
A Testing Scheme for Self-Adaptive Software
Systems with Architectural Runtime Models

Joachim Hänsel, Thomas Vogel and Holger Giese
Hasso Plattner Institute for Software Systems Engineering

at the University of Potsdam, Potsdam, Germany
EMail: [Joachim.Haensel|Thomas.Vogel|Holger.Giese]@hpi.de

Abstract—Self-adaptive software systems (SASS) are equipped
with feedback loops to adapt autonomously to changes of the
software or environment. In established fields, such as embedded
software, sophisticated approaches have been developed to sys-
tematically study feedback loops early during the development.
In order to cover the particularities of feedback, techniques
like one-way and in-the-loop simulation and testing have been
included. However, a related approach to systematically test
SASS is currently lacking. In this paper we therefore propose
a systematic testing scheme for SASS that allows engineers to
test the feedback loops early in the development by exploiting
architectural runtime models. These models that are available
early in the development are commonly used by the activities of
a feedback loop at runtime and they provide a suitable high-level
abstraction to describe test inputs as well as expected test results.
We further outline our ideas with some initial evaluation results
by means of a small case study.

I. INTRODUCTION

Traditionally, software development follows an open-loop
structure that requires human supervision when software sys-
tems are exposed to changing environments [1]. To reduce hu-
man supervision, software systems are equipped with feedback
loops to adapt autonomously to changing environments. Such
closed-loop systems are designated as self-adaptive software
systems (SASS) [2] and they are often split in two parts, an
adaptation engine realizing the feedback loops and controlling
the adaptable software [1]. As pointed out by Calinescu [3],
such systems will become important for safety-critical appli-
cations, where they have to fulfill high-quality standards.

Testing is an established technique for ensuring quality in
traditional systems, even safety-critical ones [4], and processes
for testing such systems exist. For instance, embedded soft-
ware with its feedback loops is often systematically tested in
three stages [5, pp. 193–208]:i) a simulation stage that tests
the models (specification) of the software under development
in a simulated or real-life environment, ii) a prototyping stage
that tests the real software in a simulated environment, and
finally, iii) pre-production stage that tests the real software in
the real environment. With each stage the software is more and
more refined to the final product while testing continuously
provides assurances for the software and particularly early in
the development.

However, a similar systematic testing process providing
continuous and early assurances does not exist for SASS.
In contrast, models for substituting the environment or parts
of a SASS usually cannot be obtained easily and therefore,

a generic simulation environment for SASS does not exists.
Consequently, testing SASS typically requires that the imple-
mentations of the feedback loops and adaptable software with
its sensors and effectors are available. This impedes testing
early in the development and makes it costly to remove faults
in the feedback loops discovered late in the development.

Furthermore, approaches used for traditional systems are
not as easily applicable to SASS as the interface between the
adaptation engine and the adaptable software is often quite
different from that of embedded software. SASS are usually
not restricted to observing and adjusting parameters but addi-
tionally monitor and adapt the architecture of the software [6]–
[8], thus requiring support of structural adaptations [9].

Some approaches address the testing of SASS but only for
later development stages [10]–[14] when the systems have
already been deployed. Others do promote testing in earlier
stages but they still assume an executable and complete SASS
to run the tests against [15]–[17]. Testing of only parts of the
feedback loop is not supported. In contrast, we consider testing
parts of a SASS as a precondition to early validation since a
system with the completely implemented adaptable software
and feedback loop is only available in the latest development
stages.

Therefore, we propose a systematic testing scheme for
SASS that allows engineers to test the feedback loops (adapta-
tion behavior) early in the development by exploiting runtime
models. Such models represent the adaptable software and
environment and they are typically used at runtime to drive the
adaptation [18]. Our approach leverages early testing of SASS
by using architectural runtime models that are available early
in the development and are commonly used by the activities
of a feedback loop. Therefore, feedback loop activities such
as monitor, analyze, plan, and execute (cf. MAPE-K [19]) can
be individually tested while the whole feedback loop and the
adaptable software do not have to be implemented yet. In
contrast, the non-implemented parts are simulated based on
the runtime models. Consequently, the feedback loop can be
modularly tested while the different parts of the loop can be
incrementally refined and implemented until they replace the
simulated parts. Moreover, we expect reduced costs of testing
since we do not require final or experimental implementations
of certain feedback loops parts to test other parts.

The rest of the paper is structured as follows. We describe
preliminaries in Section II and the benefits of runtime models

c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works. DOI: https://doi.org/10.1109/SASOW.2015.27
134

ar
X

iv
:1

80
5.

07
35

4v
1

 [
cs

.S
E

]
 1

7
M

ay
 2

01
8

https://doi.org/10.1109/SASOW.2015.27

for testing in Section III. Then, we discuss our approach
by means of one-way (Section IV), in-the-loop (Section V),
and online (Section VI) testing. Finally, we sketch an initial
evaluation in Section VII, contrast our approach with related
work in Section VIII, and conclude the paper in Section IX.

II. PRELIMINARIES

In this section we discuss preliminaries of the presented
testing: MAPE-K feedback loops and architectural RTM.

A. MAPE-K Feedback Loops

The development of SASS typically follows the external
approach [1] that separates adaptation from domain concerns
by splitting up the software in two parts: an Adaptation Engine
for the adaptation concerns and an Adaptable Software for the
domain concerns while the former senses and effects and thus,
controls the latter. This constitutes a feedback loop that realizes
the self-adaptation (see Figure 1). The engine senses as well
the Environment with which the adaptable software interacts.

Adaptable Software

Adaptation Engine

Environment

RTM

sensing effecting

EM

A P

interacting

Figure 1. MAPE-K Feedback Loop with a Runtime Model (RTM).

The resulting feedback loop between the engine and the
software can be refined according to the MAPE-K reference
model [19]. This model considers the activities of Monitoring
and Analyzing the software and environment and, if needed,
of Planning and Executing adaptations to the software. All
activities share a Knowledge base as illustrated by a runtime
model (RTM) in Figure 1 and discussed in the following.

B. Architectural Runtime Models

The external approach as previously discussed requires that
the adaptation engine has a representation of the adaptable
software and environment to perform self-adaptation. This rep-
resentation is often realized by a causally connected Runtime
Model (RTM) [18]. A causal connection means that changes
of the software or environment are reflected in the model and
changes of the model are reflected in the software (but, not in
the environment being a non-controllable entity).

Considering Figure 1, an RTM can be used as a knowledge
base on which the MAPE activities are operating. The monitor
step observes the software and environment and updates the
RTM accordingly. The analyze step then reasons on the RTM
to identify any need for adaptation. Such a need is addressed

by the plan step to prescribe an adaptation in the RTM, which
is eventually enacted to the software by the execute step.

Using RTMs in self-adaptive software provides the benefits
of creating appropriate abstractions of runtime phenomena
that are manageable by the feedback loops and of applying
automated model-driven engineering (MDE) techniques [18].

The software architecture has been identified as such an
appropriate abstraction level for representing the adaptable
software and environment and for supporting structural adap-
tation [6]–[9,18]. Hence, architectural RTMs of the adaptable
software are used by a feedback loop to reflect on the state of
the software and environment. Such state-aware models can be
enriched by a feedback loop to cover, for instance, the history
or time series of states and executed adaptations, which results
in history-/time-aware models.

In our research on self-adaptive software such as [20], we
evaluate our work by using mRUBiS1, an internet marketplace
on which users sell or auction products, as the adaptable
software. A single shop on the marketplace consists of 18
components and we may scale up the number of shops. For a
self-healing scenario, we created architectural runtime models
of mRUBiS and defined different types of failures based on the
models. These failures have to be handled by the adaptation
engine. Examples of such failures are exceptions emitted by
components, unwanted life-cycle changes of components, the
complete removal of components because of crashes, and
repeated occurrences of these failures. Based on that, we
experiment with different adaptation mechanisms and can also
exploit the models for testing as discussed in the following.

III. EXPLOITING RUNTIME MODELS FOR TESTING

In the following, we assume a SASS that follows the MAPE-K
cycle with runtime models (RTMs) as schematically depicted
in Figure 1. If the RTMs are just self-aware and reflect the
current state of the adaptable software and environment, we
can make the following two observations:

(1) The behavior of the system can be described by a
sequence of steps (→AS or →ENV)

∗ →M→A→P→E (→AS

or →ENV)
∗; . . . where →AS denotes a step of the adaptable

software, →ENV denotes a step of the environment, →M de-
notes the complete monitoring step, →A denotes the complete
analysis step, →P denotes the complete planning step, and
→E denotes the complete execute step.

(2) The interface between those steps can be described by
different states Si of the RTM if we do not consider the
input of the monitoring and the output of the execute step:
(→AS or →ENV)

∗ →M SM
1 →A SA

1 →P SP
1 →E (→AS

or →ENV)
∗;→M SM

2 . . . where SM
i denotes the RTM state

after the i-th monitoring, SA
i the RTM state after the i-th

analysis, and SP
i the RTM state after the i-th planning.

Consider the self-healing example in Figure 2. An intact
architecture is monitored and results in RTM SM

i−1. For now,
analysis and planning are not required to take action since the
architecture is not broken. Without an adaptation, the execute

1Modular Rice University Bidding System: http://www.mdelab.de

135

http://www.mdelab.de

S
i-1
M S

i
M S

i
A S

i
P

Figure 2. Example Trace for a Self-Healing Scenario.

step will do nothing either. We can directly proceed with
the next steps in the environment or adaptable software. Due
to either an environmental influence or some failure in the
adaptable software (→ENV or →AS), a component of the
architecture is removed. In the next step, this is monitored as
RTM SM

i . The result of the analysis step →A is the annotated
RTM SA

i that marks the missing component. The planning step
→P constructs a repaired RTM SP

i which will be applied to
the adaptable software in the next step by →E .

These two observations indicate that the different states of
the RTM are the key element to describe the input/output
behavior of the MAPE activities concerning their communi-
cation with the adaptable software. Moreover, the RTMs also
facilitate considering the required behavior of the adaptation
engine at a much higher level of abstraction than the events
observed by the monitoring step and the effects triggered by
the execute step.2 Consequently, we suggest exploiting the
RTMs to systematically test the adaptation engine and its parts
in form of one-way testing of individual steps and fragments,
in-the-loop testing of the analysis and planning steps, and
online testing of the analysis and planning steps. We further
study how we can validate the model which is required for
the in-the-loop testing.

IV. ONE-WAY TESTING

We define One-Way Testing as the following: An input RTM
and an expected oracle RTM are provided. One or more steps
are tested in a single execution of a partial feedback loop.
The tested parts receive the input RTM and are supposed to
produce an output RTM. The output RTM is compared against
the oracle. In this kind of testing the steps →AS , →ENV , →M ,
→A, →P or →E will happen at most once.

A. One-Way Testing single MAPE Activities

The most basic approach is to test each of the steps/activities
that process the RTM on their own. Obviously, these tests need
to be run before testing combinations of feedback-loop steps
to better locate faults and tell single-step errors from errors
that arise due to problems in the interaction of steps.

1) One-Way Testing the Analysis: If we want to test the
analysis step, we simply provide an input RTM SM

1 , run step
→A, and compare the resulting RTM SA

1 with an oracle RTM
SA
o . Applied to the example in Figure 2, we choose SM

i with

2We ignore here the case that the adaptable software and environment
change while the feedback loop is running. While this case could not be
excluded in general, we may neglect it due to the considered abstraction
level as supported by architectural runtime models. That is, oftentimes the
architecture does not change very frequently, for instance, due to failures.

the removed component as an input RTM. We then define an
oracle RTM SA

o that contains an annotation where the missing
component has been marked. Applying →A on SM

i would give
us SA

i which is compared to SA
o . If both RTMs are the same,

that is, both especially contain the same “missing component”
annotation, the test would pass, otherwise fail.

2) One-Way Testing the Planning: Similar to the analysis
step, we provide an input RTM SA

1 , run step →P , and check
whether the ouput of →P is equal to an oracle RTM SP

o that
was defined before. In the example of Figure 2, we start out
with the annotated RTM SA

i . The oracle SP
o would be defined

as the intact architecture from the beginning (SM
i−1) and we

would expect →P to return an RTM equal to SP
o , that is, the

plan step has re-created the removed component in the RTM.

B. One-Way Testing MAPE Fragments

We now discuss one-way testing of fragments by jointly testing
the analyze and plan or the monitor and execute steps.

1) One-Way Testing the Analysis and Planning: As a pre-
condition to the separate test of the analysis and planning, it
is necessary to have knowledge about the way the analysis
works and what kind of models to expect. Obviously it would
be hard to create a valid oracle model SA

o or input model SM
1

if this knowledge is not available. In a simple scenario like
the self-healing one presented before this should not pose a
problem. But there are also more complex analysis algorithms,
which will not result in models that can be tested as easily.
Furthermore, some errors might only appear if the analysis
and planning are tested together.

Consequently, we propose to test the analyze and plan steps
as the next unit. Again we can benefit from the same pattern of
testing, that is, by providing an input model SM

1 and an oracle
model in state SP

o . In terms of the example trace (Figure 2),
this means to start with the broken monitored input model
SM
i , construct an expected model SP

o where the removed
component is redeployed and check whether the resulting
model of the application of SM

i →A→P SP
i is equal to SP

o .
2) One-Way Testing the Execute and Monitor: The separate

testing of the monitor and execute steps via the runtime models
is not feasible as the effect of the execute step cannot be
directly observed. If we follow the same pattern as with the
analysis and planning, we would end up with no result model
for the execute step and no input model for the monitor step.
The effect of the execute step cannot be directly observed
since it is part of the concrete adaptable software. Likewise,
the monitor step’s input is directly obtained from the software.
Instead of the separate testing, we propose to test the monitor
and execute steps together. In this setup we need a working
adaptable software and the tested execute and monitor steps are
effecting and sensing the software. The test input is provided
by a model SP

1 to the execute step →E which will effect the
adaptable software. The adaptable software is monitored →M

and a new runtime model is obtained SM
2 .

Equality and inequality of these two models can be inter-
preted in different ways: (1) equal models may indicate that
the monitor and execute steps work correctly, (2) equal models

136

may also mean that a failure in the execute step is masked by a
failure in the monitor step (or the other way round), or (3) that
the adaptable software or the environment mask a fault of the
execute and/or monitor steps. If SP

1 and SM
2 are not equal,

then either (4) the execute step, (5) the monitor step or (6)
both do not work properly or (7) the environment introduced
an error or the adaptable software showed erroneous behavior.

Cases (3) and (7) can be ruled out by applying the test
several times. It is unlikely that the environment will introduce
the same error for all test runs and if the adaptable software
was tested before, it is equally unlikely that it will constantly
show erroneous behavior. In the cases (4), (5) and (6) we can
assume a broken monitor and/or execute step. Case (1) should
be more likely than (2) since it is not impossible but hard to
have two faults that mask each other. Case (2) should become
less likely the more tests with different SP

1 and SM
2 are done.

In the end, equal models are a good indicator of working
execute and monitor steps and non-equal models show that
at least one of them is broken.

With this test setup, only parts of the monitoring capabilities
can be tested since its purpose is to detect not only correct but
also incorrect states of the adaptable software. On the other
hand, the execute step is not intended to have an effect on
the software that causes an incorrect state. Therefore, we need
to be able to impose an “incorrect” RTM on the adaptable
software (such as SM

i in Figure 2), so that we can test whether
the monitor step is able to properly observe this incorrect
state and create the according RTM. A special test adapter
is needed, so that first a correct RTM can be imposed by the
execute step and then the incorrect parts are added by the test
adapter. The incorrect input RTM S1err needs to be split into
S1valid which will be provided to →E and S1invalid which
is given to the test adapter. The oracle SM

o for this test looks
like S1err and the monitor should observe an incorrect RTM.

V. IN-THE-LOOP TESTING

Considering the analysis and planning, one-way testing is
effective to find errors that always show up, independent
from their previous executions in the feedback loop. If we
want to identify errors that arise from an accumulated state
of the system, we need to test them with sequences of
inputs. It would be a cumbersome task to construct these
sequences by hand. Instead we propose to provide a simulation
that captures the behavior of the adaptable software (AS),
environment (ENV), monitor (M) and execute (E) steps. This
simulation will provide sequences of RTMs to the analyze
step and will read back the RTMs from the plan step. We
define such a runtime model simulation by an automaton
RTMS = (SRTMS ,→RTMS) that comprises the combined
behavior of AS, ENV, M, and E. Note that RTMS is a
simulation for testing purposes. The provided input RTM and
the way the simulation model reacts to the output of →A and
→P are supposed to be realistic but not an exact replacement
for the real AS, ENV, M and E. It also means that it may
behave non-deterministically to reflect realistic AS and ENV
and therefore involves some random component.

In order to decide whether a test is successful, we also need
an oracle. In the simplest case the oracle is given by a state
property φ for the model. In more complex cases φ may be
even a sequence property or ensemble property. With respect
to our example, the oracle may be the sequence property that
some architectural constraints for our RTM are only violated
for at most n subsequent states.

A. Black-Box In-the-Loop Testing of Analysis and Planning

With RTMS at hand we can test the feedback loop already
in an early stage when neither the adaptable software or the
monitor and execute steps are available or ready. The analyze
and plan steps combined with RTMS can be simulated
together and produce observable sequences: →RTMS S1 →A

SA
1 →P SP

1 →RTMS S2 From these we consider only the
traces of states: π = S1;S

P
1 ;S2 . . . and check whether π |= φ

to ensure that →A and →P as a black box work as expected.

B. Grey-Box In-the-Loop Testing of Analysis and Planning

We can also aim for a better fault location if we consider
the result of →A (i.e., the analyze and plan steps as a grey
box). The sequence, we would like to look at, is the following:
→RTMS S1 →A SA

1 →P SP
1 →RTMS S2 Here we will

inspect the trace π′ = S1;S
A
1 ;S

P
1 ;S2 In order to test these

traces, we need a property φ′ that covers SA
i as well. We now

require π′ |= φ′ to ensure that →A and →P work as expected.

VI. ONLINE TESTING AND VALIDATION

In a later development stage we can reuse the simulation model
RTMS and the properties φ and φ′ alongside the running
system for online testing and validation.

A. Online Testing

If →A and →P in the running system will expose SA
i and SP

i

in the same way as in the development stage, we can check
φ and φ′ online or against a recorded trace. The simulation
is simply replaced with the real system. Whether online or
offline testing is to be preferred will depend on available
resources on the system under test and the existence of logging
facilities. Both approaches, black-box and grey-box testing, are
applicable and can be carried out in the same way as with the
simulation.

The sequences will be (→AS or →ENV)
∗ →M SM

1 →A

SA
1 →P SP

1 →E (→AS or →ENV)
∗;→M SM

2 . . . and the
traces will be the exchanged RTMs: π = SM

1 ;SA
1 ;S

P
1 ;SM

2 . . .

B. Validation

The in-the-loop testing heavily depends on RTMS. If an error
is detected during in-the-loop testing, it is likely that it is
caused by an erroneous adaptation (→A, →P or both). But the
RTMS itself might also be the source of an error or might
mask an erroneous adaptation. The validation of RTMS in
this later stage can give an indication about the quality of
RTMS and therefore the suitability for testing. Additionally,
if the real system produces sequences not covered by RTMS
which cause errors in the adaptation, we exactly know which

137

sequence reveals the error and it can be added to RTMS for
regression tests.

The idea behind validating RTMS is to observe (→AS

or →ENV)
∗ →M SM

1 →A SA
1 →P SP

1 →E (→AS

or →ENV)
∗;→M SM

2 . . . and look at the traces π′ =
SM
1 ;SP

1 ;SM
2 If our simulation model RTMS is correct,

it should cover the observed behavior: π′ ∈ L(RTMS).

VII. INITIAL EVALUATION

In this section, we report on our initial evaluation of the
testing scheme for SASS we are proposing in this paper. This
evaluation shows the benefits of using (architectural) runtime
models with respect to implementing a test framework by
means of reusing MDE techniques. Moreover, it gives us
preliminary confidence about the effectivity of the scheme
when developing feedback loops.

A. One-Way Testing

To realize one-way testing, we developed a generic test adapter
that loads the input model, triggers the adaptation steps such
as analysis and planning to be tested, and finally, compares
the resulting model with the oracle model. Developing such
a test adapter has been simplified due to MDE principles as
realized by the Eclipse Modeling Framework (EMF)3. EMF
provides mechanisms to generically load and process models
and particularly of comparing models4. Hence, we easily
obtain matches and differences between two models such as
the output model of adaptation steps and the oracle model
to obtain the testing result. This result, that is, the output of
the comparison, is also a model that can be further analyzed.
For instance, the Object Constraint Language (OCL)5 can
be used to check application-specific constraints such as
mission-critical components like for authenticating users on
the mRUBiS marketplace are not missing in the architecture.

B. In-the-Loop Testing

For the internet marketplace mRUBiS we developed a sim-
ulator based on an architectural runtime model. It simulates
the marketplace itself (i.e., the adaptable software) thereby
injecting failures as well as the monitor and execute steps.
The simulator maintains the runtime model against which the
analyze and plan steps are developed.

Using this simulator, we can test the analyze and plan steps
as follows: i) the simulator injects failures into the runtime
model (this simulates the behavior of the adaptable software
and environment as well as the monitor step that reflects the
failure in the model). ii) the analyze and plan steps to be tested
are executed and they analyze and adjust the model according
to the adaptation need. iii) the simulator performs the execute
step that emulates the effects of the adaptation as performed by
the analyze and plan steps in the runtime model. For instance,
response times are updated in the model if the configuration
of the architecture is adapted.

3EMF: https://eclipse.org/modeling/emf/
4EMF Compare: https://www.eclipse.org/emf/compare/
5Eclipse OCL: http://projects.eclipse.org/projects/modeling.mdt.ocl

After one run of the feedback loop and before injecting
the next failures, the simulator checks whether the analyze
and plan steps performed a well-defined adaptation (e.g.,
by checking whether the life cycle of components has not
been violated when adding or removing components) and it
checks whether the state of the runtime model represents a
valid architecture (e.g., components are not missing or there
are no unsatisfied required interfaces, that is, no dangling
edges). These checks are performed based on constraints and
properties that the runtime models must fulfill and the results
of these checks are given as feedback to the engineer.

This simulator has been used in research and in courses
to let students develop and test different adaptation techniques
(e.g., hard-coded event-condition-action, graph transformation,
or event-driven rules) for the analyze and plan steps. Though
the simulator helped in finding faults in the adaptation logic,
the randomness included in the simulator and its basic logging
facilities impeded the automated reproducibility of traces and
therefore, the retesting of “interesting” edge cases.

C. Online Testing and Validation

So far, we have not worked on testing the adaptation online.
However, our experience with runtime models and employing
MDE techniques at runtime for self-adaptation [6,20] gives
us promising confidence to achieve the online testing. For
instance, our EUREMA interpreter [20] that executes feedback
loops already maintains the runtime models used within the
loops and passes them along the loop’s adaptation activities.
Thus, when passing models along the activities, the interpreter
may defer the execution of the next activity. Before proceed-
ing, the interpreter can either (1) hand over to an online testing
activity that will compare the current RTM to one which is
derived from a simulation model that runs in parallel or (2)
log the RTM for later comparison in a simulation module.
As discussed earlier, (1) has the advantage of immediate
revelation of errors but needs computation resources on the
system while (2) can benefit from more resources offline but
needs persistance resources for the logs. In both cases, working
only on changes of the RTM might reduce cost.

VIII. RELATED WORK

Testing of SASS has been addressed by others as well. This
related work could usually be assigned to one of the following
categories: 1) The adaptation is formally specified and veri-
fied with special constructs regarding the adaptation [21,22],
2) the SASS is tested/verified at runtime/online and the
verification expressions are adapted to properties unique to
adaptation [10]–[12], 3) tests are evolved at runtime in an
attempt to test for requirement fulfillment even when the
environment or the adaptable software changes [13,14], and
4) testing is carried out at design time addressing the special
issues of adaptive systems [15]–[17]. 5) Combined assessment
of quality assurance for self-adaptive systems from more than
one direction has also been done [23].

The work presented in [23] already shows that a single
quality assurance technique is not enough as an adequate

138

https://eclipse.org/modeling/emf/
https://www.eclipse.org/emf/compare/
http://projects.eclipse.org/projects/modeling.mdt.ocl

approach to achieve high-quality SASS. Testing and formal
verification have long been known as complementing tech-
niques for most kinds of systems. We assume that quality
assurance for SASS can benefit in the same way from the
combination of approaches like the one presented by us and
approaches of category 1. Likewise, we see early testing as a
complementary technique to online and adaptive online testing
(cf. categories 2 and 3). To our understanding, this specifically
holds for SASS where unknown circumstances may arise at
runtime and need to be adequately taken care of. Nevertheless,
testing still needs to be done before a system is to be deployed
to ensure at least an initial and basic quality of the SASS.

Approaches of category 4 also address testing of SASS
at design time. We differ from these approaches by not
being dependent on a complete system. Using RTM as the
test interface allows us to test already when there are only
fragments of the system available, which is in the earlier
development stages. Also our approach allows to test in a
bottom-up manner, starting from the smallest testable units
of a SASS and proceeding to the entire system.

IX. CONCLUSION

In this paper we presented a systematic testing scheme for
SASS. It encompasses a staged testing process inspired by
the engineering of embedded software. Exploiting architectural
runtime models with their various states allows us to address
the different stages of one-way, in-the-loop, and online testing.
Supporting early development stages with tests, we may find
errors early. Furthermore, looking at the individual MAPE-K
activities and their different integrations, we should be able to
locate faults more easily. In this context, our initial evaluation
gives us preliminary confidence about the scheme’s effectivity.

There are several directions to evolve the presented testing
scheme in future. As of now we employ an ad hoc simulator
for RTMS. We could instead make use of a formal model
to automatically derive test cases by using coverage criteria,
which includes the generation of test inputs and oracles (run-
time models and properties) taking the uncertainty of SASS
and its environment into account. Useful formalisms range
from simple finite state machines to timed, hybrid or even
probabilistic automata. Such a formal approach will further
ease a thorough evaluation of the testing scheme. Another
direction would be to address the neglected case that the
adaptable software and environment change while the MAPE
loop is running. We will study special test setups for this case.

REFERENCES

[1] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, pp.
14:1–14:42, 2009.

[2] R. de Lemos, H. Giese, H. Müller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel, D. Weyns, L. Baresi,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. Desmarais, S. Dustdar,
G. Engels, K. Geihs, K. Goeschka, A. Gorla, V. Grassi, P. Inverardi,
G. Karsai, J. Kramer, A. Lopes, J. Magee, S. Malek, S. Mankovskii,
R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezzè, C. Prehofer,
W. Schäfer, R. Schlichting, D. B. Smith, J. P. Sousa, L. Tahvildari,
K. Wong, and J. Wuttke, “Software Engineering for Self-Adaptive
Systems: A second Research Roadmap,” in SEfSAS II, ser. LNCS.
Springer, 2013, vol. 7475, pp. 1–32.

[3] R. Calinescu, “Emerging techniques for the engineering of self-adaptive
high-integrity software,” in Assurances for Self-Adaptive Systems, ser.
LNCS. Springer, 2013, vol. 7740, pp. 297–310.

[4] S. Nair, J. L. de la Vara, M. Sabetzadeh, and L. Briand, “An extended
systematic literature review on provision of evidence for safety certifica-
tion,” Information and Software Technology, vol. 56, no. 7, pp. 689–717,
2014.

[5] B. Broekman and E. Notenboom, Testing embedded software. Pearson
Education, 2003.

[6] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and B. Becker,
“Model-Driven Architectural Monitoring and Adaptation for Autonomic
Systems,” in Proc. of the 6th Intl. Conference on Autonomic Computing
and Communications (ICAC). ACM, 2009, pp. 67–68.

[7] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-Based Self-Adaptation with Reusable Infras-
tructure,” Computer, vol. 37, no. 10, pp. 46–54, 2004.

[8] J. Kramer and J. Magee, “Self-managed systems: An architectural
challenge,” in Future of Software Engineering (FOSE). IEEE, 2007,
pp. 259–268.

[9] P. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. Cheng, “Composing
Adaptive Software,” Computer, vol. 37, no. 7, pp. 56–64, 2004.

[10] H. J. Goldsby, B. H. Cheng, and J. Zhang, “Amoeba-rt: Run-time
verification of adaptive software,” in Models in Software Engineering.
Springer, 2008, pp. 212–224.

[11] Y. Zhao, S. Oberthür, M. Kardos, and F.-J. Rammig, “Model-based
runtime verification framework for self-optimizing systems,” Electronic
Notes in Theoretical Computer Science, vol. 144, no. 4, pp. 125–145,
2006.

[12] B. Eberhardinger, H. Seebach, A. Knapp, and W. Reif, “Towards testing
self-organizing, adaptive systems,” in Testing Software and Systems.
Springer, 2014, pp. 180–185.

[13] E. M. Fredericks and B. H. Cheng, “Automated generation of adaptive
test plans for self-adaptive systems,” in Proceedings of the 10th Inter-
national Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). IEEE, 2015.

[14] E. M. Fredericks, B. DeVries, and B. H. Cheng, “Towards run-time
adaptation of test cases for self-adaptive systems in the face of uncer-
tainty,” in Proceedings of the 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. ACM, 2014, pp.
17–26.

[15] G. Püschel, C. Piechnick, S. Götz, C. Seidl, S. Richly, T. Schlegel, and
U. Aßmann, “A combined simulation and test case generation strategy
for self-adaptive systems,” Journal On Advances in Software, vol. 7, no.
3&4, pp. 686–696, 2014.

[16] Z. Wang, S. Elbaum, and D. S. Rosenblum, “Automated generation of
context-aware tests,” in Software Engineering, 2007. ICSE 2007. 29th
International Conference on. IEEE, 2007, pp. 406–415.

[17] J. Cámara, R. de Lemos, N. Laranjeiro, R. Ventura, and M. Vieira,
“Testing the robustness of controllers for self-adaptive systems,” Journal
of the Brazilian Computer Society, vol. 20, no. 1, pp. 1–14, 2014.

[18] G. Blair, N. Bencomo, and R. B. France, “Models@run.time,” Computer,
vol. 42, no. 10, pp. 22–27, 2009.

[19] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[20] T. Vogel and H. Giese, “Model-Driven Engineering of Self-Adaptive
Software with EUREMA,” ACM Trans. Auton. Adapt. Syst., vol. 8, no. 4,
pp. 18:1–18:33, 2014.

[21] M. Sama, D. S. Rosenblum, Z. Wang, and S. Elbaum, “Model-based
fault detection in context-aware adaptive applications,” in Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering. ACM, 2008, pp. 261–271.

[22] M. U. Iftikhar and D. Weyns, “Formal verification of self-adaptive
behaviors in decentralized systems with uppaal,” Linnaeus University
Växjö, Tech. Rep., 2012.

[23] D. Weyns, “Towards an integrated approach for validating qualities
of self-adaptive systems,” in Proceedings of the 2012 Workshop on
Dynamic Analysis. ACM, 2012, pp. 24–29.

139

	I Introduction
	II Preliminaries
	II-A MAPE-K Feedback Loops
	II-B Architectural Runtime Models

	III Exploiting Runtime Models for Testing
	IV One-Way Testing
	IV-A One-Way Testing single MAPE Activities
	IV-A1 One-Way Testing the Analysis
	IV-A2 One-Way Testing the Planning

	IV-B One-Way Testing MAPE Fragments
	IV-B1 One-Way Testing the Analysis and Planning
	IV-B2 One-Way Testing the Execute and Monitor

	V In-the-Loop Testing
	V-A Black-Box In-the-Loop Testing of Analysis and Planning
	V-B Grey-Box In-the-Loop Testing of Analysis and Planning

	VI Online Testing and Validation
	VI-A Online Testing
	VI-B Validation

	VII Initial Evaluation
	VII-A One-Way Testing
	VII-B In-the-Loop Testing
	VII-C Online Testing and Validation

	VIII Related Work
	IX Conclusion
	References

