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Abstract—When programming a spatial computing medium processing elements operating synchronously, in pardire
such as a cellular automaton, the hop count distance to some sethop count distance is computed to the nearest source, at any
of sources (particles) is an often used information. In particular, location. Also, the distance is used in a way such that only
we consider the case where the sources themselves are movinqt diff ti I, I tt Wi I theist fieldth
Due to the locality of communication, only an estimation of the S diiteren |a. really matiers. vve ca _'S ance neldihe
distance can be made at each time Step, and each location. Whenvalues aSSOCIated to eaCh node at eaCh time. NOdeS can hOSt a
no assumption is made on the size of the medium, that distance point source which can dynamically move from one node to a
takes its values inN, which is not desirable, because it does not neighbor one. A distance field is such that, the distancedtor
lead to finite state. This paper shows how to use the modulo jn gne node is an estimation of the distance to the nearest
operation to project that set of N-fields into a finite set of Z/nZ- . . .
fields. Using the modulo stored at each site, we show that we arenode hosting a source at_ that particular t_|me. The _slow_er
still able to compute the local differential of the original field, the movement of sources is, the more precise the estimation
allowing to manipulate the former as a directional gradient. It becomes. When (and if) the sources stop moving, the estimated
allows us to evaluate the direction of the nearest source, provided distances should converge to the exact distances values.
the sources move at bounded speed, less than one site per time \ye show that, if the differential is the only information tha
unit. This information can be used to solve several problems of . . ' . . - .
spatial nature. In the particular case of cellular automata, we 1S €xploited from the distance field, it is possible to tramsf
present two rules using the modulo representation of distance the original distance field defined dN by a field defined
field: Voronoi Diagram and Convex Hull. The two rules applies on finite state set producing exactly the same behavior. We
for moving sources, although at the moment, the convex hull has choose the wordutputto describe thiglifferential because we
been implemented only for static sources. organize the rules managing a processing element intoaever
layers, where the layer responsible for computing the digta
field outputsthis differential to some higher level layer which

Spatial computing considers a computing medium made igfusing it. We describe two cellular automata rules thay onl
many elementary processing elements with local connextiagse the differential of the distance field. The first one is the
and homogeneously distributed in space. When programmibgnamic Voronoi Diagram of a set of moving sources, and
the medium, a common ingredient is to evaluate the distang@ second is the Convex Hull of a set of static sources.
to some source objects. Using this information, it is pdssib
to move an agent away from or towards the sources [1], Il. INFINITE DISTANCE FIELD WITH FINITE STATE
compute the Voronoi Diagram [2][3], or the Convex Hull [4]

among many examples. In all of those examples, the actuaIThiS section is organized as follows. We start off by giving
wo rules that produc®-valued distance fields with somewhat

value of the distances does not matter; only the differentid - - -
of the distances is actually used. different properties. Then we underline the fact that dista
fields are often used as directional gradients. We then define

Depending on the framework, various kind of rules can Hgasonable prop_erties th?t ne_eds to be_satisfied_ in order to
used to compute the distances. A classical way to COmplﬁr@nsform theN-dlstant_:g fields int&/nZ-distance fields for
them is to diffuse a gradient of chemical, and use tRPM€ bounded, providing the way to produce exactly the
chemical density as a distance information [1]. In this caseime output from the new field.
the distances take their valuesit In cases where the space
can be described by a graph, the hop count distance can ﬁs
be used. Between two nodes, it is defined as the number oBefore going into any details of the transformation of the
edges of the shortest path connecting them. Then the destaiedistance field into a finite distance field, let us describs fir
is a value inN. how it is possible to locally compute thE-distance field.

Considering a predicateource,(i) which is true if there is a

In this article, we consider a spatial computing mediursource in the sité at timet, the distance field is computed

described by a bounded degree graph of nodes which &kethe following rule:

I. INTRODUCTION

0Computation and use of the distance field



C. Transformation into a finite state field

If the property (4) is satisfied, then a simple modulo operato

. 0 if source i
di11(i) = . t+.1( ) . (1) is enough to project the initial field into a field f where the
1+ min{d:(j)}jen;) otherwise. output is exactly the same:

This well-known rule [5][3][2] converges to a.co_nfiguration fo(v) = dy(v) mod (2.A + 1). )
where each nodeof the considered graph has i) equals
to the distance to the nearest source. Using this informagio By this transformation, theN-distance field is transformed
agent moving in the graph can decide to get closer or furthgfo a Z/nZ-distance field, withn = 2.A 4 1. The former
from the sources. In [2], the case where the sources positioalue is the size of the output set+A,...,0,..., A}
evolve in time is also considered. A slightly different viers
of that rule is used, which ensures that the distance fieldygw When applying the modulo operator, the global order on
indicates the direction to nearest source for any site at aifig values is lost, i.e. some values that were less than their
time: neighbor’s value have modulo value being greater. Because
the definition of distance field depends on taking a minimum,
we must correct for this explicitly. The neighbors who have
diy1(2) = § 1if =sourcei1(i) A source (i) (2)  these "mis-ordered values are:

2 it e onense. N¥() = € NIJG) = (f) — &) modn)

. In many important applicat_ions of this spatial _gradie_nt, 'I'h order to correctly transform the rules (1) and (2), thaueal
is often the case that only thifferencebetween neighboring of Nt () must be tested by the minimum operator before the

state values is requ?red, not the actual absolute valuekeof Bthers, because, if there are any, they correspond to tke tru
states. Formally define: minimal values in the original field. We obtain respectively

0 if sourcesy1(%)

84(i,3) = d(j) = du (i) for j € N{(i) ©) 0 if sourcesa(i); else:

Many applications depend just of) not on the values off ~ fi+1(i) = ¢ 1+ min{fi(j)}jen+q) if NT(@) #0 (1)
(except perhaps at the origin 0). The set of differences ean b 1+ min{ f;(j)},en() otherwise

finite even when the set of absolute values is not. When this is

the case, we will now show how to take advantage of this fact 0 if sourcesy1(i); else:

to quotient the state space into a finite set without affgctin 1 if source(i); else:

the outputs. fer1(i) = 2+ min{ fi(j)}jen+@ if NT(i) #0 @)

B. Properties of the distance field 2+ min{fe(j)}jen( otherwise

The distance field can be seen as a layer that takes a sathere 0 denotes the empty set. The output function is
of sources as input and allows to compute the differential §Rnsformed into:
the distance to the nearest sources as output. Whether this . N iy

6,00, 1) = {(f(y) —n) = f(i) if j € N¥(0)
f(j) — f(i) otherwise

Ill. VORONOIDIAGRAM AND CONVEX HULL

The most important property is that the difference betwee Wwe prgsent tWO. examples in the context of celliu!ar automata,
gO\Zhere distance fields are used to solve non-trivial problems

two neighbor sites must be bounded by some fixed const : i . L
A at any time. As we have already defingdi, j) in Eq. (3) nce the preceding method is applied, a finite state autamato
' " "7 can be derived.

the property can be written:

Vivj € N(i): 8:(i,5) € [-A, A @)

output is used in a dynamical or static way, some properties
are required of the field in order to admit a finite state
representation.

A. Discrete Dynamic Voronoi Diagram

The Voronoi Diagram of a set of sources can be defined as
If it is not the case, then the set of outputted values is it#jni the set of sites that are equidistant to at least two souiftes.
which prevent any finite state field to produce it. is a very practical structure [6] which makes a direct use of a
distance field.

The property (4) implies a bound on the speed of the sourcesThe computation of the Voronoi Diagram of a static set of
in the dynamical case. Indeed, if the sources move one stgpurces is described in [7], [8]. In this solution, a waveests
each time for example, it moves as fast as the information lay all the sources at the same time. When two waves meet,
the field, so the sites can not update their values fast enowghoronoi region boundary is materialized. This is possible
to preserve the\ bound. In fact, theA bound is dependent because the synchronicity of the system is used to encode the
on the speed of the sources when considering the two rutistances in time, so that when two waves meet on a site, that
described above. site is equidistant to the two corresponding sources.



An interesting generalization is the dynamic computation
of the Voronoi Diagram, under the motion of the sources.

We first designed a solution by sending waves periodically
from all the moving sources. The detection of the Voronoi
Diagram is done as described above, but materialized
boundaries are removed after one period. Then the next (@) (b)
waves re-materialize the boundaries at the correct latatigig. 1. (a) For every point of the Voronoi Diagram, there ex@singular axis
according to the (possibly) new positions of the sourcestich that the distance field is a local maximum (b) Result of treputation
However, when the sources stop moving, they continue Fbihe Voronoi Diagram on an hexagonal grid
send waves, which was unsatisfying. We were looking for a
rule that could converge, i.e. when sources stop moving, tge
state of every site eventually fixes. '

Discrete Convex Hull

The discrete convex hull of a set of sources can be defined

So we programmed a second solution by using the distargethe minimal connected component including all the saurce
field to directly express the distances in space instead ofaAd such that every shortest path between two points of the
time. More precisely, by using the derivative of the disendull is also in the hull.
field, equidistant points that compose the Voronoi Diagram There exists a cellular automata rule that solves this probl
can be seen as intersections of two circles with same radif@, @ connected set of sources [4]. Its rule is defined for the
centered in two sources. Distance valiasthe circle are Von Neumann neighborhood as:
lower than the radius, while distancesit of the circle are it S e ren > 4
greater. Detection of the Voronoi Diagram is done by using e (i) = { ' 1\ IjEN() = @)
the values of the distances of sites in the neighborhoodaif ea ci(i) otherwise.

site. Hence, almost dlllocal configurations corresponding ©rhe initial configuration encodes the source presence itea si

a Vorpn0| Dlagram. boundary can be characterized by t?%Sco(i) = 1, and the rule produces the convex hull according
following local predicate:

to our definition only if we consider the Euclidean length of
Vi(i) = 3j, ke N()?, the paths as distances. To our knowledge, there also exist
azis(j,i, k) A dy(i) > max{ds(2) }oegjn algorithms that work on sets of non-connected sources, but
all of them make some assumption of a previous knowledge
where axis(a,b,c) is a predicate that is true if the sites about an upper-bound on the distance between the sources [9]
b, and c are along the same axis. Eq. (6) is valid no matt¢t0], [11].
the number of dimensions of the space. Figure 1(a) showsWe will sketch here an algorithm that computes the convex
two examples of circles with different radius, the resgtinhull without any previous knowledge. Indeed, as the definiti
intersections, and the singular axis. of the convex hull involves shortest paths, we will see that
it can be constructed from distance fields, which are the
This algorithm has been implemented as an hexagom$tances to the nearest source, i.e. the length of theesfort
cellular automata rule. The distances are computed usipgths to the set of sources. As this result has not been
rule (2), as its additional dynamic property is requiredd arpublished yet, only the insights will be given.
Figure 1(b) illustrates the results. The rule also works fine
when the sources move. Indeed, the rule is a simple detectiof®ur algorithm consists of the parallel composition of three
of distances pattern, so the Voronoi Diagram boundary $tages:
updated as soon as the distances are; and when the source$ Detection ofmiddle points

stop moving long enough, the boundaries stop moving as soorp) Propagation to neighbors of lower distance value
as the distances converge. 3) Convexification

Finally, the algorithm would work on other graphs, as g yyo first stages alone connect arbitrarily distant sesirc
only relies on the notion of circles, which is constructed:l)/onWithout adding any point outside of the convex hull. As the

with the the notion of distances. However, the errors due [Q,hetivity problem is solved, using a rule related to &o. (
the discrete nature of the space present in hexagonal & Cgg hrg stage produces the convex hull. Let us define and
would be worse in a non-standard graph. Also, there is Mscribe the three stages more carefully:

obvious relation between a arbitrary graph and the eudlidea 1) Middle points: “Middle points” are defined as the points

space, so things likexis, for example, need to be redefmedon a shortest path between two sources, and equidistant to

The identification of well-behaving graphs could be of gregf,e ) gince they lie along a shortest path between two points
Interest. of the convex hull, they are in.

IAImost all, because, the discrete nature of the space regsinae minor When tWO_SOU.rceS are_ sufficiently close compared to _Others
arrangement. sources, their middle points can be detected by only usiag th



sup

> (@) (b)

Fig. 2.  Detection of middle points. The two circles are tarigghey
correspond to all points that have the same distance as thdendiht.
The two axis are the maximum axis (inf-equal-inf) and the minimaxis
(sup-equal-sup).

. , : . d e f

distance field from the set of sources. Indeed, middle points ( _) _ © _ ®

are the intersection of two tangent circles centered on thj: 3 (&) Middles detection (b) Delaunay-like structug Convex Hull
. . . 'e,f) intermediate configurations of the parallel compasibf the three

two sources and having the same radius. Figure 2 shows that

relying of the same property of the circles used previously t

define Eq. (6), the middle points can be detected using tWg| of arbitrarily distant sources. It converges in thedaling
singular axis. Thus, the rule is related to the followingabc gense: if we wait sufficiently long, any arbitrary large anéth

predicate: stabilize. Thanks to the distance field modulo representati
this algorithm also requires only a finite number of state, as
My(i) = 3Fj,k,1,me N(i)?, one can check that every defined predicates can be rewritten
axis(j,i, k) A dy(i) > max{d(x)}reqj A in order to only use differences. Figure 3 shows an execution
axis(l,i,m) A di(i) < min{d:()}ze{1,m} trajectory where the three stages have been applied onedyy on

and three snapshots of the execution trajectory of the Iparal

2) Propagation and Delaunay-like Structuréduring the
) pag Y g sition of the three stages.

propagation stage, the distant sources get interconnecfe&y"PO
When taking two sources into account, the propagation draws IV. CONCLUSION

every shortest paths from one source to the other. All thesqn this article. we shown how to transform an unbounded

paths go through the middie points, and those middie po'rli%tance field into a bounded-valued field. We show that this
i

have thebmall(xma:]ll ?lstanze V‘?‘(Ijlé?' H?”Cet; ':j IS ef“’”gh_'o possible only is the differences between adjacent sites
Fr:;?;]zsvse :(I:ovv\\/lgrr—vsallzzrg ;eei rr?klnor'e points by etectmgtpon?s bounded, and we gives the relation that link that bound

9 ' and the number of state of the transformed field. In spite
Pi(i) =35 € N(0), ci(§) = L A de(j) > di(d) of the fact that every thing is done only for the distance

Thi K h iddl . ds | field, the described transformation may be usable for other
s makes the middle points propagate towards Its t\.'YRteger fields satisfying the bounded difference requireme

corresponding sources WithOUt. adding points not belongiRgy "have also describes two algorithms using the intuitive
to the convex hull. In fact, going from a value to a Ic’Wer(;mguage of integers: the Dynamic Voronoi Diagram and the
value corresponds always to a shortest path from each

. Th It q f o nvex Hull. For both examples, it is clear that the distance
to its ngarest source. 1he result is a copnecte .set 0 S'i'é,e%nly used for its differential, allowing the transfornat
connecting closer sources in a Delaunay-like fashion.

3) C ifving RuleThe tw . ¢ t ; to be used in order to obtain cellular automata rules. Those
) Convexifying RuleThe O previous slages ransiorm a,,4jthms have been programmed and tested in the case of
non-connected set of sources into a connected one by ad 9%

ites that lie in th hull. The last thing to do is tord chronous cellular automata, using a square and hexagona
sites that lie In the convex hull. The last thing to do IS toRtda, 5 yices  Future work includes expending this result tosjua

the predicate u§ed in the rule (7), that is able to transfayn &egular architectures and quasi synchronous update, sich a
connected set into a convex one, for the hexagonal case WAﬁaorphous Computers [12]

hop count distance:

Crpa(i) = > _{e(i)}jene >3
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