

Edinburgh Research Explorer

Resource Sharing in Custom Instruction Set Extensions

Citation for published version:
Zuluaga, M & Topham, N 2008, Resource Sharing in Custom Instruction Set Extensions. in Application
Specific Processors, 2008. SASP 2008. Symposium on. Institute of Electrical and Electronics Engineers
(IEEE), pp. 7-13. https://doi.org/10.1109/SASP.2008.4570779

Digital Object Identifier (DOI):
10.1109/SASP.2008.4570779

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Application Specific Processors, 2008. SASP 2008. Symposium on

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1109/SASP.2008.4570779
https://doi.org/10.1109/SASP.2008.4570779
https://www.research.ed.ac.uk/en/publications/cf1b65c9-6e29-4bac-9ba5-c2a314f3ad80

Resource Sharing in Custom Instruction Set
Extensions

Marcela Zuluaga
g.m.zuluaga@sms.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh

Nigel Topham
npt@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh

Abstract—Customised processor performance generally in-
creases as additional custom instructions are added. However,
performance is not the only metric that modern systems must
take into account; die area and energy efficiency are equally
important. Resource sharing during synthesis of instruction set
extensions (ISEs) can reduce significantly the die area and energy
consumption of a customized processor. This may increase the
number of custom instructions that can be synthesized with
a given area budget. Resource sharing involves combining the
graph representations of two or more ISEs which contain a
similar sub-graph. This coupling of multiple sub-graphs, if
performed naively, can increase the latency of the extension
instructions considerably. And yet, as we show in this paper,
an appropriate level of resource sharing provides a significantly
simpler design with only modest increases in average latency for
extension instructions.
Based on existing resource-sharing techniques, this study

presents a new heuristic that controls the degree of resource
sharing between a given set of custom instructions.
Our main contributions are the introduction of a parametric

method for exploring the trade-offs that can be achieved between
instruction latency and implementation complexity, and the
coupling of design-space exploration with fast area-delay models
for the operators comprising each ISE. We present experimental
evidence that our heuristic exposes a broad range of design
points, allowing advantageous trade-offs between die area and
latency to be found and exploited.

I. INTRODUCTION

The customization of a processor through instruction set
extensions is now a widely adopted technique in high perfor-
mance embedded systems. One of the key challenges in the
field of processor customization is how to increase processor
speed across an application domain, without replicating logic
which could otherwise be shared.

Most research to this point has assumed that each unique
application will demand a uniquely customised processor.
However, the non-recurrent engineering cost of producing an
ASIC design increases with the introduction of each new
technology generation. The approximate cost of creating a new
SoC design has grown from $1 million in 1994 to current
estimates of $20–50 million by 2010 [14]. A significant factor
in the cost of each new chip design is the cost of mask
production, which has grown from $100 thousand at 0.35μ
to almost $9 million for a 45nm design [14].

This has an impact on the number of ASIC design starts,
not least designs involving application-specific processors with
instruction set extensions. Application specific instruction set
processors (ASIPs) can be deployed easily on FPGA technolo-
gies, but FPGA cannot compete with ASIC implementation
in die area (and therefore unit cost), energy efficiency, and
maximum clock rate. Kuon and Rose [8] show that ASICs
have an area advantage of at least 5x, a delay advantage of 3x
or 4x, and a dynamic energy advantage of 14x. In mobile or
low-power devices, where high performance and low cost are
essential attributes, the standard cell ASIC approach remains
highly competitive in all three key axes of performance.

Our work addresses these issues by focussing on the
problem of how to explore the design space of customized
processors which may support a wider collection of extensions,
perhaps from an entire application domain, or indeed a large
number of extensions from a single complex application.

Section II summarizes the prior work related to this topic,
after which section III outlines our motivation for this research
and presents the technical problem we address. Section IV then
describes our proposal for a parameterised resource-sharing
heuristic. Experimental methods and results are presented
in sections V and VI, followed by concluding remarks in
section VII.

II. RELATED WORK

There is a significant body of previous work on automatic
identification and selection of ISEs to create application spe-
cific processors [2], [6], [16]–[18], [20]. However, minimizing
the area required to implement a set of ISEs is equivalent to the
problem of constructing a minimal-cost weighted supergraph
of a set of graphs, which is NP-Complete [4]. A heuristic
approach to this problem is presented by Brisk et al., which
transforms a set of ISEs into a single hardware datapath based
on the classical problem of finding maximal subsequences and
substrings thereof in the graph representation of ISEs [3]. The
aim of their work is to maximize die area reduction through
the construction of a consolidation graph representing merged
ISEs. Similarly, Moreano et al. in [13] introduce a heuristic
that uses the construction of a compatibility graph to reduce
the problem of two data-path merging to a maximum weight

clique problem which is NP complete, they propose non-exact
methods to solve this problem in polynomial time.

Our work differentiates itself from [3] and [13] in the
introduction of latency constraints in the merging process,
while they focus only in maximising the area savings.

Hardware resource sharing is also a design goal in the
field of high-level synthesis. Zaretsky et al. present an al-
gorithm for dynamically generating templates of re-occuring
patterns for resource sharing in CDFGs [21], and Martinez
and Kuchcinski present a constraint-solving approach based on
graph-matching to implement resource sharing in CDFGs [12].

For the sake of simplicity and tractability these heuristics
all assume a fixed cost for the area and delay of each type
of operator. This is known to be idealistic [19]. This is
corroborated by results in our paper, which show a wide
range of die area and timing possibilities for typical arithmetic
operators synthesised by commercial tools.

In [7], Ghiasi et al. present a polynomial time algorithm
to maximise the delay assigned to operations in a DFG. The
problem is solved by injecting delay to units until all the paths
in the graph became critical.

Our paper builds on the work of Brisk et al. by introducing
a parametric heuristic which uses the theory of timing budget
management developed by Ghiasi et al. to allocate timing slack
within a consolidation graph to non-critical nodes, thereby
reducing their area-complexity.

The work of Lee et al. [10], Lorenz et al. [11], and Cheng
and Tyson [5], has demonstrated that custom instruction-set
extensions have a significant potential to reduce dynamic
energy consumption. By helping to reducing die area, our work
aims to also reduce static energy consumption.

III. MOTIVATION

An ASIP design will be most cost-effective if it can address
not a single application, but rather a whole class of applica-
tions. For example, an ASIP capable of efficient processing
across the complete range of video standards has greater econ-
omy of scale compared with one which handles only MPEG2.
When extending an instruction set to cover a complete class
of applications we can expect larger numbers of extension
instructions to be identified, effectively representing the union
of the extension instructions required by each application in
the class. Even with a single complex application it is possible
to find large numbers of potential extension instructions, each
of which adds to the die area of the system.

Clark et al. highlight the difficulty of finding exact subgraph
matches in order to reuse application specific instructions
across multiple applications in a single domain [6]. How-
ever, to avoid bloating the die area with large numbers of
extension instructions, it is important to identify and exploit
such commonality between instructions and, where possible,
to share hardware resources when this represents a good trade-
off between die area and execution time.

A. Problem definition
In this work we assume that instruction set extensions have

been identified by a previous compiler phase, and they are

represented as a collection of directed acyclic graphs (DAGs)
annotated with execution frequency. The problem we address
is how to merge such a collection of graphs to reduce the
overall die area, whilst minimising the increase in execution
latency.

Depending on the alignment of shareable paths in ISE
graphs, we may find that the resulting latency is almost
unchanged after merging, or we may find that latency increases
significantly for some or all merged operations. Naturally we
want to avoid merging a frequent operation with an infrequent
operation if such a merge would add to the latency of the
frequent one. Thus the optimisation process becomes highly
complex when instruction latencies may be modified by merg-
ing. Figure 1 illustrates how the sharing of one node within
graphs (a) and (b) creates a significantly longer path with
multiplexers to isolate the graphs according to the operation
they implement. As a minimum, the latency will increase due
to muxing, but this form of sharing also creates the potential
for structural hazards between extension instructions. To avoid
creating functional units from merged extensions that produce
outputs at different times, a pipelined implementation of the
graph in figure 1.(c) may pipeline all paths to be the same
length. In that case, the latency of both operations could be as
large as the sum of the latencies of the graphs 1.(a) and 1.(b).

(a). F = 1000 (b). F = 100 (c). F = 1100

Merging (a) and (b) to create (c)
has the potential to increase the
latency of both operators in the
merged implementation.

Fig. 1. Example of path merging

To evaluate the impact of graph-merging on die area and
delay requires models for the operators of an ISE which reflect
the wide variations in complexity that can be achieved under
different timing constraints and logical context. For example,
the marginal cost of an adder following a multiplier is less
than the cost of an adder in isolation. Yehia et al. present
examples of how arithmetic optimizations can reduce the
combined latency of sequential operations [19]. Modern logic
synthesis tools have the ability to perform similar arithmetic
optimizations, such as folding ADD or SUBTRACT operations
into the carry-save tree of a combinational multiplier. Even a
single isolated arithmetic operator can be synthesised to a wide
range of speed-area design points by specifying timing or area
constraints during logic synthesis. Figure 2 shows how the gate
count of a synthesised 32-bit floating-point adder can vary by

more than a factor of 2 as timing constraints are varied. For a
32-bit fixed-point adder the relative variation is even greater.

Design objectives will not always stipulate the extremes of
minimum execution time, nor minimum die area: there are
many possible intermediate points in the area-delay relation-
ship, any one of which may be ideal for a given system.
Our goal has been to develop a parametric resource-sharing
algorithm that will enumerate extensive regions of the design
space through the settings of a small number of real-valued
parameters. Such an algorithm could be used in iterative
design-space exploration methods, or may provide a means
through which machine-learning based approaches can be
trained to understand the characteristics of the design space.
Those are topics for future work and are not addressed in this
paper.

IV. PARAMETRIC RESOURCE - SHARING HEURISTIC

The proposed heuristic is derived from a path-based
resource-sharing algorithm, introduced by Brisk et al. in [3].

A DFG is a DAG represented by a set of vertices V and a
set of edges E, where vertices are operators, inputs or outputs,
and edges indicate the data dependencies between them. A
path within a DFG is a sequence of vertices that traverses the
graph, through the edges, from an input to an output.

Resource sharing is induced by the search for maximum
common substrings between two paths. A maximum common
substring is a subsequence of vertices that maximizes area
reduction. The area of a substring is given by the sum of the
areas of each operation within the substring.

A description of the proposed heuristic is illustrated in
algorithm 1. The algorithm receives as inputs a set of n
DFGs Gin, where each Gi ∈ Gin represents an ISE to be
synthesised. The algorithm is parameterised by three threshold
values αT , βT and θT . Each of these is given a real value
between 0 and 1. The output of the process is another set of
graphs Gout containing the result of resource sharing.

The algorithm is divided into a global and a local phase.
During each phase there is an exhaustive search for a max-
imum substring, comparing all pairs of paths belonging to
different graphs. During global merging the maximum sub-
string is referred as MaxStrGlobal and in local merging as
MaxStrLocal.

The global phase operates on Gout, which is initially copied
directly from Gin. Consequently, before any resource sharing
is applied, the number of input graphs is the same as the
number of output graphs, i.e. m = n, where m = |Gout|.
For each Gi ∈ Gout, a set of paths Pi is created with all the
possible paths found in Gi. P aggregates all the sets of paths
from Pi to Pm. Every path in Pi is compared with all other
paths that belong to Pj �=i in order to find the MaxStrGlobal
between two DFGs. Graphs containing MaxStrGlobal, i.e.
Gx and Gy will be merged into one graph G′. The process then
switches to the local phase where a MaxStrLocal is searched
for, taking all pairs of paths of the merged graph G′; one path
is found from Gx and the other from Gy . Once MaxStrLocal
is found, the paths are merged. The iterative search for further

merging finishes when no further MaxStrLocal instances can
be found. The process goes back to the global phase where
the number of graphs is decreased by one. This loop will be
finished when no MaxStrGlobal is found or when there is
only one graph left in Gout.

A. Alpha and Alpha Threshold

Every graph Gi has an associated value αi.

αi = Fi × L′
i − Li

L′
i

× (1−Mi) (1)

where Fi is the normalised execution frequency of Gi, defined
by the execution frequency of Gi divided by the maximum
execution frequency in the set Gin. Li is the original latency
of Gi, i.e. before the merging process. L′

i is the latency of Gi

after being merged with other graphs. Mi is the percentage of
area corresponding to operations in Gi that can be merged with
other graphs, divided by the total area that could be merged
in the whole process.

αT is therefore a parameter that serves to omit graphs from
the merging process if their corresponding ISE is executed
very frequently, and if their latency, due to resource-sharing,
is large. Additionally, this effect can be slightly cancelled out
when the level of sharing found in Gi is high. The value of
α associated with each graph, is compared with αT to decide
if the graph will be included in the merging process. As the
value of α decreases, the probability to implement the graph
separately increases.

B. Beta and Beta Threshold

Every Gi has an associated value βi.

βi =
|L̂− Li|

maxm
i=1 Li

× (1−Mi) (2)

where n is the number of input graphs and:

L̂ =
∑n

i Li

n
(3)

The βT parameter tends to leave graphs unmerged if their
latency is much larger than the rest of the ISEs. This is
indicated by the difference between the average latency of all
input graphs and the latency of the graph in question. If βi is
greater than βT , Gi will not be considered during the merging
process, thus preventing Gi from affecting the latency of the
other graphs. The value of β associated with every graph is
compared with the value of βT in order to decide if the graph
will be included in the merging process.

When global merging is finished, the values of β and α are
calculated for every Gi ∈ Gin. These values will indicate if
any input graph is to be left separate. The set of graphs G∗

keeps track of the graphs that will not be included in merging.
If G∗ �= ∅, the merging process will start again from Gout =
Gin - G∗.

1: Gout ← Gin

2: G∗ ← ∅
3: P ∗ ← ∅
4: for j = 0 to 1 do
5: if j = 1 then
6: Gout ← Gin - G∗

7: P ∗ ← ∅
8: end if
9: repeat

10: find paths in each graph of Gout: P={P1...Pm}
11: find maximum area common substring between
12: 2 graphs: MaxStrGlobal such that

MaxStrGlobal �∈ P ∗

13: merge graphs Gx and Gy that contain
MaxStrGlobal in G′

14: repeat
15: find maximum area common substring in G′:

MaxStrLocal
16: merge MaxStrLocal
17: until no MaxStrLocal is found in G′

18: find critical path of G′

19: find area of G′

20: find θx and θy

21: if θx < θT and θy < θT then
22: replace Gx by merged graph G′

23: remove Gy from Gout

24: m← m− 1
25: else
26: P ∗ ← P ∗ + MaxStrGlobal {exclude

MaxStrGlobal}
27: end if
28: until no MaxStrGlobal is found
29: for all Gi ∈ Gout do
30: add multiplexors needed in Gi

31: find critical path of Gi

32: find area of Gi

33: end for
34: if j = 0 then
35: for all Gi ∈ Gin do
36: find βi and αi

37: if αi > αT or βi > βT then
38: G∗ ← G∗ + Gi {exclude Gi}
39: end if
40: end for
41: if G∗ = ∅ then
42: exit loop
43: end if
44: end if
45: end for
46: return Gout

Algorithm 1: Parametric Resource Sharing

C. Theta and Theta Threshold
If graphs Gx and Gy are selected to be merged, a graph G′

is obtained as a result. We define,

θx =
LG′ − Lx

LG′
×

(
1− Ax + Ay −AG′

Ax + Ay

)
(4)

θy =
LG′ − Ly

LG′
×

(
1− Ax + Ay −AG′

Ax + Ay

)
(5)

where LG′ , Lx and Ly are respectively the critical paths of
G′, Gx and Gy ,and AG′ , Ax and Ay are respectively the areas
of G′, Gx and Gy .

In contrast with α and β, θ is a value that will be calculated
every time merging two graphs is considered. The first term
in each θ-equation represents the increase in latency, whereas
the second term represents the area savings that result from
merging Gx and Gy .

Every time a MaxStrGlobal is found, a G′ is formed and
local merging is applied. When no further merging is possible
in G′, θx and θy are calculated. If either θx or θy is greater
than θT , G′ will not be considered and other opportunities
for sharing will be searched for between the available graphs.
Thus, the global phase starts again from Gout with m un-
changed, forcing the search for another MaxStrGlobal such
that when G′ is found, it satisfies θT . The set of paths P ∗ is
used to record the paths that are not eligible for merging.

D. Area and Delay of Graphs
Several times during the execution of the algorithm, infor-

mation regarding the latency and area of DFGs is required. It
is not feasible to perform full logic synthesis for each graph
in order to get accurate values. We therefore developed a
piecewise-linear model of area and delay for each type of
operation that can appear in a DFG. Each operation type is
modelled by four discrete points from its curve of area versus
delay. Each point represents a possible trade-off between
hardware cost (area) and speed (delay). Figure 2 shows the
curves that were obtained for a selection of the operators used.

The curves of area versus delay for each operator were
obtained using Synopsys’ DC Ultra synthesis tool and a 0.13μ
standard cell library. Two points correspond to the extreme
cases of minimum delay and minimum area. The other two
points are intermediate points chosen in order to give a good
approximation to the non-linear area-delay relationship using a
small number of piecewise linear segments. Specific area and
delay values for each operator are found by linear interpolation
from the four known points on the curve.

The latency of an ISE graph is estimated as the sum of the
minimum delay that can be obtained for each operator in the
critical path of the graph.

The area estimation is found by adapting the budget man-
agement technique given by Ghiasi et al. in [7]. Each operator
in the graph is initially assigned a latency and area given by its
minimum delay point. Then a zero slack algorithm is applied
in order to relax the area of the operators that are off the critical
path. An iterative slack distribution process takes place until

no further slack is found in the graph. At this point, each
operator has an area value that corresponds to the maximum
permissible delay of the operator such that the critical path
of the graph is not increased. The sum of the areas of all the
operators in the graph determines the estimated ISE area.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 5 10 15 20 25 30 35 40

A
re

a
(th

ou
sa

nd
s o

f g
at

es
)

Latency (ns.)

Adder
Substractor
Multiplier

FP multiplier
FP adder
FP to int

Fig. 2. Area-delay curves

V. EXPERIMENTAL EVALUATION

We extracted a set of basic blocks from the Linear Predictive
Coding (LPC) program, from the UTDSP benchmark suite,
using an existing ISE identification technique. The DAGs
from these blocks were presented as the initial set of n
ISEs Gin = G1 . . . Gn to our resource-sharing heuristic.
Additionally, we include summarised results of performing
the same experiment with other two benchmarks: ADPCM
encoder from the UTDSP benchmark suite [9] and ADPCM
encoder/decoder from SNU-RT benchmark suite [1]. This is
with the intention of demonstrating that the results shown are
consistent independently of the input set.

The characterists of the input sets can be seen in table I.

Benchmark UTDSP UTDSP SNU-RT
LPC ADPCM ADPCM

Number of ISEs 14 9 25
Largest area (gatesa) 66,296 44,370 43,550
Smallest area (gates) 12,324 8,834 292
Largest latency (ns) 29.97 16.67 39.92
Shortest latency (ns) 11.66 5.75 2.96

Max. number of operators 19 15 21
Min. number of operators 4 4 4

TABLE I
INPUT SETS CHARACTERISATION

aGate counts are calculated as the standard cell area divided by the area of
a strength-1 2-input NAND gate.

A. Algorithm Implementation
The parameterised resource-sharing algorithm was imple-

mented as a system that takes input graphs expressed in XML.
It performs resource sharing and outputs a description of the
resulting merged logic in Verilog to enable subsequent logic
synthesis and integration with an existing processor core.

For each experiment, the algorithm was executed several
times with different values of αT , βT and θT , varying from 0
to 1 in steps of 0.05. This resulted in 9261 points to explore
the design space of potential solutions. The execution time of
the resource-sharing algorithm varied slightly with the value
of θT . For the chosen set of inputs the average execution time
was 40 seconds.

B. Design Space and Metrics
For our study, we have defined the latency of a particular

ISE, L′
out, as the critical path of the, possibly merged, graph in

which it appears. In order to evaluate a solution, every point
which represents an implementation alternative has two as-
sociated metrics: Application-specific Functional Unit (AFU)
area A, and average ISE latency L. A is the total area that
the AFU will use, and can be computed by summing the area
of each output graph in Gout. L is the average of the product
F × L′

out, over all ISEs considered as inputs.
Thus the design space is bounded by two opposing and

extreme solutions: maximum resource sharing, with highly
compromised delay, and no resource sharing, with minimal
delay. The objective of our experiments is to expose a wide
range of potentially interesting points in the design space, each
showing a different trade-off between area and delay.

C. Multiplexer Insertion
Multiplexers have to be added at the inputs of a vertex when

it has more than one predecessor per input as a result of sharing
the resource associated with that vertex. In the case of vertices
with just one input the solution is straightforward: an N -input
multiplexer is added when there are N unique predecessors,
and the number of selection bits is given by �log2N�. Vertices
with two inputs can potentially have multiplexers in each input.
Since multiplexors are inserted as a result of merging two
different graphs, the predecessors are always from different
operators. For this reason the input balancing problem exposed
in [15] is not an issue in this process. Commutability of
operations is exploited where any input of the ISE is part
of the inputs of a two-input vertex in order to balance the
assignment of inputs to the multiplexors.

The final area of the merged graphs in our experiments
includes the contribution of all multiplexors inserted.

VI. RESULTS

The resource-sharing solutions found as a result of executing
the algorithm several times with varying parameters using
the input set extracted from the LPC program, are plotted
in figure 3. Five solutions that correspond to Pareto points
of the design-space have been highlighted. Table II details
the solutions represented by each of these points. The so-
lution given by the No RS point has no resource sharing
applied, and therefore has the smallest L but the largest A.
In contrast, for Max RS, where all parameters are set to
1, the algorithm merges all ISEs without any restrictions,
as in non-parameterised approaches. This yields the smallest
A, but also the largest L. Points Pareto 1, Pareto 2 and

Pareto 3, represent possible implementation alternatives with
a better trade-off between L and A. As shown in table II, a
small reduction in area savings can yield a major reduction
in latency, and a small increase in latency can yield a major
reduction in area when the space is searched in the proposed
manner.

The values of the three parameters that produce the five
solutions are also specified in table II. For Pareto 1, one graph
was left separate as it did not meet the constraint βT =0.2.
Similarly, the solution that represents Pareto 2 separates
two graphs as they did not meet the contraint αT =0.55.
In a different way, Pareto 3 results in two output graphs
that were consequence of constraining the merging process
repetitively with θT =0.6. Thus, we show that the combination
and variation of the 3 parameters is useful in finding good
solutions.

We expect the solutions found by the resource-sharing
techniques described in [3] and [13] to be comparable with
the solution Max RS, as the focus of these previous methods
is area reduction.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60

A
 (t

ho
us

an
ds

 o
f g

at
es

)

L (ns.)

Pareto 3

Pareto 2

Pareto 1

Max RS

No RS
theta T = 0, 0.05, 0.1
theta T = 0.15, 0.2, 0.25
theta T = 0.3, 0.35, 0.4
theta T = 0.45, 0.5, 0.55
theta T = 0.6, 0.65, 0.7
theta T = 0.75, 0.8, 0.85
theta T = 0.9, 0.95, 1

Fig. 3. Effect of varying αT , βT and θT

Point L Area Output βT αT θT

Saved Graphs
No RS 16.32 ns 0% 14 0 0 0

Pareto 1 17.77 ns 44% 4 0.2 1 0.2
Pareto 2 22.91 ns 59% 4 1 0.55 0.5
Pareto 3 28.90 ns 72% 2 1 1 0.55
Max RS 58.60 ns 79% 1 1 1 1

TABLE II
INTERESTING POINTS IN THE DESIGN SPACE

To illustrate the specific effect of each parameter, the graphs
in figures 4 and 5 are included. In figure 4, three values of θT

were selected and, for each value, βT and αT were varied. It
can be noticed that as θT is reduced, the resulting solutions are
pushed to the left. This illustrates how θT can be used to favor
merged graphs, resulting in shorter latency ISEs. On the other
hand, in figure 5, three values for βT and αT were chosen

and for each of them θT was varied. In this case, βT and αT

partition the points along the Pareto optimal curve. Thus, θT

generates a horizontal exploration of the space while the other
parameters are fixed. Conversely, βT and αT generate mainly
a vertical search while θT is fixed.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 10 20 30 40 50 60 70

A
 (t

ho
us

an
ds

 o
f g

at
es

)

L (ns.)

theta T = 1
theta T = 0.55
theta T = 0.2

Fig. 4. βT and αT variation: θT ∈ {1, 0.55, 0.2}

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 10 20 30 40 50 60 70

A
 (t

ho
us

an
ds

 o
f g

at
es

)

L (ns.)

beta T = alpha T = 1
beta T = alpha T = 0.6
beta T = alpha T = 0.3

Fig. 5. θT variation: αT , βT ∈ {1, 0.6, 0.3}

Figure 6 shows the sumarised results of the experiments
performed with the three input sets described in table I.
Latency and area values of three points in the design space
were extracted in each of the three experiments. Max RS, No
RS and an additional solution that has been taken from the
resulting Pareto curve refered as solution P. P was chosen with
the criteria of minimising the distance to the origin in the area-
latency plane. From figure 6, it can be noticed that for all of the
experiments, Max RS, as expected, has long latency and small
area results. The point No RS shows always short latency and
large area. In contrast, Max RS represents the solutions found
as a result of the exploration of the parameterised space where
there is an equilibrium between average ISE latency and area
savings.

VII. CONCLUSIONS

This paper presents a new parametric algorithm for sharing
hardware resources between multiple instruction set exten-
sions that have been selected a priori for the performance
improvements they can make to a given application. The
algorithm combines a path-based resource-sharing algorithm

10
20
30
40
50
60

L
(n

s) Max RS

No RS

P
0

UTDSP LPC UTDSP
ADPCM

SNU-RT
ADPCM

300

400

 o
f g

ar
es

)

S

0

100

200

UTDSP LPC UTDSP
ADPCM

SNU-RT
ADPCM

A
 (t

ho
us

an
ds Max RS

No RS

P

Fig. 6. Sumarised results from different input sets

with a timing budget management scheme to merge ISE
graphs and allocate slack time in the resulting graphs so as to
minimize implementation cost. The primary goal of our work
has been to develop a method by which the design space of
resource sharing can be explored. Our results show that die
area is excessive when resource sharing is disabled, whereas
very aggressive resource sharing leads to high latency. Our
new heuristic is able to explore the space between these two
extremes to find solutions that achieve the right compromise
between latency and area. This work contributes to the goal of
generating customised processors that support a whole class
of applications, while still meeting timing constraints within
a given silicon area.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments and EPSRC for their financial
support under grant EP/D50399X/1. Thanks go to Richard
Bennett for providing the input ISEs used in the experiments
reported in this paper.

REFERENCES

[1] SNU-RT real time benchmarks.
[2] ATASU, K., POZZI, L., AND IENNE, P. Automatic application-specific

instruction-set extensions under microarchitectural constraints. In DAC
’03: Proceedings of the 40th conference on Design automation (New
York, NY, USA, 2003), ACM Press, pp. 256–261.

[3] BRISK, P., KAPLAN, A., AND SARRAFZADEH, M. Area-efficient
instruction set synthesis for reconfigurable system-on-chip designs.
In DAC ’04: Proceedings of the 41st annual conference on Design
automation (New York, NY, USA, 2004), ACM Press, pp. 395–400.

[4] BUNKE, H., GUIDOBALDI, G., AND VENTO, M. Weighted minimum
common supergraph for cluster representation. Proc. 2003 Int. Conf. on
Image Processing, ICIP 2003 2 (14-17 Sept. 2003), II–25–8 vol.3.

[5] CHENG, A. C., AND TYSON, G. S. An energy efficient instruction set
synthesis framework for low power embedded system designs. IEEE
Trans. Comput. 54, 6 (2005), 698–713.

[6] CLARK, N., ZHONG, H., AND MAHLKE, S. Processor acceleration
through automated instruction set customization. In MICRO 36:
Proceedings of the 36th annual IEEE/ACM International Symposium
on Microarchitecture (Washington, DC, USA, 2003), IEEE Computer
Society, p. 129.

[7] GHIASI, S., BOZORGZADEH, E., CHOUDHURI, S., AND SAR-
RAFZADEH, M. A unified theory of timing budget management. In
ICCAD ’04: Proceedings of the 2004 IEEE/ACM International confer-
ence on Computer-aided design (Washington, DC, USA, 2004), IEEE
Computer Society, pp. 653–659.

[8] KUON, I., AND ROSE, J. Measuring the gap between FPGAs and ASICs.
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems
26, 2 (Feb. 2007), 203–215.

[9] LEE, C., AND STOODLEY, M. UTDSP benchmark suite, 1992.
[10] LEE, J., CHOI, K., AND DUTT, N. D. Energy-efficient instruction set

synthesis for application-specific processors. In ISLPED ’03: Proceed-
ings of the 2003 international symposium on Low power electronics and
design (New York, NY, USA, 2003), ACM Press, pp. 330–333.

[11] LORENZ, M., MARWEDEL, P., DRÄGER, T., FETTWEIS, G., AND
LEUPERS, R. Compiler based exploration of DSP energy savings by
SIMD operations. In ASP-DAC ’04: Proceedings of the 2004 conference
on Asia South Pacific design automation (Piscataway, NJ, USA, 2004),
IEEE Press, pp. 838–841.

[12] MARTINEZ, A. F., AND KUCHCINSKI, K. Graph matching constraints
for synthesis with complex components. 10th Euromicro Conf. on
Digital System Design Architectures, Methods and Tools, 2007. DSD
2007 (29-31 Aug. 2007), 288–295.

[13] MOREANO, N., BORIN, E. C. D. S., AND ARAUJO, G. Efficient
datapath merging for partially reconfigurable architectures. IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems 24 (Jul.
2005), 969 – 980.

[14] PANDINI, D., DESOLI, G., AND CREMONESI, A. Computing and design
for software and silicon manufacturing. IFIP Int. Conf. on Very Large
Scale Integration, 2007. VLSI - SoC 2007 (15-17 Oct. 2007), 122–127.

[15] PANGRLE, B. On the complexity of connectivity binding. IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems 10, 11 (Nov.
1991), 1460–1465.

[16] POZZI, L., ATASU, K., AND IENNE, P. Exact and approximate algo-
rithms for the extension of embedded processor instruction sets. IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems 25,
7 (July 2006), 1209–1229.

[17] POZZI, L., AND IENNE, P. Exploiting pipelining to relax register-file
port constraints of instruction-set extensions. In CASES ’05: Proceedings
of the 2005 international conference on Compilers, Architectures and
Synthesis for Embedded Systems (New York, NY, USA, 2005), ACM,
pp. 2–10.

[18] VERMA, A. K., BRISK, P., AND IENNE, P. Rethinking custom ISE iden-
tification: a new processor-agnostic method. In CASES ’07: Proceedings
of the 2007 international conference on Compilers, Architectures and
Synthesis for Embedded Systems (New York, NY, USA, 2007), ACM,
pp. 125–134.

[19] YEHIA, S., CLARK, N., MAHLKE, S., AND FLAUTNER, K. Exploring
the design space of LUT-based transparent accelerators. In CASES
’05: Proceedings of the 2005 international conference on Compilers,
Architectures and Synthesis for Embedded Systems (New York, NY,
USA, 2005), ACM, pp. 11–21.

[20] YU, P., AND MITRA, T. Scalable custom instructions identification for
instruction-set extensible processors. In CASES ’04: Proceedings of the
2004 international conference on Compilers, Architectures and Synthesis
for Embedded Systems (New York, NY, USA, 2004), ACM, pp. 69–78.

[21] ZARETSKY, D., MITTAL, G., DICK, R., AND BANERJEE, P. Dynamic
template generation for resource sharing in control and data flow graphs.
19th Int. Conf. on VLSI Design, 2006. Held jointly with 5th Int. Conf.
on Embedded Systems and Design (3-7 Jan. 2006).

