
25 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Self-Adaptation to Device Distribution Changes

Publisher:

Published version:

DOI:10.1109/SASO.2016.12

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Institute of Electrical and Electronics Engineers Inc.

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1633356 since 2017-05-12T17:20:45Z

This is the author's version of the contribution published as:

Jacob Beal, Mirko Viroli, Danilo Pianini, Ferruccio Damiani. Self‐Adaptation to Device Distribution Changes.
2016 IEEE 10th International Conference on Self‐Adaptive and Self‐Organizing Systems (SASO), Augsburg,
2016, pp. 60‐69.

DOI: 10.1109/SASO.2016.12

The publisher's version is available at:

http://ieeexplore.ieee.org/document/7774387/

When citing, please refer to the published version.

The final publication is available at

http://ieeexplore.ieee.org

Self-adaptation to Device Distribution Changes
Jacob Beal⇤, Mirko Viroli†, Danilo Pianini†, and Ferruccio Damiani‡

⇤Raytheon BBN Technologies, USA; Email: jakebeal@bbn.com
†Università di Bologna, Italy; Email: {mirko.viroli,danilo.pianini}@unibo.it

‡Università di Torino, Italy Email: damiani@di.unito.it

Abstract—A key problem when coordinating the behaviour
of devices in situated networks (e.g., pervasive computing,
smart cities, Internet of Things, wireless sensor networks) is
adaptation to changes impacting network topology, density,
and heterogeneity. Computational goals for such systems
are often expressed in terms of geometric properties of the
continuous environment in which the devices are situated, and
the results of resilient computations should depend primarily
on that continuous environment, rather than the particulars
of how devices happen to be distributed through it. In this
paper, we identify a new property of distributed algorithms,
eventual consistency, which guarantees that computation self-
stabilizes to a final state that approximates a predictable limit
as the density and speed of devices increases. We then identify
a large class of programs that are eventually consistent,
building on prior results on the field calculus computational
model [1], [2] to identify a class of self-stabilizing programs.
Finally, we confirm through simulation of pervasive network
scenarios that eventually consistent programs from this class
can provide resilient behavior where programs that are only
self-stabilizing fail badly.

I. INTRODUCTION

A number of research and development thrusts, includ-
ing pervasive computing, smart cities, and the “Internet
of Things,” all aim toward an environment increasingly
densely saturated with pervasive and interconnected de-
vices. This new sort of situated network poses new en-
gineering challenges, particularly in the area of distributed
coordination: many interactions need to be opportunistic,
context-dependent, and based on physical proximity, and
their large scale implies they must be adaptive and resilient
to nearly continual faults and changes in the network.
Situated networks are also highly heterogeneous in distribu-
tion, due to the underlying heterogeneity in human activity
and environmental structure that drives the deployment of
network devices. For example, a city center is likely to host
a high density of cars, traffic sensors, and smart signage,
while a country road has very few by comparison. Likewise,
an office plaza may host many devices by day, few at night,
and massive numbers during sporting events or festivals.

Developing applications for such environments can be
extremely difficult, as conventional development methods
require that a programmer simultaneously address network-
ing protocols, coordination mechanisms, and the application
itself. This tends to lead to fragile applications, particularly
due to the difficulty of adequate testing for resilience.

Aggregate programming [1] simplifies the problem by
factoring distributed systems development into several lay-
ers: field calculus maps between aggregate-level computa-

tions and local interactions between individual devices to
implement those computations [3], [4], systems of com-
posable “building block” operators implemented in field
calculus provide resilience and scalability guarantees [5],
[2], and domain-general and domain-specific APIs built
using building block operators provide a programatic in-
terface for construction of complex networked services and
applications [5], [2].

Here we focus on resilience and adaptation guarantees
in the “building block” layer: prior work has established
self-stabilizing programs, but results of those programs may
depend sensitively on details of how devices are distributed
in space and time. We thus introduce a new and stronger
property, eventual consistency, which guarantees that a
computation not only self-stabilizes, but also that its values
are a good approximation of executing a computation on the
continuous environment in which the network is situated,
thereby effectively giving a notion of “independence” of
computation from the underlying network details.

Following a brief review of related work in Section II,
we provide a formal model of continuum computation
and use this to define eventual consistency in Section III.
Section IV identifies a subset of the self-stabilizing calculus
presented in [2] that also provides eventual consistency.
Finally, Section V demonstrates the breadth of this sub-
language and empirically confirms the value of eventual
consistency in simulation of pervasive network scenarios,
and Section VI summarizes the contributions of this paper
and discusses future work.

II. RELATED WORK

A wide range of aggregate programming methods have
been developed for engineering situated networks. A thor-
ough review may be found in [6], which identifies four
main approaches to aggregate programming: simplifying
the interface for programming individual devices and their
interactions (e.g., TOTA [7], MELD [8], �⌧ -Linda [9]), cre-
ation of geometric and topological patterns (e.g., Origami
Shape Language [10], Growing Point Language [11], or
Yamins’ universal patterns [12]) summarizing and stream-
ing information over regions of space and time (e.g.,
TinyDB [13], Regiment [14]), and general purpose space-
time computing models (e.g., MGS [15], StarLisp [16],
field calculus [3]). The general purpose models, and in
particular field calculus [3], [4] have been the basis for
a layered approach to building distributed adaptive systems
as presented in our previous work [1], [2].

More generally, identifying robust (e.g., self-adapting
or self-stabilizing) algorithms for distributed systems is
a long investigated problem [17] which is part of the
general challenge of devising sound techniques for engi-
neering self-organising applications. To the best of our
knowledge, however, the only works aiming at a proof
of self-stabilization for an entire class of computational
field algorithms are [18] and [2]. In particular, these works
consider deterministic self-stabilization, in which the sys-
tem eventually reaches a stable state completely determined
by the environment (network topology and sensor values),
whenever the environment does not change for sufficient
amount of time. As argued in [19], there is expected to be
a whole catalogue of self-organization patterns susceptible
to similar approaches. These prior works have a large
range of expressiveness, but are unable to tie the properties
they investigate to a continuous environment or to consider
similarity between networks with different topologies, more
challenging properties that eventual consistency addresses.

III. EVENTUAL CONSISTENCY

Self-stabilization is a well-established theoretical prop-
erty of distributed algorithms [17]: under the standard
definition, a system self-stabilizes if it is guaranteed to
converge from any arbitrary initial state to some state with
a defined set of “correct” properties. We now introduce
a new property, eventual consistency, that goes one step
further tying state to the space in which the network is
situated: intuitively, a system is eventually consistent if the
state it converges to is set by the continuous environment
rather that the particulars of how devices are distributed
through that environment. This model fits well with situated
networks, since many computations are more concerned
with the environment in which devices are situated rather
than the particulars of individual devices, and can hence
be naturally described in geometric terms, e.g., distances,
regions, information flow.

We will develop this concept in three stages: first, we
review how situated networks can be viewed as an approx-
imation of a continuous environment, per [20], [21], which
then forms a basis for both discrete and continuous models
of space-time computation, per [22], [23]. We then use
these concepts to define eventual consistency and examine
how this definition implies resilience to perturbation in the
density and arrangement of devices in a situated network.

A. Networks as Approximations of a Continuum
Many physically situated networks perform computations

that can be naturally described in terms of the physical
space through which the devices comprising the network
are distributed. In this case, as observed in [20] and [21], a
network can be viewed as a discrete approximation of the
continuous physical space and programmed accordingly.1

1Note that there are a number of other continuum computation models
that might be considered as well, including hybrid automata [24] and
continuous spatial automata [25], but we have preferred the model that
directly inspired field calculus and thus maps most directly onto it.

Fig. 1. Example of a situated network in a street environment; the
walkable spaces of the street form a manifold.

Under the continuous model developed in those papers,
computation takes place on a Riemannian manifold M with
both space and time dimensions. A manifold is a space that
is locally Euclidean, but may have more complex structure
over a longer range. Riemannian manifolds also support
familiar geometric constructs like angles, lengths, curva-
ture, integrals and derivatives. This allows communication
and mobility constraints to be embedded in the manifold’s
geometry, measuring distance through the manifold rather
than using absolute (e.g., latitude/longitude) coordinates.
For example, the walkable spaces of a street (e.g., Figure 1)
form a Riemannian manifold in which the shortest distance
between locations goes along sidewalks, roads, and plazas,
rather than through the walls of buildings.

Communication in a continuous space is modeled as a
bound c on the speed at which information can propagate.
A set of concepts and terminology from physics may
then be borrowed to describe the space-time relations of
a manifold [26]. To wit, a point m 2 M is termed an
“event,” denoting its interest as both a spatial and temporal
location, and the manifold may be partitioned with respect
to m in space and time (see Figure 2):

• Events that information can go to or from at exactly
c are simultaneous with m.

• The set of events that can be reached from m moving
slower than c, denoted T

+(m), is the time-like future
of m, while events whose information reaches m

moving slower than c are its time-like history T

�(m).
• All other events, which cannot share information be-

cause it would need to move faster than c, have space-
like separation from m and no natural order.

A device d can be any one-dimensional curve in the man-
ifold with purely time-like relations between the points.2
The mathematical analysis in this paper also makes the
simplifying assumptions that the manifold is finite in
diameter and devices do not move.3 Finally, a spatial
section S

M

is a distributed snapshot of state without a
global notion of time, formally, any set S

M

such that
T

+(S
M

) [T

�(S
M

) = M � S

M

.
Figure 2 gives a concrete pervasive computing example

of these concepts in terms of several devices distributed in

2This is analogous to the physics notion of a world-line, i.e., devices
have a history in time, but only exist at one point in space at time.

3We defer mobile devices to future work, though in practice these results
typically apply well to devices moving much more slowly than c.

Ti
m
e%

Space%

Time%Like(
Future(

Time%Like(
Future(

Time%Like(
History(

de
vi
ce
&

de
vi
ce
&

de
vi
ce
&

de
vi
ce
&de
vi
ce
&

de
vi
ce
&spa*a

l&&sec*
on&

Fig. 2. Example of continuous space-time relations between six devices
distributed along a street: wireless access points and meters are stationary,
while the car moves steadily and the phone stops and starts twice.

one dimension along a city street. Each device is repre-
sented by a time-like trajectory indicating its position over
time: the access points and parking meters are stationary
(vertical lines) while the car moves steadily and the phone
stops and starts twice. The event marked by the phone on
its trajectory is in the time-like future of the marked event
on the orange meter’s history, meaning it can be affected
by the meter’s state at that time. However, it is space-
like separated from the marked event on the car’s history,
meaning it only has access to older information about the
car. Finally, the blue line marks one of many possible spatial
section “snapshots” that can separate all of space-time into
a “strict future” and “strict past.”

B. Computations Across Space and Time

Standard event-based models of distributed computation
(e.g., [27]) cannot be applied to continuous spaces, as any
manifold contains an uncountably infinite number of events,
and thus the events of the computation cannot be placed in
a countable sequence. Instead, computation on manifolds
may be defined in terms of fields, per [21], [22], [23]:

Definition 1 (Continuous Computational Field) A field
is a function f : M ! V that maps every event m in
a Riemannian manifold M to some data value in V.

Discrete computational fields (e.g., actions taken by real
devices in the execution of a distributed algorithm) may
be defined likewise, except that the domain is limited to a
discrete subset of events D ⇢ M .4

For example, consider a situated network in a street
environment such as is shown in Figure 1. Two examples of
continuous computational fields are shown in Figure 3(a):
the top a real-valued field of temperatures (shading blue
to red from lowest to highest), the bottom a Boolean-
valued field indicating where the temperature is greater
than 20°C (green for true, orange for false). Figure 3(b)
shows examples of discrete fields: these fields also show
temperature and comparison (using the same color scheme),

4Defining discrete execution as a manifold subspace (not an abstract
graph) preserves the geometric relationship of network to environment.

but contain only the values located at individual devices in
the network, rather than across the whole region of space.

A space-time computation C is a higher-order function
mapping an input field to a corresponding field of values:

Definition 2 (Space-Time Computation) Let FV be the
set of fields with range V, a computation C is a function
C : FV ! FV, where the domain of the output field is
always identical to the domain of the input field.

In other words, a computation takes an evaluation envi-
ronment field, whose domain defines the scope over which
the computation executes and whose values are all of
the environmental state that can affect its outcome (e.g.,
sensor readings). At every point of space and time in
the execution scope, some output value is produced. For
example, Figure 3(a) and 3(b) show examples of continuous
and discrete computation, in which the field of temperatures
is passed through a function that compares to 20°C to
compute a Boolean field that indicates the locations of
higher temperatures.

Such space-time computations can be specified by func-
tional composition of a basis set of operators:

Definition 3 (Space-Time Operator) A space-time oper-
ator is a function o : FV ⇥ Fk

V ! FV taking an evaluation
environment and zero or more additional fields as inputs
and producing a field as output.

This is much like the definition of a computation, except
that the domains of the fields may differ.

Considering operators as constructs of a programming
language, we can see a space-time program as any func-
tional composition of operator instances to form a com-
putation, such that the domains and ranges of the output
are well-defined for all possible values of the inputs.5 Note
that this includes recursive composition, e.g., via lambda
calculus, so programs are potentially universal, per [22].

For example, the space-time program in Figure 3 might
be defined as a composition of three operators: one return-
ing the field of environment temperatures, another returning
a constant-valued field of 20, and a third comparing its two
inputs point-wise to find at which events the value of the
first input is greater than the value of the second.

Note that for clarity in describing programs, we will
abuse terminology; in the context of a program, a “field”
is not actually the mathematical object itself, but the input
or output of an operator instance, which takes on a field
value when evaluated in the context of an environment.

5Some notes on technicalities: 1) Any well-defined composition of
operators is itself an operator. 2) Complete programs have no inputs
except the environment. Any composition of operators that requires
inputs (e.g., function definitions) may, however, be transformed into an
equivalent program by “currying” the inputs to instead be supplied by the
environment and adjoining a special “no value” value for events in the
domain of the environment but not the input.

>"20"

(a) Continuous

>"20">"20"

(b) Discrete (c) ✏-approximation

Fig. 3. On the situated network in a street environment in Figure 1: a continuous computation of a temperature threshold (b) is approximated by the
discrete network of devices (c), producing the ✏-approximation shown in (d).

C. Relating Continuous and Discrete Computing

We can now consider what it means for the results
of a situated network computation to be determined by
its continuous environment. Our basic approach will be
to define the “ideal” outcome of a space-time program
as its results when applied to a continuous environment,
then compare this with the results for a discrete network
of devices situated in that same environment.6 We can
compare a continuous field to a corresponding discrete field
by mapping the domain of the continuous field to the values
of the nearest points in the discrete field:

Definition 4 (✏-approximation) Let D

✏

⇢ M be a dis-
crete set such that every event m 2 M is within dis-
tance ✏ of some event in D

✏

. The ✏-approximation of field
f : D

✏

! V is a field mapping every point in M to the
value of f at the nearest point in D

✏

(choosing arbitrarily
for equidistant points).

An example is shown in Figure 3(c), which illustrates the
✏-approximation of the fields of the discrete computation in
Figure 3(b) on the manifold of the environment illustrated
in Figure 1. Notice that this is a coarse approximation of the
continuous computation in Figure 3(a). For this example, it
is readily apparent that the more devices there are, the more
the ✏-approximation would look like the ideal continuous
computation. This is the notion of field approximation:

Definition 5 (Field Approximation) A field f : M !
V is approximated by a countable sequence of ✏

i

-
approximations f

i

of manifolds M

i

, with ✏

i

< ✏

i�1 and
✏

i

going to zero, if both the following hold:

lim
i!1

|(M [M

i

)� (M \M

i

)| = 0

lim
i!1

Z

M\Mi

|f � f

i

| = 0

6Note that we consider only causal computations; acausal computations
are well-defined but cannot generally be implemented because they use
information from the future; see [21] for details.

In other words, a sequence of increasingly fine discrete sets
approximates a continuous field if both the manifolds and
the values assigned over them by the fields tend toward
identical.7 We can then define a consistent program as one
where the approximation relationship always holds:

Definition 6 (Consistent Program) Let P be a space-time
program, e be an evaluation environment, and e

i

a count-
able sequence of ✏

i

-approximations that approximate field
e. Program P is consistent if P(e

i

) approximates P(e) for
every e

i

and e.

Since information may move at different speeds in dif-
ferent discrete approximations, most programs involving
communication are not consistent. A program converging to
a steady state, however, may be consistent after that point:

Definition 7 (Eventually Consistent Program) Consider
a causal program P evaluated on domain M . Program P
is eventually consistent if, for any evaluation environment
e with a spatial section S

M

such that the values of e do
not change at any device in the time-like future T

+(S
M

),
there is always some spatial section S

0
M

such that P is
consistent on the time-like future T

+(S0
M

)

In other words: if the inputs ever converge, then the outputs
eventually converge as well, and are consistent thereafter.
For example, the temperature program in Figure 3 is both
consistent and eventually consistent. A “gossip” algorithm
that uses its output to compute whether any location had
seen a high temperature, however, would only be eventually
consistent, since the speed that gossip can propagate infor-
mation can be affected by the particulars of discretization.

The value of eventual consistency is that it implies certain
types of resilience. First, eventual consistency implies that a
computation is not particularly sensitive to precise locations
of devices, since the values must converge for all e

i

se-
quences. Second, results can only improve (asymptotically)

7Note: the reason to use a sequence of potentially different manifolds
Mi is because program branches can create subspaces dynamically, and
these necessarily depend on the details of approximation.

l ::= V ;; Literals
e ::= x

��
l

�� (b e1 . . .en)
�� (f e1 . . .en) ;; expression�� (rep x w e)

�� (nbr e)
�� (if e e e) ;; special constructs

w ::= x

��
l ;; variable or value

F ::= (def f(x1 . . .xn) e) ;; function
P ::= F1 . . .Fn e ;; program

(a) Syntax of Field Calculus

l ::= B | Z | R | B ;; Literals
b ::= m

��
mux

��
< ;; local operators

e ::= x

��
l

�� (b e1 . . .en)
�� (f e1 . . .en);; expression�� (sense Z+) ;; sensor�� (if e e e)

�� (GPI e e e e) ;; special construct
F ::= (def f(x1 . . .xn) e) ;; function
P ::= F1 . . .Fn e ;; program

(b) Restriction to GPI-calculus sub-language

Fig. 4. Field calculus [3], [4] is a minimal computational calculus that
does not ensure eventual consistency. GPI-calculus is a restriction to a
sub-language of eventually consistent programs.

as the number of devices in the network increases. Third,
combining location insensitivity and improvement with
density, eventually consistent computations should also
typically be quite tolerant of network heterogeneity. Fur-
thermore, when a computation is not eventually consistent,
the manner in which is it is not consistent is likely to reveal
system vulnerabilities that need to be considered even when
a situated network is not expected to be particularly dense
or fast changing.

IV. EVENTUALLY CONSISTENT LANGUAGE

Having established eventual consistency as a desirable
property, we now provide a methodology for the con-
struction of systems with this property, by identifying
an expressive system of programming constructs, such
that any program comprised solely of such constructs is
guaranteed to be eventually consistent. In particular, our
approach begins with the self-stabilizing sub-language of
field calculus presented in [2]. Following a brief review of
field calculus and its self-stabilizing sub-language, we then
analyze how programs that are not eventually consistent can
have behavior that is extremely sensitive to small changes
in the arrangement of devices in space. Using this analysis,
we then identify a highly expressive restriction of the
self-stabilizing sub-language that contains only eventually
consistent programs, called GPI-calculus.

A. Field Calculus

Field calculus [3], [4] is a minimal universal language, in
which every expression specifies a space-time program, as
defined in Section III-B. That is, a field calculus program
takes a field specifying the evaluation environment as input
and outputs a field of results. Importantly, field calculus is
universal (meaning it can express any physically realizable
computation), small enough to be tractable to analyze
formally, and can be applied to both continuous and discrete
fields [22], which means that it is a good framework for
investigating eventual consistency.

Field calculus programs are specified using the syntax in
Figure 4(a): each program is either a literal l, defining a
field that maps to the same data value everywhere (e.g., 3
is a field whose value at every point is 3), or a composition
of the following constructs:

• Built-in operators: A built-in operator (b e1 . . .en

)
determines the value of its output field at event m only
from the values of the environment e and input fields
e1,e2, . . . at m. The built-in operators can range over
any such functions, including addition, comparison,
sensors, actuators, etc.

• Function definition and call: New functions can
be defined Lisp-style with expressions of the form
(def f(x1 . . .xn

) e) and called with expressions of
the form (f e1 . . . e

n

).
• Time evolution: Program state is initialized

and changed over time by a “repeat” construct
(rep x w e), initializing x to a literal or variable
and updating (non-synchronously) by computing e

against its prior value.
• Neighborhood values: At each event, expression

(nbr e) constructs a sub-field mapping neighboring
devices to their most recent value of e. These sub-
fields can then be manipulated and summarized with
built-in operators. For example, (min-hood (nbr

e)) maps each device to the minimum value of e
amongst its neighbors (excluding itself).

• Domain restriction: (if e0 e1 e2) computes expres-
sions in subspaces, preventing interference between
the two sub-computations: e1 is computed where
Boolean e0 is true, e2 where it is false.

A field calculus program is then a set of function defi-
nitions followed by an expression to be evaluated. Thus
the example in Section III-C of an eventually consistent
“gossip” algorithm that computes whether any location has
ever experienced a high temperature, can be implemented:
(def gossip-ever (value)

(rep ever

false

(or value (any-hood (nbr ever)))))

(gossip-ever (> (temperature) 20))

Here, the gossip process is defined using def, with a
combination of time evolution and neighborhood value
constructs. The program remembers if there has ever been
a high value with the Boolean field ever. This switches to
true at an event in two cases, joined with built-in or: either
the input field value is true or else information arrives that
some neighbor has switched to true: (nbr ever) collects
values from neighbors and any-hood returns true if its
input has a true value for any neighbor.

Because field calculus is universal, it can express any
program, including non-resilient programs. A sub-language
was identified in [2], however, where self-stabilization can
be guaranteed by using nbr and rep constructs only
in three patterns, which may be thought of roughly as
spreading, folding, and bounded monotonic change, and

Fig. 5. Finding a bisector is fragile because it is sensitive to device
positions. For example, the set of bisecting locations (green line) for two
cars (blue stars) might or might not actually include any devices.

which cover a large number of self-stabilizing algorithms.

B. From Consistency Failures to Fragility

Even if a function is self-stabilizing, it may not be
eventually consistent. Let us then examine how consis-
tency failures emerge in field calculus. Three modes of
consistency failure arise directly from constructs that, while
useful, can also be readily used to create programs that can
never converge to a well-defined behavior. First, recursion
can create consistency failures, since there are many ways
to arrange a recursion that grows in depth with density
and thus does not converge. Second, interactions between
neighboring devices can lead to consistency problems due
to implicit dependence on the distribution of devices: for
example, a measurement that counts hops will not converge
if increasing density of devices leads to paths consisting
of more small hops. State constructs can also create in
programs that implicitly rely on the time between events,
but the self-stabilizing sublanguage in [2] prevents this by
means of the restricted patterns it allows for use of state
constructs. Following a similar strategy to ensure eventual
consistency, we will thus prohibit recursion and restrict use
of neighbor to a pattern that can be guaranteed safe.

More subtlely, many computations converge but are
extremely sensitive to individual devices. A good example
is one of the most widely used self-stabilizing distributed
algorithms, finding the distance to a source region:
(def distance-to (source)

(rep d

infinity

(mux source 0

(min-hood (+ (nbr d) (nbr-range))))))

This finds distance by incremental application of the tri-
angle inequality, using built-in functions +, for pointwise
addition, and mux, which multiplexes between its second
and third inputs, returning the second where the first is true
and the third elsewhere.

Although distance-to always converges to an ap-
proximable output, programs incorporating it may not be
eventually consistent because the value of the output may
be greatly affected by individual points in the source

field. Consider, for example, a source field where only
one point is true: an ✏-approximation containing that
point has only finite values, while one without that point
has infinity everywhere. Thus, it is possible to construct

sequences that do not converge, because they alternate
between including and not including the critical point.

Although this example may seem extreme, it is easy to
accidentally create such critical dependencies. For example,
a simple bisecting boundary computation:
(def bisector (point-1 point-2)

(= (distance-to point-1) (distance-to point-2)))

creates a field that is false except at an infinitely thin
boundary of true values (Figure 5). Fed to a program
sensitive to such sets, such as distance-to, this can re-
sult in arbitrarily unpredictable behavior from a distributed
algorithm.

This is not a special case related to distance-to,
but a deeper conflict for situated distributed algorithms,
between the discrete values commonly used in algorithms
(e.g., Booleans, branches, state machines) and the contin-
uous space-time environment in which devices are embed-
ded. In particular, any non-trivial field with a discrete range
cannot be continuous, meaning that it either is itself not
approximable or else contains some measure-zero boundary
region that, if handled badly, can generate unpredictable
behavior (as in the bisector example).

C. Restriction of Field Calculus: GPI-calculus

As [2] restricted field calculus to obtain a sub-language
of self-stabilizing programs, we now further restrict the
self-stabilizing sub-language to a sub-language of even-
tually consistent programs, which we call GPI-calculus,
whose syntax is shown in Figure 4(b). As we find eliminat-
ing every problematic program element to be too limiting,
this sub-language accepts boundary elements, but dynami-
cally marks them to contain their effects. In particular:

• The possible data values are restricted to only
Booleans (B), integers (Z), real numbers (R), and
a unique value B denoting a possibly problematic
boundary between value regions.8

• Built-in operators are restricted to the elements m,
mux, <, and sense (all described below).

• if allows B as a third value for its first input, in
addition to Boolean true and false; for those points
mapping to B, the output also maps to B.9

• State and communication are only available indirectly
through a new operator, GPI (described below), which
is a restriction of the spreading pattern in [2].

• Recursion is prohibited.
Boundary-Aware Built-In Functions: The built-in op-

erators in GPI-calculus are close relatives of standard
mathematical and sensor functions; the only difference is
that they also interact with the boundary value:

• m is any strictly continuous mathematical function

8Note that restricting to the more computationally tractable rationals Q
does not affect measure-zero fragility or its solution via boundary values.

9Not a semantic change: syntactic sugar on two nested if statements.

(e.g., addition, multiplication, logarithm, sine10), ex-
tended to have output B if any input is B. Additionally,
for any m that can map integers to integers (e.g.,
addition), the output has integer type iff all inputs have
integer type; otherwise the output is a real.

• mux is the piecewise multiplexer function: when its
first input is true, it returns the second input; if it is
false, it returns the third input; if it is B, it returns B.

• < compares two numerical inputs, returning true if
the first is less and false if the second is less. If they
are equal, then the result depends on type: if both are
integers the result is false; if either is a real it is B.
Finally, if either input is B, then the result is also B.

• (sense k) returns the kth value in the environment
state (assumed to be a tuple), where k is the positive
integer literal given as its input.

Composition makes this apparently limited set of oper-
ations actually generate a much wider set. E.g., mux is
sufficient to implement all logical operations:
(def and (a b) (mux a b false))

(def or (a b) (mux a true b))

(def not (x) (mux x false true))

The GPI Operator: Key to distributed computation
in the restricted language is the new operator GPI, a
“gradient-following path integral,” which we define as a
field calculus function similar to operator G in [2]:
(def GPI (source initial density integrand)

(if (<= density 0)

B // Metric ill-defined if density non-positive
(2nd

(rep distance-integral

(tuple infinity initial) // Initial value
(mux source

(tuple 0 initial)// Source is distance zero, initial value
(min-hood’ // Minimize lexicographically over non-self nbrs
(+ (nbr distance-integral)

(

*

(nbr-range) // Scalar multiplication of tuple
(tuple (mean density (nbr density))

(mean integrand (nbr integrand)))))))))))

Here, in addition to the previously discussed built-in oper-
ators, we also use tuple, which creates a k-tuple of its
inputs, 2nd, which accesses the second value of a tuple,
and mean, which finds the average of its inputs. We also
use a slightly modified version of the usual field-calculus
min-hood operator, designated as min-hood’, which
returns B if the minimal value for the first tuple element is
held by more than one device.

The GPI operator thus performs two tasks simultane-
ously. First GPI computes a field of shortest-path distances
to a source region. This distance is “stretched” propor-
tional to a scalar field density (representing e.g., crowd
density slowing movements, hazards increasing danger of
movement). Furthermore, the min-hood’ operator ensures
that all points in the distance field with more than one

10This also includes construction and referencing of tuples, which can
be used to implement data structures, as well as higher order functions
such as map and reduce. Some simple functions are excluded, however,
such as division, which is discontinuous when the denominator is zero.

shortest path are B. Second, GPI computes a path integral
of the scalar field integrand following the gradient of
the distance field upward away from the source, starting
at the scalar value initial in the source region. The
function definition binds these together via a tuple and
lexicographic minimization, such that the value added to
the line integral at each device is taken from the neighbor
on the (sole) minimal path to the source.

Importantly, just as with G in [2], the GPI operation
subsumes a number of useful and frequently used compu-
tations. For example, an eventually consistent version of
distance-to can be implemented as:
(def distance-to (source)

(GPI source 0 1 1))

GPI-calculus is Eventually Consistent: With these re-
strictions, well-written programs will ensure eventual con-
sistency by effectively excluding a minuscule (often empty)
set of devices from certain computations. Poorly writ-
ten programs (e.g., (= (sqrt 2) (sqrt 2))) may
still contaminate large areas with B values, but will still
converge—just not to a particularly useful result.

Theorem 1 (Eventual Consistency of GPI-calculus)
GPI-calculus programs are eventually consistent for all
environments e that are continuous on e

�1(V� B).

We present only a sketch of this proof here for reasons
of length: First, we consider any set of operators that are
eventually consistent and are continuity preserving, in the
sense that when there is a spatial section S

M

such that
environment e and inputs f

i

are continuous on e

�1(V �
B) \ T

+(S
M

) and f

�1
i

(V � B) \ T

+(S
M

), then there is
some other S

0
M

such that their output f
o

is continuous on
f

�1
o

(V � B) \ T

+(S0
M

). All finite compositions of such
operators have the same properties of eventual consistency
and continuity preservation, since adding a single operator
doesn’t affect these properties. Each operator in GPI-
calculus can then be shown to be eventually consistent
and continuity preserving, in a lengthy but not particularly
complex set of reasoning, the most complex of which is
for GPI. Finally, we show that all GPI-calculus programs
are equivalent to finite compositions of operators, which
implies that all such programs are eventually consistent.

Thus, if a program is evaluated in a “well-behaved”
environment, its results are predictable and resilient to scale
and positioning of devices. Having proved this, in the next
section we explore the breadth of applications that can be
addressed by GPI-calculus and demonstrate its consistency
properties empirically in simulation.

V. VALIDATION AND APPLICATIONS

We now validate the predictions of eventual consistency
and demonstrate some of the breadth of applications that
can be expressed to our sub-language of eventually con-
sistent programs. As the GPI operation is a restricted
version of the G information spreading operator from [2],

Fig. 6. Channel pattern deployed on a wireless sensor network with
20,000 devices deployed at heterogeneous density. Blue devices send data
to red along the channel (green), avoiding the obstacle (yellow).

GPI-calculus applications are those based on information
spreading and local computation. We present several such
common self-organization patterns, along with accompa-
nying application scenarios in wireless sensor networks
and urban traffic steering. Simulations of these scenarios
and comparison of GPI-calculus algorithms with similar
algorithms that lack eventual consistency confirm the con-
sistency result and its value for constructing coordination
behaviors resilient to changes in network density and scale.
Note that we do not attempt to cover the breadth of possible
alternatives: rather, these comparisons show the difficulties
that can arise if eventual consistency is left to programmers
rather than being guaranteed by the framework.

A. Distance-Based Patterns

As previously noted, distributed distance calculation can
be implemented with a simple GPI call. Another common
pattern is broadcast from a source, which can be defined:
(def broadcast (source value)

(GPI source value 1 0))

Here, GPI shifts the initial value outward by integrating
0 along the path, so that the value remains unchanged, thus
producing a broadcast (or more generally, a map from each
devices to the nearest source device’s value).

These functions can then be composed into higher-level
patterns. For example, a channel, useful for tasks like
corridor routing, can be implemented:
(def channel (a b w)

(< (+ (distance-to a) (distance-to b))

(+ w (broadcast a (distance-to b)))))

Here distance from source fields a and b creates a Boolean
field holding true only in those devices whose distance
to a and b is less than “width” w greater than the shortest
path. Such higher-level patterns can themselves be further

(a) GPI vs. non-GPI convergence

(b) Convergence vs. time

Fig. 7. Simulation of wireless sensor network scenario confirms the
analytical results for GPI-calculus, showing convergence with respect to
both number of devices (a) and time (b). Number of devices shows mean
and ±1 standard deviation for both the GPI (blue) and non-GPI (red)
versions. Time graphs show mean of GPI version only, colored by number
of devices shading from deep blue (100) to dark red (5000).

modulated and combined, e.g. restricting a channel with if
in order to circumvent an area considered to be an obstacle:
(def channel-with-obstacle (a b w obstacle)

(if obstacle false (channel a b w)))

Expressing these in GPI-calculus ensures less fragility
of the channel to device position: a near-identical naive
channel program using = instead of < produces fragile
channels that can disconnect or re-route due to minuscule
perturbations. In GPI-calculus, however, this fragility is
extinguished because = can never return true, only false
and B, rendering naive channel obviously unable to produce
any sort of channel, fragile or otherwise.

1) Application Scenario: Wireless Sensor Network:
Consider a wireless sensor network in which some devices
must exchange a large amount of information, e.g., relaying
video to a mobile monitoring station. The set of devices to
relay to be identified with channel-with-obstacle,
balancing limited spreading of information (e.g., to save
battery energy) with replication along the transmission
path (e.g., to increase reliability), and avoiding devices
that do not wish to participate (e.g., due to low battery
or faults). A broadcast restricted to this channel with
if can then relay data with replication to prevent data
loss, but much less resource consumption than unrestricted
broadcast. Figure 6 shows an example simulated on a
heterogeneous network: note how density affects only the
precision of the channel’s boundaries.

We confirm our GPI-calculus results using simula-
tion with Alchemist [28] and Protelis [29]. We test
channel-with-obstacle and the naive non-GPI-
calculus variant on nine logarithmically scaled densities,

Fig. 8. Context-sensitive distance computation navigating the streets of
London: warmer colored devices have a closer effective distance to the
destination (black dots at bottom center). Dashed outlines are unfavourable
(blue) and favourable (red) areas for travel. An example path is shown
(black line), originating near Charing Cross (black dot in upper left).

from 100 to 5000 devices, with ten runs per condition,
distributing devices randomly. Devices are connected with
a unit disc network, using a range of 15% of environment
width at lowest density and reducing proportional to square
root of density to ensure a consistent expected number
of neighbors. Devices run unsynchronized but with the
same clock speed, frequency rising inversely proportional to
communication range to keep information speed consistent.

By the results in Section IV, it should be the case that
for GPI-calculus device values will self-stabilize to a fixed
set of values, and that as the number of devices increases,
the values converged to will themselves converge as the
network more closely approximates continuous space. We
test this by measuring a key application property, the
fraction of devices in the channel. Figure 7 shows the GPI-
calculus program converges with respect to both time and
number of devices, confirming our predictions. The naive
channel, however, shows a low and decreasing fraction of
participating devices: even floating point addition errors are
enough to disturb the fragile equality relation.

B. Context-Sensitive Distance

The effective shortest path between a node and the
source of a GPI is not necessarily the physically short-
est path. Rather, effective distance may be influenced by
other properties of the environment, either negatively (e.g.,
obstacles, congestion, pollution, tolls) or positively (e.g.,
safety, dedicated lanes, beauty). The density argument
of GPI allows such factors to be taken into consideration as
a multiplicative “stretching” of the base physical distance
metric. Assuming there are penalising areas (cons) and
favourable areas (pros), both expressed as scalar fields
with values between 0 (least significant) and 1 (most
significant), then one form of context sensitive distance is:
(def contextual-distance (source pros cons)

(GPI source 0 (+ 1.1 (- cons pros))

(+ 1.1 (- cons pros))))

(a) GPI vs. non-GPI convergence

(b) Convergence vs. time

Fig. 9. Simulation of urban traffic steering scenario confirms the
analytical results for GPI-calculus, showing convergence with respect to
both number of devices (a) and time (b). Number of devices shows mean
and ±1 standard deviation for both GPI (blue) and non-GPI (red) versions.
Time graphs show mean of GPI version only, colored by number of devices
shading from deep blue (100) to dark red (5000).

Since GPI accumulates values using a path-integral, the
context-sensitive stretching is guaranteed to be resilient to
distribution changes. A naive alternate counting “pros” and
“cons” visited rather than integrating creates a density-
sensitive distance function whose value could be radically
changed by changes in device location or network density.

1) Application Scenario: Urban Traffic Steering: Con-
sider guiding pedestrian or vehicle traffic in a complex
urban environment. Devices are deployed along and around
the streets, some with environmental sensors (e.g, for
crowding, traffic, pollution); other parameters are drawn
from distributed or cloud databases (e.g., for events, at-
tractions, comments on an area). From these, devices can
compute contextual pro and con fields for people navigating
through the city, reflecting perceived distance toward a
location by taking path desirability into account. Figure 8
shows an example simulated in the center of London, in
which context-sensitive distance chooses a more favored
path over alternatives that are shorter but less favored.

We validate the predictions of GPI-calculus in this sce-
nario using the same simulation environment as for the
wireless sensor network scenario, except that devices are
distributed on a street map of London and the property mea-
sured is the average contextual distance value. As expected,
Figure 9 shows the GPI-calculus program converges with
respect to both time and number of devices, confirming our
predictions. The naive context-sensitive distance measure,
however, does not stabilize but grows as the number of hops
through modulated space increases.

VI. CONTRIBUTIONS

We have presented a sub-language of field calculus
containing only programs resilient against changes in the
number and distribution of devices in a network. This is a
step towards a more general framework for supporting open
ecosystems of pervasive wireless devices, which need to
provide safe and resilient services despite running a shifting
set of interacting services from many unrelated software
suppliers. If it is possible to implicitly ensure all programs
are resilient and composable, then it will greatly reduce the
cost of providing reliable services in such environments.

In future work, we aim to extend the breadth of the re-
sults in this paper. Most importantly, the theory we present
does not cover mobile devices. In practice, however, the
mechanisms used often perform well on mobile devices, so
there appears to be good prospect for extension. Similarly,
the theory currently directly addresses only the limit of
approximation, but these properties tend to indicate that an
algorithm also behaves well in lower density networks and
before it has finished converging, so it should be possible
to identify properties directly pertinent to lower density
performance. Finally, GPI only addresses one of the key
self-stabilizing patterns identified in [2], and a clear area
for extension is to deal with additional “building block”
algorithms, and complementarily to consider how static
analysis, testing, and model-checking techniques can be
used to eliminate program faults before runtime.

ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 644298 HyVar (Damiani), ICT
COST Actions IC1402 ARVI and IC1201 BETTY (Dami-
ani), Ateneo/CSP project RunVar (Damiani), and the United
States Air Force and the Defense Advanced Research
Projects Agency under Contract No. FA8750-10-C-0242
(Beal). The U.S. Government is authorised to reproduce and
distribute reprints for Governmental purposes notwithstand-
ing any copyright notation thereon. The views, opinions,
and/or findings contained in this article are those of the
author(s) and should not be interpreted as representing the
official views or policies of the Department of Defense
or the U.S. Government. Approved for public release;
distribution is unlimited.

REFERENCES

[1] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
internet of things,” IEEE Computer, vol. 48, no. 9, 2015.

[2] M. Viroli, J. Beal, F. Damiani, and D. Pianini, “Efficient engineering
of complex self-organising systems by self-stabilising fields,” in
IEEE Conf. on Self-Adaptive and Self-Organising Systems, 2015.

[3] F. Damiani, M. Viroli, and J. Beal, “A type-sound calculus of
computational fields,” Science of Computer Programming, vol. 117,
pp. 17–44, 2016.

[4] F. Damiani, M. Viroli, D. Pianini, and J. Beal, “Code mobility meets
self-organisation: a higher-order calculus of computational fields,” in
Proceedings of FORTE 2015, June 2015, pp. 113–128.

[5] J. Beal and M. Viroli, “Building blocks for aggregate programming
of self-organising applications,” in IEEE Conf. on Self-Adaptive and
Self-Organizing Systems Workshops, 2014, pp. 8–13.

[6] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, “Organiz-
ing the aggregate: Languages for spatial computing,” in Formal and
Practical Aspects of Domain-Specific Languages: Recent Develop-
ments, M. Mernik, Ed. IGI Global, 2013, ch. 16, pp. 436–501.

[7] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: The tota approach,” ACM Trans. on Software
Engineering Methodologies, vol. 18, no. 4, pp. 1–56, 2009.

[8] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and
P. Pillai, “Meld: A declarative approach to programming ensembles,”
in IEEE Conf. on Intelligent Robots and Sys., 2007, pp. 2794–2800.

[9] M. Viroli, D. Pianini, and J. Beal, “Linda in space-time: an adaptive
coordination model for mobile ad-hoc environments,” in Proceedings
of Coordination 2012, ser. Lecture Notes in Computer Science.
Springer, 2012, vol. 7274, pp. 212–229.

[10] R. Nagpal, “Programmable self-assembly: Constructing global shape
using biologically-inspired local interactions and origami mathemat-
ics,” Ph.D. dissertation, MIT, Cambridge, MA, USA, 2001.

[11] D. Coore, “Botanical computing: A developmental approach to
generating inter connect topologies on an amorphous computer,”
Ph.D. dissertation, MIT, Cambridge, MA, USA, 1999.

[12] D. Yamins, “A theory of local-to-global algorithms for one-
dimensional spatial multi-agent systems,” Ph.D. dissertation, Har-
vard, Cambridge, MA, USA, December 2007.

[13] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: A
tiny aggregation service for ad-hoc sensor networks,” SIGOPS Oper.
Syst. Rev., vol. 36, no. SI, pp. 131–146, Dec. 2002.

[14] R. Newton and M. Welsh, “Region streams: Functional macro-
programming for sensor networks,” in Int.l Workshop on Data
Management for Sensor Networks (DMSN), Aug. 2004, pp. 78–87.

[15] J.-L. Giavitto, O. Michel, J. Cohen, and A. Spicher, “Computations
in space and space in computations,” in Unconventional Program-
ming Paradigms, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2005, vol. 3566, pp. 137–152.

[16] C. Lasser, J. Massar, J. Miney, and L. Dayton, Starlisp Reference
Manual. Thinking Machines Corporation, 1988.

[17] S. Dolev, Self-Stabilization. MIT Press, 2000.
[18] F. Damiani and M. Viroli, “Type-based self-stabilisation for com-

putational fields,” Logical Methods in Computer Science, vol. 11,
no. 4, 2015.

[19] J. Fernandez-Marquez, G. Marzo Serugendo, S. Montagna, M. Vi-
roli, and J. Arcos, “Description and composition of bio-inspired
design patterns: a complete overview,” Natural Computing, vol. 12,
no. 1, pp. 43–67, 2013.

[20] J. Beal, “Programming an amorphous computational medium,” in
Unconventional Programming Paradigms, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2005, vol. 3566,
pp. 121–136.

[21] ——, “A basis set of operators for space-time computations,” in 3rd
Spatial Computing Workshop (SCW 2010), Sept 2010.

[22] J. Beal, M. Viroli, and F. Damiani, “Towards a unified model of
spatial computing,” in 7th Spatial Computing Workshop (SCW 2014),
May 2014.

[23] J. Beal, K. Usbeck, and B. Benyo, “On the evaluation of space-time
functions,” The Computer Journal, vol. 56, no. 12, pp. 1500–1517,
2013, doi: 10.1093/comjnl/bxs099.

[24] T. Henzinger, “The theory of hybrid automata,” in Logic in Com-
puter Science, 1996. LICS ’96. Proceedings., Eleventh Annual IEEE
Symposium on, Jul 1996, pp. 278–292.

[25] B. MacLennan, “Continuous spatial automata,” University of Ten-
nessee, Knoxville, Tech. Rep. Department of Computer Science
Technical Report CS-90-121, November 1990.

[26] E. F. Taylor and J. A. Wheeler, Spacetime Physics: Introduction to
Special Relativity, 2nd ed. W. H. Freeman & Company, 1992.

[27] N. A. Lynch, Distributed Algorithms. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1996.

[28] D. Pianini, S. Montagna, and M. Viroli, “Chemical-oriented simula-
tion of computational systems with Alchemist,” Journal of Simula-
tion, 2013.

[29] D. Pianini, M. Viroli, and J. Beal, “Protelis: Practical aggregate
programming,” in ACM Symposium on Applied Computing 2015,
April 2015, pp. 1846–1853.

	IIEEE-SASO-2016_Beal-et-al-COPERTINA.pdf
	SASO16-Continuous-preprint

