
Towards Linking Adaptation Rules to the Utility
Function for Dynamic Architectures

Sona Ghahremani, Holger Giese and Thomas Vogel
Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany

Email: {sona.ghahremani|holger.giese|thomas.vogel}@hpi.uni-potsdam.de

Abstract—To benefit from utility-driven and rule-based ap-
proaches to self-adaptation, we propose combining both by
defining and linking the utility function and the adaptation rules
in a pattern-based way at the architectural level.

I. INTRODUCTION

To realize self-adaptation, a software system is equipped with
a feedback loop that monitors and analyzes the system and if
needed, plans and executes adaptation to the system. For this
purpose, the feedback loop uses knowledge (cf. MAPE-K [8]).
To achieve architectural self-adaptation, the feedback loop
maintains a runtime model [2], as part of its knowledge, which
represents the architecture of the system under adaptation. This
paves the way for dynamic architectures, in which issues can
be identified and handled by architectural self-adaptation [3].

There are various ways of how self-adaptation can be real-
ized. On the one hand, rule-based approaches [5,7] prescribe
the adaptation (i.e., actions) to be executed if specific events
occur and if specific conditions are satisfied. Therefore, the
adaptation rules are encoded as event-condition-action rules.
Such approaches employ the predefined adaptation rules of a
rule set < and usually result in a scalable solution, however,
often only with at most sufficient adaptation decisions. On the
other hand, utility-driven approaches [4,9] often enable optimal
decisions by searching the possible space of adaptations to find
the optimal one according to a utility function U , but usually
do not scale well for larger problems. A utility function U is
an objective policy which expresses the value of each possible
configuration of the system in its domain and identifies the
degree to which goals of the system have been satisfied.

Extensive research has been made on utility functions and
utility-driven decision-making policies that operates at the
level of the software architecture and architectural features.
However, the utility-driven approaches proposed in literature
all pursue a search-based optimization in the solution space
that often does not scale well for complex systems with large
solution spaces [4,10], or they define the utility function over
a pre-defined and hence bounded configuration space [3,6].

Consequently, we propose combining rule-based and
utility-driven approaches to achieve the beneficial properties
of each of them for dynamic architectures. Defining the utility
function and the adaptation rules in a pattern-based way at the
architectural level allows us to combine both approaches and
particularly to estimate the impact of each application of an
adaptation rule on the overall utility at runtime.

The paper is organized as follows: In Sec. II, we introduce
the pattern-based definition of utility functions for dynamic

architectures. In Sec. III, we link the adaptation rules to the
utility function and discuss related observations we exploited
for the implementation. Finally, we report on a preliminary
evaluation, conclude, and outline future work.

II. UTILITY FUNCTIONS FOR DYNAMIC ARCHITECTURES

Desirable or undesirable issues for a dynamic architecture can
be expressed as positive respectively negative model patterns
such that concrete issues relate to occurrences of these patterns
in a runtime model G. We denote that an occurrence as a match
m for a pattern P in the runtime model G exists by G |=m P .
Therefore, we propose defining a utility function for a dynamic
architecture represented in a runtime model with patterns.

For any utility function for a dynamic architecture must
hold that (i) the optimal architectural configuration where all
the system goals are optimally fulfilled must gain the maxi-
mum utility and that (ii) if any constraint or goal is violated,
it must lead to a decrease of the utility. Thus, we employ
positive architectural utility patterns P+ = {P+

1 , . . . , P+
k }

and capture their impact on the utility accordingly using utility
sub-functions U+

i to address case (i). Similarly, we employ
negative architectural utility patterns P− = {P−1 , . . . , P−n }
and capture their impact on the utility accordingly using utility
sub-functions U−j to address case (ii). It has to be noted that
the impact of each pattern occurrence on the overall utility,
which is captured by a utility sub-function, may vary for
each occurrence depending on the specific characteristics of
the context (e.g., for self-healing, the attributes of a failing
component may indicate the criticality of this component or the
severity of the observed failures, which determines the negative
impact on the utility).

As an example, we use mRUBiS [1], a component-based
system realizing an online marketplace that hosts an arbitrary
number of shops. Each shop consists of 18 components and
runs isolated from the other shops. We are particularly in-
terested into self-healing, that is, the automatic repairing of
runtime failures by architectural self-adaptation. Therefore, we
equip mRUBiS with a MAPE-K loop that uses a runtime model
representing the mRUBiS architecture. The model captures the
hosted Shops, their structuring into Components (with Pro-
videdInterfaces and RequiredInterfaces) and Connectors linking
required and provided interfaces, as well as runtime Failures.
Thereby, each Component is of a specific ComponentType.

For the example, Fig. 1 shows the positive architectural
utility pattern P+

1 with its utility sub-function U+
1 . For each

started (i.e., running) component of a shop, the utility of the
shop is increased by U+

1 . We may define U+
1 as the product of

c© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works. DOI: https://doi.org/10.1109/SASO.2016.21
142

ar
X

iv
:1

80
5.

03
59

9v
1

 [
cs

.S
E

]
 9

 M
ay

 2
01

8

https://doi.org/10.1109/SASO.2016.21

the criticality of the specific component, the reliability of the
component type, and the connectivity of the component (i.e.,
the number of associated connectors). This pattern is applied
to all shops on the marketplace to obtain the total positive
impact on the overall utility of the marketplace.

utility := utility + U1
+

shop

:Shop

criticality

[self.state = STARTED]

component

:Component

Fig. 1: Positive Architectural Utility Pattern P+
1 .

Similarly, Fig. 2 presents the negative architectural utility
pattern P−1 with its utility sub-function U−1 for the example.
This pattern matches if the usage of a provided interface of a
started component in a shop has caused five or more failures
(exceptions), which decreases the utility of the shop by U−1 .
We may define U−1 similar to U+

1 and apply this pattern for all
shops to obtain the total negative impact on the overall utility.

[self.failures->size() >= 5]

providedInterface

:ProvidedInterface

criticality

[self.state = STARTED]

component

:Component

utility := utility - U1
-

shop

:Shop

Fig. 2: Negative Architectural Utility Pattern P−1 .

In general, we define multiple positive and negative pat-
terns, that is, P+ = {P+

1 , . . . , P+
k } and P− = {P−1 , . . . , P−n }.

All matches of these patterns determine the overall utility
U(G) for the current architecture represented in the runtime
model G. We define the set of all matches for the positive
pattern P+

i in G as M+
i (G) = {m|P+

i |=m G} and the
set of all matches for the negative pattern P−j in G as
M−j (G) = {m|P−j |=m G}. Given these sets, the overall
utility U(G) can be defined and computed as follows:

U(G) :=

k∑
i=1

∑
m∈M+

i (G)

U+
i (G,mi)−

n∑
j=1

∑
m∈M−

j (G)

U−j (G,mj) (1)

Hence, the overall utility is the sum of all U+
i for each match in

M+
i (G) accumulated over all k positive patterns in P+ minus

the sum of all U−j for each match in M−j (G) accumulated
over all n negative patterns in P−. As discussed previously,
the impact of a match on the overall utility is influenced by the
specific context of the match. Thus, the utility sub-functions
U+
i and U−j are paramterized by the runtime model G and the

specific match m, which capture the context of the match.

In general, matches of positive and negative patterns result
from changes of the environment. While existing matches of
positive patterns are usually not affected by the adaptation
rules (i.e., the adaptation does not do any harm to the system),
matches of negative patterns should be addressed by the rules
(i.e., the adaptation repairs the system). Finally, the kind
of utility functions as presented here is restricted to linear
functions, which are often used for optimization (cf. [6]).

III. LINKING ADAPTATION RULES & UTILITY FUNCTIONS

Based on the idea of architectural utility patterns, we describe
the condition of an adaptation rule r, which must be fulfilled in
order to apply r, as a model pattern P . For a rule r = (P, . . .)
with the pattern P , we denote that r can be applied for a match

m of P in the runtime model G as G |=m P . Actually applying
r for m in G results in a modified runtime model G′, which
we denote as G→r,m G′.

For any adaptation logic based on the presented kind of
utility functions and adaptation rules, the following observa-
tions must hold: (1) If there is no match of any negative pattern,
there is no need for any adaptation since no improvement of
the utility is possible. (2) Any possible improvement of the
utility must necessarily resolve matches of negative patterns,
otherwise no improvement of the utility would be possible.

Consequently, we can assume that (A1) for any rule
ro = (Po, . . .) in the rule set < must hold that a negative
pattern P−j exists such that any match mo for Po includes
a match mj for P−j . Otherwise, ro could be applied even
though no utility improvement can be achieved. This would
contradict observation (1). However, Po might require more
context compared to P−j such that patterns of rules may extend
the negative patterns. Furthermore, it is plausible to assume
that (A2) for any rule ro = (Po, . . .) in < and any match mo

for Po that includes a match mj for the related negative pattern
P−j holds that applying ro for mo will make the match mj

for P−j invalid. Otherwise, ro would not resolve the identified
match for P−j and thus would not lead to an improvement of
the utility as we would expect from observation (2).

IV. DISCUSSION, CONCLUSION, & FUTURE WORK

For a preliminary evaluation of the approach, we set up
mRUBiS with 100 shops resulting in a system with 1800
components. For this large case study, we were able to follow
the proposed scheme by defining accordingly a utility function
and linking several self-healing rules (e.g., restart, redeploy,
replace a component) to the function. This gives us initial
confidence about the applicability and benefits of the approach.

In this paper, we proposed combining rule-based and
utility-driven approaches to achieve the beneficial properties
of each of them. Therefore, we define both, the utility function
and the adaptation rules in a pattern-based way at the archi-
tectural level, which enables their linking. As future work, we
plan to exploit this link for the efficient and optimal execution
of the rules, and to investigate non-linear utility functions.

REFERENCES

[1] mRUBiS. http://www.mdelab.de [Online; accessed 09-May-2016].
[2] G. Blair et al. Models@run.time. Computer, 42(10):22–27, 2009.
[3] S.-W. Cheng and D. Garlan. Stitch: A language for architecture-based

self-adaptation. Journal of Systems and Software, 85(12), 2012.
[4] N. Esfahani et al. A learning-based framework for engineering feature-

oriented self-adaptive software systems. TSE, 39(11):1467–1493, 2013.
[5] F. Fleurey et al. Modeling and validating dynamic adaptation. In

Models in Software Engineering, volume 5421 of LNCS, pages 97–108.
Springer, 2009.

[6] J. Floch et al. Using architecture models for runtime adaptability. IEEE
Software, 23(2):62–70, 2006.

[7] J. Keeney and V. Cahill. Chisel: A policy-driven, context-aware, dy-
namic adaptation framework. In POLICY ’03, pages 3–14. IEEE, 2003.

[8] J. O. Kephart and D. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[9] J. O. Kephart and W. E. Walsh. An artificial intelligence perspective on
autonomic computing policies. In POLICY’04, pages 3–12. IEEE, 2004.

[10] R. Rouvoy et al. Music: Middleware support for self-adaptation in
ubiquitous and service-oriented environments. In SEfSAS, volume 5525
of LNCS, pages 164–182. Springer, 2009.

143

	I Introduction
	II Utility Functions for Dynamic Architectures
	III Linking Adaptation Rules&Utility Functions
	IV Discussion, Conclusion, & Future Work
	References

