
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre d'actes 2015                                     Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of 

the published version may differ .

Towards a spatial language for run-time assessments in self-organizing 

systems

De Angelis, Francesco; Di Marzo Serugendo, Giovanna

How to cite

DE ANGELIS, Francesco, DI MARZO SERUGENDO, Giovanna. Towards a spatial language for run-

time assessments in self-organizing systems. In: Ninth IEEE International Conference on Self-Adaptive 

and Self-Organizing Systems. Cambridge (USA). [s.l.] : [s.n.], 2015.

This publication URL: https://archive-ouverte.unige.ch//unige:74949

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:74949


Towards a spatial language for run-time assessments
in self-organizing systems

Francesco Luca De Angelis
Institute of Services Science

University of Geneva
Carouge 1227 GE, Switzerland

Email: francesco.deangelis@unige.ch

Giovanna Di Marzo Serugendo
Institute of Services Science

University of Geneva
Carouge 1227 GE, Switzerland

Email: giovanna.dimarzo@unige.ch

Abstract—In this paper we define a spatial language used
to verify global properties of self-organizing systems at run-
time. The language can be used to assess spatial properties of
system components to check desired global properties of the
system against emergent global behaviors arising from local
interactions among components. The spatial language extends a
logic- chemical- based coordination model that we have recently
proposed and the verification of spatial properties is performed
in a distributed manner among the nodes of the system.

I. INTRODUCTION

Formal assessment of emergent global behaviors and prop-
erties in self-organizing systems represents an hard task to
achieve and an important issue to tackle to make them usable in
several realistic scenarios. The engineering of self-organizing
systems is hardly influenced by the selection of the coordina-
tion model to adopt, which usually directly affects the choice
of the middlewares and platforms used in the development
stages. This means that the verification technique adopted to
assess the emergent global behaviors of the final system has
to cope with the features of the selected coordination model.
To tackle this problem we have recently proposed a chemical-
based coordination model [1] based on the concept of Logic
Fragments, which supports the three following properties.
� Injection of ad-hoc chemical laws on-the-fly: Logic Frag-
ments combinate logic programs to define ad-hoc coordination
laws that can be injected on-the-fly at run-time.
� Design-time assessment: by resorting to its logic formaliza-
tion, the interactions enforced by a Logic Fragment, producing
a new emergent global behavior in the system, can be then
formally verified at design time.
� Run-time assessment of local properties: Given that
Logic Fragments allow for the injection of ad-hoc chemical
laws at run-time, they can be also used to reason about the
state of system components. In several typologies of self-
organizing systems sometimes it is also important to verify
the current global state of the system at run-time: this happens
for example when some components of the system have to
perform collaborative actions unplanned at design-time or
when a formal certification of a spatial pattern is required;
in all these cases, to be implemented such tasks require some
knowledge about the states of the other entities of the system.

In this paper we extend the Logic Fragment coordination
model with the definition of a spatial language exploited to
convey properties to be verified. This is done by defining a
logic language for assessing local and global properties of the

system and resorting to the logic inference processes endorsed
by Logic Fragments.

II. RELATED WORK

Query dissemination is a widely addressed problem in
the sensor networks literature. The novelty of our approach
is represented by the type of query disseminated over the
network; in our model a query is a combination of logic
programs and spatial statements: the former are active elements
used to deduct information about the local states of nodes, the
latter are logic formulae expressing global properties through
relations of local ones, which are evaluated distributively.
Consequently, the evaluation of logic sub-formulae can be
implemented by resorting to the most effective dissemination
algorithm presented in the sensor networks literature.

In this work we extend the Logic Fragment coordination
model (Fig.1(a)), composed of the following components.

• Live Semantic Annotations (LSAs): active tuples encap-
sulating information under the form of chemical solutions
and grouped in two categories: (i) LSAs containing passive
data and (ii) LSAs containing Logic Fragments.
• LSA Space: container of LSAs shared among all the agents

of the same node. Within the LSA space, LSAs can interact
among each others because of the presence of Eco-Laws.
• Eco-Laws: active components realizing chemical reactions,

respectively for the evaluation of Logic Fragments and for
diffusing, aggregating LSAs and for reducing information
relevance over time.
• Agents: intermediary entities between the LSA Space and

external applications (e.g. sensors, services). Every agent is
associated with one LSA and it is invoked to implement
specific actions when interactions among LSAs are fired.

Logic Fragments are combinations of logic programs and user-
defined functions named generators used to infer new LSAs
through the following logical process (Fig.1(b)):

• A subset of LSAs is converted into facts for logic programs
by using generators.
• Facts are passed to logic programs and a logical inference

procedure is executed.
• The inferred literals can be combined with the ones gener-

ated by other fragments by using Logic Fragment operators.
• The final inferred literals are then injected in the container

under the form of LSAs.



LSA tuple space

Service

Agent

Application

Agent

LSA

Logic Fragment
LSA

LSA

Eco-laws

Logic AggregateDiffusion Decay

(a) Logic Fragment coordi-
nation model.

LOGIC
 PROGRAMFACTS

LOGIC FRAGMENT 
OPERATORS

INFERENCE
 PROCEDURE

Application

Agent

LSA tuple
space

LSA

LSALSA

Logic 
Fragment

LSA
GENERATOR

LSA

Logic
Eco-law

(b) Evaluation of Logic Fragments.

Fig. 1

III. SPATIAL LANGUAGE

Logic Fragments can be used to assess global behaviors of
the system at run-time; the spatial language we propose resorts
to them to automatize the reasoning process about topological
system properties. The language we define is composed of
spatial statements of the form SS = (LF, SF ), where LF
is a Logic Fragment evaluated on the specific node executing
SS and SF is a spatial formula of the same form of SS.
The semantical meaning of a spatial statement is recursively
defined by the semantical meaning of its SF component.
The main predicate in spatial formulae is the dot “.”, which
verifies whether a literal is inferred in a Logic Fragment. For
example the spatial statement SS = (LF,Color(red).LF )
is evaluated as true in a node N if and only if the literal
Color(red) has been inferred by the evaluation of the Logic
Fragment LF on the node executing SS. A spatial formula SF
can also contain inner spatial statements recursively composed
with spatial operators, which distribute the evaluation of inner
spatial statements as follows:

• ∀neighs(SS): true if and only if the spatial statement SS
is true in all the neighbors of N .

• ∃neigh(SS): true if and only if the spatial statement SS is
true at least in one neighbor of N .

• ∀nodes(SS): true if and only if the spatial statement SS is
true in all nodes of the network.

• ∃node(SS): true if and only if the spatial statement SS is
true at least in one node of the network.

• ∃kpath(SS): true if and only if the spatial statement SS is
true at least for all the nodes in a path of length k starting
from N .

• ∀kpaths(SS): true if and only if the spatial statement SS
is true in all the nodes of all the paths of length k starting
from N .

Spatial operators involve the execution of the SS component
on the nodes that they identify; they are evaluated as follows:

• Given a spatial statement SS = (LF, SF ) created in a
node N , LF is first evaluated on node by using the Logic
Eco-Law. Then SF is evaluated; literals produced by the
execution on LF can be used as parameters for SF .

• If SF contains only (eventually negated) formulae with “.”
predicates connected with logical operators {∧,∨,⇒} then
SF is directly evaluated on N . The logic language involved
in this step depends on the desired type of reasoning: for
example particular distributed systems may need to manage
partial and inconsistent information that usually arises self-
organizing scenarios. This mean that spatial formulae can
be evaluated by using logics ranging from the two-valued
classical one up to multi-valued paraconsistent logics [2].

• If SF contains a spatial operator (e.g. ∀paths) then the eval-
uation launches a distributed algorithm for evaluating the
inner statement of the formula on to the nodes involved by
the operator. The distributed algorithm used for evaluating
the inner statement depends on the spatial operator and it
involves the creation of flats or hierarchical structures (e.g.
spanning trees) among the nodes of the network.
• When a statement SS is finally evaluated, the result is

passed backwards either to the agent that injected the query
or to the node that distributed the evaluation of SS (if
SS is the inner part of a more complex spatial statement
being evaluated). This step continues the evaluation of the
remaining components of the spatial formula connected with
logical operators {∧,∨,⇒}.

A. Example

We imagine a network where node properties are rep-
resented by colors: we want to verify if all red nodes in
the networks have at least one blue or green neighbor. This
property is verified through the spatial statement in Eq. 1.
The involved Logic Fragments are LF = ∅ (which produces
no inferred literals) and LF = lc, which infers literals of
the form Color(X), where X is the color associated with
the node executing it. Fig. 2 depicts the evolution of the
computation of the spatial statement, which starting from node
A and according to the involved spatial operators, distributes
the evaluation of the inner spatial statements at first on node
B and later on C and D (black arrows). In the final stage,
the boolean values of the inner spatial formulae are combined
bottom-up from C and D, aggregating values on B to produce
the final value (T ) on node A (red and green arrows).

SS ,

(
∅, ∀

neighs

(
lc,

fb︷ ︸︸ ︷
Col(Red).lc︸ ︷︷ ︸

fc

⇒ ∃
neigh

(lc,

fe︷ ︸︸ ︷
Col(Green).lc∨

ff︷ ︸︸ ︷
Col(Blu).lc

︸ ︷︷ ︸
fd

)

︸ ︷︷ ︸
fa

)
(1)

A

B

C D

A

B

C D

A

B

C D

fe _ ff fe _ ff fe _ ff = Tfe _ ff = F

;

lc lc

lc lc

lclc

; fa = 8
neigs

fb = Tfa = 8
neigs

fb

fb = (fc ) 9
neigs

fe _ ff ) = Tfb = (fc ) 9
neigs

fe _ ff )

Fig. 2: Evaluation of the spatial statement in Eq.1.
IV. CONCLUSION AND FUTURE WORK

In this paper we have defined a spatial language used
to verify properties of distributed systems at run-time. The
spatial language is based on the concept of Logic Fragments
- combinations of logic programs, used to inject and assess
ad-hoc chemical laws in a chemical-based coordination model
for self-organizing systems. In future work we will focus on
the distributed algorithms for verifying spatial statements at
run-time in networks with mobile nodes.

REFERENCES

[1] F. L. De Angelis and G. Di Marzo Serugendo, “Logic Fragments:
a coordination model based on logic inference,” ser. 17th IFIP WG
6.1 International Conference, COORDINATION 2015, Held as Part of
the 10th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2015, vol. 90372015. Springer.

[2] A. Vitria, J. Maluszynski, and A. Szalas, “Modeling and reasoning with
paraconsistent rough sets.” Fundam. Inform., vol. 97, no. 4, pp. 405–438,
2009.


