lot of
tasks for the pumps). The two pumps in the first station are
identical, while the one in the second station has the same
efficiency curve but a different pump curve as the ones in the
first station.

The third WDN is the WDN of the city of Novato in
California. Figure 2 shows the schematic of this WDN. This
WDN comes with the EPANET simulator and supplies water

128

. Junction
r
+—ge Fump
|

*+—= Pipe

Tank

Reservoir

Fig. 2. Novato Municipal Water Distribution Network

Exp. 120h 168h
impr. % kWh | impr. % kWh
1 16.79% | 6.3ES | 10.12% | 4.80E5
2 12.71% | 4.8E5 | 14.65% | 7.60E5
3 13.74% | 4.9E5 | 21.52% | 1.12E6
TABLE I

HIGHLIGHTS OF COMPARISON WITHOUT AND WITH GEIA (DIFFERENCE
IN PERCENT AND ACCUMULATED ENERGY IN KWH) IN NOVATO WDN

for approximately 50,000 people. In the WDN there are 2
pumps, 3 tanks, 2 reservoirs, 92 junctions and 117 pipes. Pump
information can be found in [5]. The 3 tanks are different and
all have a larger span between h,;, and hy,q, than in the
first two examples. As can be expected for a city, the pipes
are rather different in diameter and length.

To give an impression about the optimizer we used, it
on average needed 32.6 seconds to create a solution for a
pattern for manyP, 88.6 seconds for the Novato network and
354.8 seconds for the vanzyl network. This means that a good
solution is easily found within the time of a run instance
(which naturally is not a requirement for the approach, but
allows for providing fast advice).

B. Selected good examples

In this section, we provide a few examples that show the
potential of the GEIA concept. We created these examples out
of some good runs from the experiments in the next subsection,
but we modified the demands at some junctions for some time
steps (usually after agents just had finished following a group
exception rule) so that bad transitions back to the reactive
behavior were avoided (see the analysis in the next subsection).

As Table I shows, double digit percental improvements are
possible, although, as example 1 shows, the improvements are
not steady. But example 3 shows that this goes both directions.
To get a better idea what the percentages and the kWh really
mean, the improvement of 1.12E6 kWh over 168h at a kWh
price of $ 0.07399 (which was the household energy price for
a kWh in Calgary at the end of November 2012) amounts to

energy in kWh
5,0E+06 - &y
without GEIA e
A0E+06 1| ____with GEIA -
e GEIA reaction L
3,0E+06 -
_”-
To-"
2,0E+06 - P
I-' i
1,0E+06 - o
-
p
-~ tinh
0,0E+00 +~ T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180

Fig. 3. Accumulated Pump Energies usage for example 3 of Table I

approximately $ 11,800 per day (which includes the 2 days of
“learning” the patterns). The total cost per day for this example
for the system without advisor is around $ 55,000.

Figure 3 shows a comparison of the accumulated energy
consumption between the basic self-organizing system and
the system with GEIA. As can be seen, after the first 48h,
in which there is naturally no difference, often when the
system with GEIA shows a reaction to a group exception rule,
which usually results in very little energy consumption (the
bar indicating this usually covers the raise in consumption),
we see rather large consumption by the basic system (see, for
example, 90h or 145h). Obviously, this is exactly what GEIA
is about!

C. Randomly created examples

In order to get an idea about the average behavior of
the GEIA, we performed experiments with all three WDNs
with (mostly) randomly created demands. They were “mostly”
randomly created, since obviously GEIA will not produce any
group exception rules, if there are not recurring patterns in
the demand. In order to make sure that we had at least one
often enough occuring pattern, we created an experiment for
a WDN in the following way: we first created randomly a
constant demand bechavior for the network of length of 3
hours. We then created a random demand behavior of 48
hours around 6 occurrences of this constant demand behavior,
respectively similar constant demands with regard to sim (for
all junctions). We also created then random continuations
of this behavior for an additional 72 hours (with another 6
occurrences of the recurring constant behavior, respectively
similar constant behaviors, in it) and for another 48 hours
(again, with 6 occurrences of the recurring pattern or similar
patterns in it). This provides us with two measuring points,
namely after 120 hours (48 hours of “training” followed by 72
hours of application of group exception rules) and after 168
hours (a continuation of an additional 48 hours of applying
group exception rules).

For each network we created 3 different initial constant
demand patterns and for each pattern we used the above
construction of a random demand 3 times to get 3 different
runs that form an experiment. Table II reports on the average
improvement (in percent) between the system without using

Network | Exp. 120h 168h
avg. % | kWh | avg. % | kWh
1 2.93% | 4.90E1l 3.73% | 1.30E2
manyP 2 4.99% | 1.06E2 3.37% | 1.04E2
3 0.67% | 1.20El 1.87% | 5.40ElL
1 4.54% | S5.10ES 9.74% | 1.52E6
Novato 2 8.00% | 8.50E5 | 10.02% | 1.50E6
3 3.60% | 3.70ES 8.29% | 1.26E6
1 3.53% | 1.60E5 5.15% | 3.30E5
vanzyl 2 4.10% | 1.90ES 2.81% | 1.90ES
3 4.24% | 2.20ES 5.16% | 3.90ES

TABLE II

COMPARISON WITHOUT AND WITH GEIA (AVG. PERCENTAGE OF
IMPROVEMENT AND ACCUMULATED ENERGY IN KWH)

GEIA and with using GEIA and we also provide the amount
of energy (in kWh) that the system with GEIA saved (accumu-
lated over the 3 runs of an experiment) for the two measuring
points. First of all, each of the experiments resulted in an
improvement due to GEIA and if we look at the improvement
percentages, then the more complex the network the higher is
the improvement percentage. While the average improvement
percentage from 120h to 168h is not always getting larger
(manyP experiment 2 and vanzyl experiment 2 see a decrease),
only manyP experiment 2 saw a slight decrease in the saved
energy from 120h to 168h, indicating that it is possible that
there are periods in the experiments where the system without
GEIA can be better than the system using GEIA.

But this has to be expected because of the non-recurring
demand tasks that have to be fulfilled after the system has
finished executing a group exception rule. If these demand
tasks are substantially higher than the demand of the exception
rule, this can result in the need to use the pumps at high
cost levels to fulfill this demand, while the system without
GEIA might have brought the tank levels higher during the
rule period than the system without GEIA, so that it then
is less costly to react to these high demands. And it is also
possible that the demand leading up to the triggering of a group
exception rule puts the basic system in a situation where its
behavior is not so bad.

energy in kWh
5,0E+06 -
/
20£406 without GEIA il
’ - —=-with GEIA ’_-"
mmn GEIA reaction ’,"
3,0E406 - -
—
-”
2,0E+06 | L
7
-‘.
I-'
1,0E+06 - -
l"
~ tinh
0,0E+00 —+= T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180

Fig. 4. Accumulated Pump Energies for worst Navato run

Similar to the last subsection, we want to give a monetary
interpretation of what the GEIA achieves. If we take the
accumulated kWh that the system with GEIA spends less than

the basic system over all the runs for Novato (using the same
kWh price) and divide it by the number of days of all these
runs (which then includes 9 2-day spans for learning), we get
an average of around $ 5,000 spent less per day due to GEIA.
While this is naturally substantially less than the maximum
gain from the last subsection, it is still quite a lot!

Figure 4 shows the accumulated energy consumption for the
worst of the Novato runs we observed. As can be seen, initially
the system with GEIA has problems getting group exception
rules triggered, resulting in no gains. The first triggering at
around hour 102 demonstrates the high energy consumption
after the reaction to a rule is over, as we mentioned above
(we see a similar behavior at the end), but then in later rule
applications we see the largely higher energy use by the basic
reactive system.

VII. RELATED WORK

While there are several works in the literature that have
an agent influence the agents of a distributed self-organizing
system, all of these works have this agent taking direct control
of the self-organizing system, thus introducing all of the
problems associated with a central control (like being a single
point of failure). For example, the observer/controller approach
of [3] requires the ability to observe and control the underlying
system at all times. Management-by-exception, presented in
[13] has such a control agent only taking over the system
if certain performance conditions are not met. [1] presents a
model-based control framework that uses limited lookahead
control to optimize the predicted behavior of the underlying
system for a limited horizon. The prediction is based on a
fixed stochastic model and does not take the actual history of
the system into account. In contrast to all these approaches,
the advisor never is in control of any of the agents in the
self-organizing system it advises, it only provides the agents
with an analysis of their past and the ability to change their
behavior if it was not efficient.

Due to the highly connectedness of the environment in a
WDN, there have been no approaches to use distributed self-
organizing systems for their control, with the exception of [5]
which we used as basis for our work. In fact, we are not aware
of any work that tries to deal with the dynamic nature of this
optimization problem. There are quite a number of works,
however, that try to solve the static optimization problem, but,
as already stated, all of these works put limitations on the
networks they were considering. Therefore we were not able
to use any of them to create optimal solutions for the examples
in the experiments from the last section. Even [16] did not
provide such a solution for any demand behaviors for their
network.

VIII. CONCLUSION AND FUTURE WORK

We presented an extension of the advisor concept from
[14] and [15] to allow to deal with distributed self-organizing
systems that act in highly connected environments. Our ex-
tension uses pro-active group exception rules that require a
group of agents to signal each other their applicability during

130

their use. We instantiated this concept to a system controlling
water distribution networks. Our experiments showed both
a high improvement potential and solid improvements when
faced with randomly created demand behaviors (build around
recurring constant demands, which is a requirement for using
any kind of advisor).

Since our experiments also showed the potential danger of
bad transitions from using rules to using reactive behavior,
which was expected given that [6] reported possible exploits of
the EIA concept, especially for pro-active advice, future work
should look into trying to extend the concept of a risk-aware
advisor from [7] to highly connected environments. Naturally,
applying the GEIA concept to other such environments, like
power grids, is also on our to-do list.

REFERENCES

[1] S. Abdelwahed and N. Kandasamy, “A control-based approach to au-
tonomic performance management in computing systems”, in S. Hariri,
M. Parashar (eds.), Autonomic Computing, CRC Press, 2006, pp. 149—
167.

S. Briickner, Return from the Ant - Synthetic Ecosystems for Manufac-
turing Control, PhD thesis, Humboldt-Universitéit Berlin, 2000.

J. Branke, M. Mnif, C. Miiller-Schloer, H. Prothmann, U. Richter,
F. Rochner, and H. Schmeck, “Organic computing - addressing complex-
ity by controlled self-organization”, in Proc. 2nd ISOLA, 1EEE. 2006,
pp- 185-191.

P. Cooper and G. Tchobanoglous, “Performance of Centrifugal Pumps”,
in Pumpin Station Design, 3rd ed., Elsevier, 2008.

F. Détsch, J. Denzinger, H. Kasinger, and B. Bauer, “Decentralized real-
time control of water distribution networks using self-organizing multi-
agent systems”, in Proc. SASO’10, Budapest., 2010, pp. 223-232.

J. Hudson, J. Denzinger, H. Kasinger, and B. Bauer, “Efficiency Testing
of Self-adapting Systems by Learning of Event Sequences”, in Proc.
ADAPTIVE’10, Lisbon, 2010, pp. 200-205.

J. Hudson, J. Denzinger, H. Kasinger, and B. Bauer, “Dependable Risk-
Aware Efficiency Improvement for Self-Organizing Emergent Systems”,
in Proc. SASO 2011, Ann Arbor, 2011, pp. 11-20.

H. Kasinger, B. Bauer, and J. Denzinger, “Design Pattern for Self-
Organizing Emergent Systems Based on Digital Infochemicals”, in Proc.
EASe’09, San Francisco, 2009, pp. 45-55.

M. Lopez-Ibanez, T. Devi Prasad, and B. Paechter, “Ant colony opti-
mization for optimal control of pumps in water distribution networks”,
Journal of Water Resources Planning and Management, 134(4):337-346,
2008.

M. Mamei and F. Zambonelli, “Field-Based Coordination for Pervasive
Multiagent Systems”, Springer, 2006.

T. E. Mora, A. B. Sesay, J. Denzinger, H. Golshan, G Poissant, and
C. Konecnik, “Fuel optimization using biologically-inspired computa-
tional models”, in Proc 7th International Pipeline Conference, Calgary,
2008. pp. 167-173.

L. A. Rossman, “Epanet users manual”’, EPA-Environmental Protection
Agency, 1994.

R. Schumann, A. D. Lattner, and I. J. Timm, “Management-by-exception
- a modern approach to managing self-organizing systems”, Communi-
cations of STWN 4:168-172, 2008.

J.-P. Steghofer, J. Denzinger, H. Kasinger, and B. Bauer, “Improving
the Efficiency of Self-Organizing Emergent Systems by an Advisor”, in
Proc. EASe’10, Oxford, 2010, pp. 63-72.

T. Steiner, J. Denzinger, H. Kasinger, and B. Bauer, “Pro-active Advice
to Improve the Efficiency of Self-Organizing Emergent System”, in Proc.
EASe’l1, Las Vegas, 2011, pp. 97-106.

J. E. van Zyl, D. A. Savic, and G. A. Walters, “Operational optimization
of water distribution systems using a hybrid genetic algorithm”. Journal
of Water Resources Planning and Management, 130(2):160-170, 2004.
C. Wegley. M. Eusu, and K. Lansey, “Determining pump operations
using particle swarm optimization”, In Water Resources 2000, ASCE,
2000. pp. 206-212.

[2]
131

[4]
[5]

[6

—

[71

[8]

9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

