
HAL Id: inria-00541143
https://inria.hal.science/inria-00541143

Submitted on 27 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integer Gradient for Cellular Automata: Principle and
Examples

Luidnel Maignan, Frédéric Gruau

To cite this version:
Luidnel Maignan, Frédéric Gruau. Integer Gradient for Cellular Automata: Principle and Examples.
SASOW 2008 - 2nd IEEE International Conference on Self-Adaptive and Self-Organizing Systems
Workshops, Oct 2008, Venise, Italy. pp.321-325, �10.1109/SASOW.2008.52�. �inria-00541143�

https://inria.hal.science/inria-00541143
https://hal.archives-ouvertes.fr


Integer Gradient for Cellular Automata:
Principle and Examples

Luidnel Maignan∗ and Fŕed́eric Gruau∗†‡§
∗ INRIA Futurs Saclay - 4, rue Jacques Monod, 91893 ORSAY Cedex, France
† LRI - Universit́e Paris-Sud 11, b̂atiment 490, 91405 Orsay Cedex, France

‡ LIRMM - 31 rue Ada, 34000 Montpellier, France
§ UWE, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK

Abstract—When programming a spatial computing medium
such as a cellular automaton, the hop count distance to some set
of sources (particles) is an often used information. In particular,
we consider the case where the sources themselves are moving.
Due to the locality of communication, only an estimation of the
distance can be made at each time step, and each location. When
no assumption is made on the size of the medium, that distance
takes its values inN, which is not desirable, because it does not
lead to finite state. This paper shows how to use the modulo
operation to project that set of N-fields into a finite set ofZ/nZ-
fields. Using the modulo stored at each site, we show that we are
still able to compute the local differential of the original field,
allowing to manipulate the former as a directional gradient. It
allows us to evaluate the direction of the nearest source, provided
the sources move at bounded speed, less than one site per time
unit. This information can be used to solve several problems of
spatial nature. In the particular case of cellular automata, we
present two rules using the modulo representation of distance
field: Voronoi Diagram and Convex Hull. The two rules applies
for moving sources, although at the moment, the convex hull has
been implemented only for static sources.

I. I NTRODUCTION

Spatial computing considers a computing medium made of
many elementary processing elements with local connections
and homogeneously distributed in space. When programming
the medium, a common ingredient is to evaluate the distance
to some source objects. Using this information, it is possible
to move an agent away from or towards the sources [1],
compute the Voronoi Diagram [2][3], or the Convex Hull [4]
among many examples. In all of those examples, the actual
value of the distances does not matter; only the differential
of the distances is actually used.

Depending on the framework, various kind of rules can be
used to compute the distances. A classical way to compute
them is to diffuse a gradient of chemical, and use the
chemical density as a distance information [1]. In this case,
the distances take their values inR. In cases where the space
can be described by a graph, the hop count distance can also
be used. Between two nodes, it is defined as the number of
edges of the shortest path connecting them. Then the distance
is a value inN.

In this article, we consider a spatial computing medium
described by a bounded degree graph of nodes which are

processing elements operating synchronously, in parallel. The
hop count distance is computed to the nearest source, at any
location. Also, the distance is used in a way such that only
its differential really matters. We call thedistance fieldthe
values associated to each node at each time. Nodes can host a
point source which can dynamically move from one node to a
neighbor one. A distance field is such that, the distance stored
in one node is an estimation of the distance to the nearest
node hosting a source at that particular time. The slower
the movement of sources is, the more precise the estimation
becomes. When (and if) the sources stop moving, the estimated
distances should converge to the exact distances values.

We show that, if the differential is the only information that
is exploited from the distance field, it is possible to transform
the original distance field defined onN by a field defined
on finite state set producing exactly the same behavior. We
choose the wordoutputto describe thisdifferential, because we
organize the rules managing a processing element into several
layers, where the layer responsible for computing the distance
field outputsthis differential to some higher level layer which
is using it. We describe two cellular automata rules that only
use the differential of the distance field. The first one is the
Dynamic Voronoi Diagram of a set of moving sources, and
the second is the Convex Hull of a set of static sources.

II. I NFINITE DISTANCE FIELD WITH FINITE STATE

This section is organized as follows. We start off by giving
two rules that produceN-valued distance fields with somewhat
different properties. Then we underline the fact that distance
fields are often used as directional gradients. We then define
reasonable properties that needs to be satisfied in order to
transform theN-distance fields intoZ/nZ-distance fields for
some boundedn, providing the way to produce exactly the
same output from the new field.

A. Computation and use of the distance field

Before going into any details of the transformation of the
N-distance field into a finite distance field, let us describe first
how it is possible to locally compute theN-distance field.
Considering a predicatesourcet(i) which is true if there is a
source in the sitei at time t, the distance fieldd is computed
by the following rule:



dt+1(i) =

{

0 if sourcet+1(i)

1 + min{dt(j)}j∈N(i) otherwise.
(1)

This well-known rule [5][3][2] converges to a configuration
where each nodei of the considered graph has itsd(i) equals
to the distance to the nearest source. Using this information, an
agent moving in the graph can decide to get closer or further
from the sources. In [2], the case where the sources positions
evolve in time is also considered. A slightly different version
of that rule is used, which ensures that the distance field always
indicates the direction to nearest source for any site at any
time:

dt+1(i) =











0 if sourcet+1(i)

1 if ¬sourcet+1(i) ∧ sourcet(i)

2 + min{dt(j)}j∈N(i) otherwise.

(2)

In many important applications of this spatial gradient, it
is often the case that only thedifferencebetween neighboring
state values is required, not the actual absolute values of the
states. Formally define:

δt(i, j) = dt(j) − dt(i) for j ∈ N(i) (3)

Many applications depend just onδ, not on the values ofd
(except perhaps at the origin 0). The set of differences can be
finite even when the set of absolute values is not. When this is
the case, we will now show how to take advantage of this fact
to quotient the state space into a finite set without affecting
the outputs.

B. Properties of the distance field

The distance field can be seen as a layer that takes a set
of sources as input and allows to compute the differential of
the distance to the nearest sources as output. Whether this
output is used in a dynamical or static way, some properties
are required of the field in order to admit a finite state
representation.

The most important property is that the difference between
two neighbor sites must be bounded by some fixed constant
∆ at any time. As we have already definedδt(i, j) in Eq. (3),
the property can be written:

∀i∀j ∈ N(i) : δt(i, j) ∈ [−∆,∆] (4)

If it is not the case, then the set of outputted values is infinite,
which prevent any finite state field to produce it.

The property (4) implies a bound on the speed of the sources
in the dynamical case. Indeed, if the sources move one step
each time for example, it moves as fast as the information in
the field, so the sites can not update their values fast enough
to preserve the∆ bound. In fact, the∆ bound is dependent
on the speed of the sources when considering the two rules
described above.

C. Transformation into a finite state field

If the property (4) is satisfied, then a simple modulo operator
is enough to project the initial fieldd into a fieldf where the
output is exactly the same:

ft(v) = dt(v) mod (2.∆ + 1). (5)

By this transformation, theN-distance field is transformed
into a Z/nZ-distance field, withn = 2.∆ + 1. The former
value is the size of the output set{−∆, . . . , 0, . . . ,∆}.

When applying the modulo operator, the global order on
the values is lost, i.e. some values that were less than their
neighbor’s value have modulo value being greater. Because
the definition of distance field depends on taking a minimum,
we must correct for this explicitly. The neighbors who have
these ”mis-ordered values are:

N+(i) = {j ∈ N(i)|f(j) ≥ (f(i) − ∆) mod n}

In order to correctly transform the rules (1) and (2), the values
of N+(i) must be tested by the minimum operator before the
others, because, if there are any, they correspond to the true
minimal values in the original field. We obtain respectively:

ft+1(i) =











0 if sourcet+1(i); else:

1 + min{ft(j)}j∈N+(i) if N+(i) 6= ∅

1 + min{ft(j)}j∈N(i) otherwise

(1’)

ft+1(i) =



















0 if sourcet+1(i); else:

1 if sourcet(i); else:

2 + min{ft(j)}j∈N+(i) if N+(i) 6= ∅

2 + min{ft(j)}j∈N(i) otherwise

(2’)

where ∅ denotes the empty set. The output function is
transformed into:

δt(i, j) =

{

(f(j) − n) − f(i) if j ∈ N+(i)

f(j) − f(i) otherwise

III. V ORONOI DIAGRAM AND CONVEX HULL

We present two examples in the context of cellular automata,
where distance fields are used to solve non-trivial problems.
Once the preceding method is applied, a finite state automaton
can be derived.

A. Discrete Dynamic Voronoi Diagram

The Voronoi Diagram of a set of sources can be defined as
the set of sites that are equidistant to at least two sources.This
is a very practical structure [6] which makes a direct use of a
distance field.

The computation of the Voronoi Diagram of a static set of
sources is described in [7], [8]. In this solution, a wave is sent
by all the sources at the same time. When two waves meet,
a Voronoi region boundary is materialized. This is possible
because the synchronicity of the system is used to encode the
distances in time, so that when two waves meet on a site, that
site is equidistant to the two corresponding sources.



An interesting generalization is the dynamic computation
of the Voronoi Diagram, under the motion of the sources.

We first designed a solution by sending waves periodically
from all the moving sources. The detection of the Voronoi
Diagram is done as described above, but materialized
boundaries are removed after one period. Then the next
waves re-materialize the boundaries at the correct location
according to the (possibly) new positions of the sources.
However, when the sources stop moving, they continue to
send waves, which was unsatisfying. We were looking for a
rule that could converge, i.e. when sources stop moving, the
state of every site eventually fixes.

So we programmed a second solution by using the distance
field to directly express the distances in space instead of in
time. More precisely, by using the derivative of the distance
field, equidistant points that compose the Voronoi Diagram
can be seen as intersections of two circles with same radius,
centered in two sources. Distance valuesin the circle are
lower than the radius, while distancesout of the circle are
greater. Detection of the Voronoi Diagram is done by using
the values of the distances of sites in the neighborhood of each
site. Hence, almost all1 local configurations corresponding to
a Voronoi Diagram boundary can be characterized by the
following local predicate:

Vt(i) = ∃j, k ∈ N(i)2,
axis(j, i, k) ∧ dt(i) > max{dt(x)}x∈{j,k},

(6)
where axis(a, b, c) is a predicate that is true if the sitesa,
b, and c are along the same axis. Eq. (6) is valid no matter
the number of dimensions of the space. Figure 1(a) shows
two examples of circles with different radius, the resulting
intersections, and the singular axis.

This algorithm has been implemented as an hexagonal
cellular automata rule. The distances are computed using
rule (2), as its additional dynamic property is required, and
Figure 1(b) illustrates the results. The rule also works fine
when the sources move. Indeed, the rule is a simple detection
of distances pattern, so the Voronoi Diagram boundary is
updated as soon as the distances are; and when the sources
stop moving long enough, the boundaries stop moving as soon
as the distances converge.

Finally, the algorithm would work on other graphs, as it
only relies on the notion of circles, which is constructed only
with the the notion of distances. However, the errors due to
the discrete nature of the space present in hexagonal grid case
would be worse in a non-standard graph. Also, there is no
obvious relation between a arbitrary graph and the euclidean
space, so things likeaxis, for example, need to be redefined.
The identification of well-behaving graphs could be of great
interest.

1Almost all, because, the discrete nature of the space requires some minor
arrangement.

(a) (b)

Fig. 1. (a) For every point of the Voronoi Diagram, there exists a singular axis
such that the distance field is a local maximum (b) Result of the computation
of the Voronoi Diagram on an hexagonal grid

B. Discrete Convex Hull

The discrete convex hull of a set of sources can be defined
as the minimal connected component including all the sources
and such that every shortest path between two points of the
hull is also in the hull.

There exists a cellular automata rule that solves this problem
for a connected set of sources [4]. Its rule is defined for the
Von Neumann neighborhood as:

ct+1(i) =

{

1 if
∑

{ct(j)}j∈N(i) ≥ 4

ct(i) otherwise.
(7)

The initial configuration encodes the source presence in a site
i asc0(i) = 1, and the rule produces the convex hull according
to our definition only if we consider the Euclidean length of
the paths as distances. To our knowledge, there also exist
algorithms that work on sets of non-connected sources, but
all of them make some assumption of a previous knowledge
about an upper-bound on the distance between the sources [9],
[10], [11].

We will sketch here an algorithm that computes the convex
hull without any previous knowledge. Indeed, as the definition
of the convex hull involves shortest paths, we will see that
it can be constructed from distance fields, which are the
distances to the nearest source, i.e. the length of the shortest
paths to the set of sources. As this result has not been
published yet, only the insights will be given.

Our algorithm consists of the parallel composition of three
stages:

1) Detection ofmiddle points
2) Propagation to neighbors of lower distance value
3) Convexification

The two first stages alone connect arbitrarily distant sources
without adding any point outside of the convex hull. As the
connectivity problem is solved, using a rule related to Eq. (7)
as third stage produces the convex hull. Let us define and
describe the three stages more carefully:

1) Middle points: “Middle points” are defined as the points
on a shortest path between two sources, and equidistant to
them. Since they lie along a shortest path between two points
of the convex hull, they are in.

When two sources are sufficiently close compared to others
sources, their middle points can be detected by only using the



Fig. 2. Detection of middle points. The two circles are tangent, they
correspond to all points that have the same distance as the middle point.
The two axis are the maximum axis (inf-equal-inf) and the minimumaxis
(sup-equal-sup).

distance field from the set of sources. Indeed, middle points
are the intersection of two tangent circles centered on the
two sources and having the same radius. Figure 2 shows that
relying of the same property of the circles used previously to
define Eq. (6), the middle points can be detected using two
singular axis. Thus, the rule is related to the following local
predicate:

Mt(i) = ∃j, k, l,m ∈ N(i)4,
axis(j, i, k) ∧ dt(i) > max{dt(x)}x∈{j,k}∧
axis(l, i,m) ∧ dt(i) < min{dt(x)}x∈{l,m},

2) Propagation and Delaunay-like Structure:During the
propagation stage, the distant sources get interconnected.
When taking two sources into account, the propagation draws
every shortest paths from one source to the other. All these
paths go through the middle points, and those middle points
have the maximal distance value. Hence, it is enough to
progress backwards from the middle points by detecting points
that have a lower-valued neighbor:

Pt(i) = ∃j ∈ N(i), ct(j) = 1 ∧ dt(j) > dt(i)

This makes the middle points propagate towards its two
corresponding sources without adding points not belonging
to the convex hull. In fact, going from a value to a lower
value corresponds always to a shortest path from each site
to its nearest source. The result is a connected set of sites
connecting closer sources in a Delaunay-like fashion.

3) Convexifying Rule:The two previous stages transform a
non-connected set of sources into a connected one by adding
sites that lie in the convex hull. The last thing to do is to adapt
the predicate used in the rule (7), that is able to transform any
connected set into a convex one, for the hexagonal case with
hop count distance:

Ct+1(i) =
∑

{ct(j)}j∈N(i) ≥ 3

Now that all the stages are defined, let us define their parallel
composition:

ct+1(i) =

{

1 if Mt(i) ∨ Pt(i) ∨ Ct(i)

ct(i) otherwise.

Starting from a configuration where only the sitesi containing
a source are such thatc0(i) = 1, this rule constructs the convex

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) Middles detection (b) Delaunay-like structure (c) Convex Hull
(d,e,f) intermediate configurations of the parallel composition of the three

hull of arbitrarily distant sources. It converges in the following
sense: if we wait sufficiently long, any arbitrary large areawill
stabilize. Thanks to the distance field modulo representation,
this algorithm also requires only a finite number of state, as
one can check that every defined predicates can be rewritten
in order to only use differences. Figure 3 shows an execution
trajectory where the three stages have been applied one by one,
and three snapshots of the execution trajectory of the parallel
composition of the three stages.

IV. CONCLUSION

In this article, we shown how to transform an unbounded
distance field into a bounded-valued field. We show that this
is possible only is the differences between adjacent sites
is bounded, and we gives the relation that link that bound
and the number of state of the transformed field. In spite
of the fact that every thing is done only for the distance
field, the described transformation may be usable for other
integer fields satisfying the bounded difference requirement.
We have also describes two algorithms using the intuitive
language of integers: the Dynamic Voronoi Diagram and the
Convex Hull. For both examples, it is clear that the distance
is only used for its differential, allowing the transformation
to be used in order to obtain cellular automata rules. Those
algorithms have been programmed and tested in the case of
synchronous cellular automata, using a square and hexagonal
lattices. Future work includes expending this result to quasi
regular architectures and quasi synchronous update, such as
Amorphous Computers [12].

ACKNOWLEDGMENT

We acknowledge Andrew Adamatzky who pointed us to the
Convex Hull problem and provide his knowledge on existing
results and challenges on the subject, Christine Eisenbeisfor
her advices, and Sonia Dahdouh for her careful support, proof-
reading and advice. We would like to thank the reviewers of
the article also, as they greatly contribute to improve its quality
by their comments, and Daniel Yamins for his corrections and



suggestions. We acknowledge support from EPRC grant
EP/F003811/1 on general purpose spatial computation.

REFERENCES

[1] D. Coore, “Botanical computing: a developmental approachto gen-
erating interconnect topologies on an amorphous computer,” Ph.D.
dissertation, MIT, 1999.

[2] L. Maignan and F. Gruau, “A 1D cellular automata that moves particles
until regular spatial placement,” 2008.

[3] L. Maignan, “Uniformisation de la ŕepartition spatiale d’un ensemble
de points par diagramme de voronoı̈: Implémentation sur automate
cellulaire,” Ph.D. dissertation, Universite Paris XI, 2007.

[4] A. Adamatzky,Identification of Cellular Automata. Taylor & Francis,
1994.

[5] D. Yamins, “A theory of local-to-global algorithms for one-dimensional
spatial multi-agent systems,” Ph.D. dissertation, Harvard University
Cambridge, Massachusetts, 2007.

[6] F. Aurenhammer, “Voronoi diagramsa survey of a fundamental geomet-
ric data structure,”ACM Comput. Surv., vol. 23, no. 3, pp. 345–405,
1991.

[7] A. Adamatzky, “Voronoi-like partition of lattice in cellular automata,”
Mathematical and Computer Modelling, vol. 23, pp. 51–66(16), Febru-
ary 1996.

[8] M. W.A. and S. B.K., “Fine-grain discrete Voronoi diagram algorithms
in L1 andL∞ norms,”Mathematical and Computer Modelling, vol. 26,
pp. 71–78(8), August 1997.

[9] R. Jarvis, “On the identification of the convex hull of a finite set of
points in the plane,”Information Processing Letters, vol. 2, pp. 18–21,
1973.

[10] F. P. Preparata and S. J. Hong, “Convex hulls of finite sets of points in
two and three dimensions,”Commun. ACM, vol. 20, no. 2, pp. 87–93,
1977.

[11] F. P. Preparata, “An optimal real-time algorithm for planar convex hulls,”
Commun. ACM, vol. 22, no. 7, pp. 402–405, 1979.

[12] H. Abelson, D.Allen, D. Coore, C. Hanson, G. Homsy, J. T. F. Knight,
R. Nagpal, E. Rauch, G. J. Sussman, and R. Weiss, “Amorphous
computing,”Commun. ACM, vol. 43, no. 5, pp. 74–82, 2000.

View publication stats

https://www.researchgate.net/publication/224394460

