Design and Architectural Exploration
of Expression-Grained Reconfigurable Arrays

Giovanni Ansaloni, Paolo Bonzini, Laura Pozzi
Faculty of Informatics
University of Lugano
6900 Lugano, Switzerland
{giovanni.ansaloni, paolo.bonzini, laura.pdZ@ilu.unisi.ch

Abstract— Reconfigurable Arrays combine the benefit of spa-
tial execution, typical of hardware solutions, with that of

programmability, present in microprocessors. When mapping g B
software applications (or parts of them) onto hardware, however, m ® D
FPGAs often provide more flexibility than is needed, and do not s B }

implement coarser-level operations efficiently. Therefore, Coarse
Grained Reconfigurable Arrays (CGRAs) have been proposed

fine grain: e

to this aim. While most CGRA designs feature an array cell of ; ;

the order of an ALU, this paper proposes a new kind of coarse (‘5 (‘5 PLA [~][=][]| FPCA
grained array, called EGRA (Expression-Grained Reconfigurable AVAIA) 1010
Array), featuring a cell composed of a cluster of ALUs with & 0
flexible interconnect. The EGRA attempts to further close the D ate LT

performance gap between reconfigurable and hardwired logic by a) b)
implementing an arithmetic/logic expression per cell, rather than
a single operation. A mapping methodology is proposed that can
retargetably compile to a family of EGRAS, therefore enabling

architectural exploration of the granularity of the proposed cell. ® © @
Performance results on a number of embedded applications =
show that EGRAs can be used as a reconfigurable fabric for g ® ®
customizable processors, outperforming more traditional CGRA o NN
. w
designs. S]| SGRA EGRA
I. INTRODUCTION f [e] (][]
Reconfigurable (or field-programmable) arrays are flexible |3 M Cluster

. [32-bit ALU
architectures that can perform execution of applications in a }:: c) d)

spatialway—much like a fully-custom integrated circuit—but

retain the flexibility ofprogrammableorocessors by providing Fig. 1. Parallel between the evolution of fine-grained architectures from
. . . simple programmable devices to FPGAs (a and b), and the evolution of
the opportunity of reconfiguration.

= -t g o CGRAs from simple cells to the EGRA proposed here (c and d).
The ability to exhibit application-specific features that are

not “set in stone” at fabrication time would suggest reconfigg\

bl hi cularl q did bei ate in the application is mapped inlato-1 fashion onto a
urable architectures as particularly good candidates for bei fgle gate of the architecture (Figure 1a).

integrated in customizable processors. Unfortunately, mherHowever, this organization does not scale as applications to

drawbacks have kept reconfigurable arrays from becomin Qmapped get more complex. For this reason, CPLDs and FP-
largely adopted solution in that field. Among different factor%; ’

. - X s instead use elementary components—PLAs themselves,
the performance and area gap that still exists with hardww? |

logic | il £ th _ h bl ook up tables—as building blocks, and glue them with a
ogic Is certainly one of the most important. The problem Gfa,ipje interconnection network. Then, programming one cell
bridging this gap has been the focus of much research in

i responds to identifyingnore than one gaten the Boolean
last decades, and important advances have been made. P fying 9

id dditional st hich in the direct tion representation (Figure 1b).
paper provides an additional step which goes in the direc I':mlntroducing this additional level is a winning architectural
of decreasing such gap further.

choice in terms of both area and delay, but such innova-
A walk through related historical background will helgtions cannot be successful unless algorithms are available

stating this paper’s aims and contributions. In the earlietst efficiently map applications to the new architecture—and

examples of reconfigurable architecture such as the PLA (Pindeed efficient algorithms came along to this purpose, e.g.,

grammable Logic Array), mapping of “applications” (BoolearrlowMap [5].

formulas in sum-of-product form) is immediate. In fact, each An orthogonal step was the introduction of higher granu-

of ALUs

From Constants

larity cells (Figure 1c). Fine grain architectures provide high nei%hborcells (from context) From bus From output
flexibility, but also high inefficiency if input applications can H L iDA'TA'SlWITCHlBg a Ll l
be expressed at a level coarser than boolean (e.g. as 32-bit N/ NS N,/
arithmetic operations). Coarse Grain Reconfigurable Arrays @ o (o
(CGRAS) provide larger elementary blocks that can implement [[[L____ /] [

such applications more efficiently, without undergoing gate- onstants | b — — T
level mapping. T - |
A variety of CGRA architectures exist (see Section V) but
the process of mapping applications to current CGRAS is
usually not very sophisticated: a single node in the application
intermediate representation gets mapped onto a single cell in

the array (againl-to-1 mapping). Instead, the architecture
we propose in this paper (Figure 1d) employs an array cell
consisting of a group of ALUs with customizable capabilities.
We consider this the moral equivalent of the switch from
single gates to LUTs that characterizes modern fine grain
reconfigurable architectures. We call this cell RAC (Recon-
figurable ALU Cluster), and the architecture that embeds it outputa outputb
EGRA (Expression-Grain Reconfigurable Architecture).

This allows new and more efficient uses of CGRAs, for
example by enabling implementation of application-specific
functional units in a customizable processor [11]. However, Il. PROPOSED ARCHITECTURE
such a change has to be supported by compilation technology:
the proposed architecture would make little sense without aThe architecture framework that we propose can be scaled
compilation flow able to map efficiently onto it. For this reain two dimensions: at the higher level, deciding the number

son, we also show how a compiler can aid in #nehitectural Of cells of the resulting array and the control unit implemen-
explorationof the granularity of the cell. tation, and at the lower level, determining the implementation

template of the RAC.

To sum up, in this paper we propose a new architecture, the)
EGRA, which attempts to further close the performance gdp Cell architecture

between reconfigurable and hardwired logic by providing an The RAC datapath consists of a multiplicity of ALUs, with

effective reconfigurable platform for instruction-set extensiblgossibly heterogeneous arithmetic and logic capabilities, and
processors. Our contributions are as follows: can support efficient computation of entire subexpressions, as
pposed to single operations. It is inspired by the Configurable

« We show a new design for the combinational part g .
.) . omputation Accelerator proposed by Clark. [4] However, we
coarse grain reconfigurable arrays. The Reconfigurable

ALU Cluster (RAC), the complex cell at the heart otiSe this structure as @plicable element; this has important

. L : .consequences. First of all, it opens up the possibility to create
our architecture, supports efficient computation of entire” " ~"""~ . , .)

. . . mbinational structures (in Clark’s design, a CCA has a fixed
subexpressions, as opposed to single operations. In addi-

tion, RACs can be connected either in a combinationglult"(.:ycIe latency) using multiple RACs; this favour.s designs
. eaturing a smaller number of rows. Furthermore, it removes
or a sequential mode.

+ We ovenen an automated methodology that can o I 97, e TUTRer of s ano oupu, because o
fectively map embedded applications on top of RAC P 9

This in turn enablesystematic architectural exploration he array; this allows scheduling of more complex applications

of the EGRA design space, and in particular of th%nd consequently higher gains.

RAC structure, to motivate architectural choices with ALES are olr gf"‘”!zed Into rowi (seilﬂgtt;lre 2) gonnt()e cted by
quantitative performance and cost analysis, switchboxes. It is important to have flexible routing between

ALUs on neighbouring rows, because subexpressions extracted
The remainder of this paper is structured as follows. Seitom typical embedded applications often have complex con-
tion 1l details the structure of the EGRA's processing elemengctions that are not captured well by simpler topologies. This
as well as its control logic, and presents synthesis results fsganization allows the usage of a simple array topology (we
different instances of the architecture. Section Il details used nearest neighbour) without incurring high penalties on
mapping methodology that can compile a benchmark topace-and-route.
set of EGRAs whose RACs have different properties, andThe inputs of the RAC (see again Figure 2) are taken from
Section IV shows quantitative evaluation of the architecturete neighbouring cells’ outputs, from the outputs of the cell
performance. itself, or (optionally) from a set of constants; the inputs of the

l 1 ¥ v
DATA SWITCHBOX | [FLAGS SWITCHBOX]
|

Fig. 2. Datapath of the Reconfigurable ALU Cluster.

from neighbors from bus stal

cs_row
cs_co

lcontext

—
data_in
—

datain

""""""""""""""""""""""" Control Unit control Stall 2
data_out out sel Memory !
: control -» - i
{ ; ¢s. n datain dataout cor]
|]] O O e e |
: : stall
: datapath 5 context memory : signals
< |
\out a Jout b g :
| s | iey Vyo
e —]]
= | I
| Cell 1; Cell 1:2
reg 3
Gr |
| t0 bus H i
J I ‘ : L > data
Cell 2:1 Cell 2:2 P
tonorth toeast tosouth towest .. control
path

Fig. 3. Block scheme of a RAC composed of datapath, context memory and

bypassable registers on the outputs.

Fig. 5. CGRA functional blocks (2x2 matrix, mesh topology)

data opcodes

flag opcodes

out = A & (B ® flagseaxt) 0
out = A | (B® flagsest) 1
out = A® (B ® flagseat) =
out = flag? A : B #*
out = A+ B + flagzeat signed<
out = A+ B+ flagzext signed>
out=AL B unsigned<
out = A <ot B unsigned>
’node | opcode | opl source | op2 source flag source out = A >urin B
A |opl+op2+flag| BUSinput1| BUS input 2 1 Oui = i >>logic§l B
B flag ? opl : op2 dataout(A) constant 0 GEUA) out =4 >rot
TABLE |
Fig. 4. Programming a RAC. This example shows how two ALUS can bg st oF sUPPORTED OPCODENOTE THAT THE 1-BIT FLAG INPUT WILL

connected to compute an unsigned subtract with saturgors= Y) ? X

- Y : 0 . The node computing the subtraction also performs the comparison.
The multiplexer node B uses both the data output andittsiggned> flag of

the subtraction node A.

BE SIGN- OR ZERC-EXTENDED DEPENDING ON THE OPCODE

. implement arbitrary functions, as is the case of the PLD or the
ALU.S in subsequent rows are routed from the outputs of trI'_‘?JT. Therefore, expressions are realized in our architecture by
previous rows or again from the constants, . ((:jlustering more than one elementary unit (ALU) in one cell.
The nl_mee_r of rows, the r_lumbe_r of ALUs in each row and gq types of ALUs can be instantiated. The simplest one is
the functloqallty ofthe ALUs is erX|bI_e and can be FUStom'ZGg\ble to perform bitwise logic operations only; the other three
by the designer. In fact, they consfitute theploration level add respectively a barrel shifter (with support for shifts and

explained in Section II-D. rotates), an adder/subtractor, and both the shifter and adder.

The n_uml?er and slze .Of the constants is also defln_ed T%He list of operations in a full-featured unit is in Table I.
exploration time. If their width is less than the datapath width, Each operation can generate three 1-bit flagze® flag

Fhet|r cdonFent 'St zefrot;]extendJ?dTh(i. Va“é?t (t)f the cor(ljstants, n unsigned> flag (equivalent to the carry flag of general-
Instead, 1S part ot e configuration bitstream and can @ rpose processors), andsgned< flag (equivalent toN &

different for each cell V, where N and V' are the sign and overflow flags). Other

Being a reconfigurable design, the processing element E5nditions can be tested by complementing the flag, and/or
cludes not only a datapath, but alsccantext memory-see ellxchanging the operands of the comparison
X .

Flgu_re 3. _The context memory stores a number of'possm Dually, each operation hdakreeoperands, two being 32-bit
configuration words, and can be programmed according to Waﬁues and the third being a 1-bit value. The third operand
desired functionality of the cell at configuration time.)

can be hardcoded to zero or one, or it can be chosen from
the flags that another ALU generated; it can also be comple-

B. ALU design th . :
As in other CGRAs, the basic processing element of orr}ented, thus giving a total of eight possililey opcodesalso

cell design is an ALU. Unlike in the fine grain dornaianted in Table 1). Figure 4 explains graphically the way this

o . , . functionality is programmed.
it is not possible to define a generic component that can . . : . .
Flags enable efficient implementation of if-conversion—

important when automatically mapping software representa-

1The availability of operations such at+ B makes it possible to store "' X
tions onto hardware. In fact, ALUs can act as multiplexers,

negative values even if the constants themselves are zero-extended.

of rows | ALU type 1 ALUs ;er row 3 # of rows | ALU type T ALUs p2er row 3

log 7141 1975 | 28926 log 0.45 0.54 0.55

1 log+sh 11 695| 30627 | 48029 1 log+sh 0.62 0.66 0.71

log+add 9125| 22802 | 35124 log+add 0.63 0.75 0.85

log+sh+add| 12 438 | 35105| 53837 log+sh+add 0.71 0.76 0.86

log 10586 | 30971 | 57384 log 0.75 0.98 1.06

3 log+sh 21740 | 66490 | 113 648 3 log+sh 1.29 1.51 1.66

log+add | 14 926 | 44 054 | 71716 log+add 1.54 1.88 2.18

log+sh+add| 27 672| 77 472 | 125 552 log+sh+add 1.57 1.89 2.32

log 12458 43793 86560 log 1.05 1.49 1.68

5 log+sh 32 455 | 100 165 | 168 760 5 log+sh 1.93 2.43 2.68

log+add | 20 186 | 65 134 | 114 034 log+add 2.13 2.67 2.97

log+sh+add| 40 583 | 123 294 | 202 633 log+sh+add 2.37 2.78 3.18

TABLE I TABLE Il
DATAPATH AREA (IN #m?) FOR DIFFERENTRAC CONFIGURATIONS DATAPATH DELAY (IN ns) FOR DIFFERENTRAC CONFIGURATIONS
. .. Array size | area 2
choosing one of the two 32-bit inputs based on another ALU's | 1); T | 62(’5;2) |
flags. This way, cells can evaluate both arms of a conditional, X1 117 748
and choose between the two via a multiplexer. 2X2 237 485
3x2 375 526
C. Array architecture 3x3 589 911
The EGRA architecture is composed of a collection of TABLE IV

RACs, organized as a mesh with nearest-neighbour conn@&EA ocCUPATION FOR DIFFERENTEGRA SIZES. ALL CONFIGURATIONS
tions and input/ouput connections to the external bus. The siz&avE TWO CONTEXTS, 32 STALL/OUTPUT CONTEXT MEMORY LINES
(number of rows and columns) of the mesh can be defined aRACs oF4 FuLL-FEATURED ALU S PER ROW ON2 ROWS, TWO 8-BIT
exploration time. CONSTANTS PERRAC.

In addition to the cells, the EGRA includes a global control
unit. This unit is in charge of managing the transfers to the
RACs’ context memory, selecting contexts, stalling cells untd. Architectural exploration

their output data is consumed, and connecting their outputs t‘bhoosing the configurable architectural features—RAC
Fhe bus. In order to perform these tasks, the control unit a'éPanularity, number of constants in a RAC, number of contexts
includes a separate context memory calleddietrol memory i the array to mention a few—is not at all an obvious task
Individual control configurations are stored for each contexhq should be guided by performance evaluation. Therefore
that can be programmed on the EGRA. we define anexploration levelwhere a number of cell and

Context memory transfers are initiated upon lowering of thgray features can be automatically varied and evaluated in
chip select signal; the content of the data bus identifies th@ferent experiments.
target of the transfer, either one of the RACs or the control Design-space exploration is made feasible by the availability
memory. The value of the context control signals identifiesf 5 compilation flow that can speedily evaluate many different
which context is being programmed. Data is transferred @asign choices. Hence, the compilation and synthesis flows
the following cycles using full input bandwidth, in order toshare amachine descriptiordetailing the cell template and
minimize programming latency. the topology of the EGRA.

After configuration, context switches can happen at any|n order to investigate area and delay figures of the RAC
clock cycle, and are performed without clock cycle penaltiegatapath, we synthesized different versions using Synopsys
The number of contexts that can be pre-loaded in the EGRfesign Compiler and TSMC 90nm front-end libraries. This
is defined at exploration time. has been instrumental in achieving two goals: on one hand,

Stalling cells and connecting outputs is driven by the Contr@b”ected data is used by the Comp”er to compute the per-
memory. The control unit accesses it in a cyclic fashion; grmance of Instruction Set Extensions (ISEs) mapped onto
read pointer advances to the next row on every clock cycl@e array; additionally, it gives insights on the efficiency of
unless reset by an external signal. The number of rows in thgrious EGRA configurations as a digital circuit, both in term
control memory identifies the maximum length (in cycles) adf occupied silicon area and clock speed.
the expressions mapped on the EGRA, and can be decideggaples Il and IIl give area and delay results for different
at exploration time. In order to handle stalls, each RAC iatapath configurations explored. All numbers refer to a dat-
assigned a memory column of this memory, and receivesggath without embedded constants and with an equal number
one-bit stall signal on every clock cycle. Another section &ff ALUs on every row—neither of these, however, are actual
the control memory asserts which RAC output is connected jtations of a RAC template. In the present work, we mostly
the processor bus at any clock cycle. concern ourselves with the structure of the RAC, because our

a) cell
description b) cell template
levels: 2 e) topology
#ops:2-2 L description
op type 1: add / log
) ISE flowgraph oplper llog

f) place and route

Fig. 6. Overview of the mapping methodology: the configuration to be evaluated and explored is described by a file detailing the cell structure (a, b). The
data-flow graph (c) describing the application to be compiled—e.g., an ISE extracted from input code—is partitioned into many subgraphs, each of which to
be mapped onto a single RAC (d). In this paper we do not consider placing and routing (f) of cells on the array given a topology description (e).

expression mapping methodology (see Section lll) does raftthe array (Figure 6d). The process begins by enumerating
yet include place and route of cells on the array. In principlelustersof the ISE graph that can be mapped on a single cell
however, the exploration level may include the mesh size, (this is done with a variant of the algorithm in [1]). Partitioning
even the topology of the array. As a hint of this possibilityis then performed by picking the cluster that has most nodes
Table IV shows examples of the area occupation of a fudh the critical path, and consolidating the nodes that form it
EGRA (including the control unit and global context memoryinto a single node (representing a RAC). After this, a retiming
for a number of different array sizes. algorithm inserts registers between fragments based on the
. MAPPING METHODOLOGY cycleltime requested by_ the user. Siqce data—fllow graphs are
. . acyclic, we can use a simple, linear time algorithm [3] to do
.In prder to evaluate the points Qf th_e design space, a co), as reported in [16]. Finally, I/O operations between cells
piler is needed that can map applications onto the array. The, register file are scheduled [19].
co_mpiler’s task is 1) t? identify parts of the input application After these steps are performed for all ISE candidates, the
(Figures 6c) that profit from being executed onto an EGRA, promising highest individual gain is chosen. This greedy

and 2) to partition them in subgraphs that can each be exeCUfice is another possible source of non-optimality; neverthe-

onto a single RAC (Figures 6d). less, it performs well under relatively broad conditions [15
In this paper, we consider the EGRA as an extension o> P y [15].

a customizable processor, and extract portions of applications IV. RESULTS

in the form of ISEs. Therefore, the first part of the compiler |n order to collect results, we gathered DFGs from four
task is solved using well-known algorithms for automated ISfziBench [9] benchmarks using a GCC-based compiler front-
identification; we employ an enumeration algorithm similar tend. The graphs were then placed into our compiler flow,
the one presented in [19], which extracts from the applicatioggich tested 872 different configurations. These configurations
a set of maximaktandidates used RACs of one to three rows; the biggest one had 5 ALUs

Before going on with the second part of the task—n the first row, 4 ALUs on the second, and 2 on the third.
partitioning—the compiler needs to run a seriedeainology The register file bandwidth is limited to 2 reads and 1 write;
mapping steps repeatedly on each candidate, in order f@yher bandwidth values would yield higher speedups.
measure their gain and find a single best-performing one.The two audio benchmarksawcaudio and rawdaudio,
After this phase, all operations are expressed in terms of therforming respectively ADPCM encoding and decoding, only
features of our ALU design, obtaining efficient calculations 8$e one context because a single ISE is identified by the
in the example of Figure 4. In particular, comparisons mugbmpiler. The two crypto benchmarkies andsha use four.

be transformed to an operation (typically a subtraction or angstimated clock cycle savings are plotted in Figures 7 to 10.
exclusive OR) that computes flags, so that users of the compapeedup is calculated as follows:

ison can test a particular condition on those flags. In order to
improve the utilization of the cells, after technology mappingpeedup =
the compiler reruns common subexpression elimination. total cycles — 3y rsps(cyclessw — cycleshw) - freg
Each ISE identified by the previous step must now be pawhere freq is the number of times the ISE is executed,
titioned into different subgraphs that can fit into a single cetlyclesy,, is the latency of the ISE on the EGRA, aagtles,,,

total cycles

1.45 T

1.3 T T T !
+ b
1.25 | e e _ 141 S 7]
AP 135 -
GEEEE L A L
a 12 / EETTTTrrTr TS 7 a 13 S R
=] S R S A 3 1.25 / HHHHHHH A+
) 1.15 | / o+ + A @ / + o+ A+
g / - - g 12 / o -
a ! b b H 0 / + o+ o+ o+
11 / + A b 1.15 - / H o+ E
S / +
/ 11/ B
1.05 | B /
, 1.05 -/ b
1 ol 1 1 1 1 b 1 1 1
0 500000 1000000 1500000 0 500000 1000000 1500000
area area
Fig. 7. Speedups obtained by 872 RAC configurationsawcaudio Fig. 8. Speedups obtained by 872 RAC configurationsasvdaudio
112 T T T l 12 T III T— T
11 F - - - 11 F ‘," -
{r - !
1.08 + : W+ - 1.08 - ! 7]
Q. 1 Q.
3 5 3 R A+
@ 1.06 ; . g 1.06 / .
[oX 1 o I
(%] | %) I
1.04 + | — 1.04 |/ + T
b e e S
102 |/ . 1.02 ¢ .
A /
1 | | | 1 | |
0 500000 1000000 1500000 0 200000 400000 600000
area area
Fig. 9. Speedups obtained by 872 RAC configurationsies Fig. 10. Speedups obtained by 872 RAC configurationstua

Fig. 11.

Ioglc only Ioglc + shift Ioglc + add Ioglc + shift + add

Hw

v

RAC de5|gn of the maximum-speedup Pareto point configuration, fmmm)audlo, b)rawcaudio; c) crypto benchmarksdes, sha); d) all four
benchmarks.

Fig. 12.

e (=) 0 (=] 8 8 [[z Hze]
S l [y oe) [[Mo 1
B o 1] l e, E130%, £
DG EEEEEEEEE]
a)
Manual place-and-route cdwdaudio, for two cell designs. a) RACs as in Figure 11a. b) Each RAC only has one ALU.

1]

b)

l | RACT] ALU | ALU one is twice as slow—in practice, it would fail to achieve

Cell area [zm?) 42920 13287

Cell defay (nS) 5 15 any speedup over a general-purpose processor.

Array size 4x4 12x4

Array area im?) 724 053 | 690 268 V. RELATED WORK

rawdaudio delay (ns) 1126 | 22.16 In the past years, several Coarse Grain Reconfigurable Ar-
rawdaudio delay (cycles at 150 MHz 2 4

chitectures (CGRAS) have been proposed [12]. The definition
is broad, and includes designs that differ widely even in the
very coarsenesof the cell. For example, the cell will usually
implement a single execution stage, but may also include an
entire execution unit (Rapid [6]) or can even be a general
purpose processor (RAW [20]).

is the cost of executing the ISE without custom instructions. The most relevant to our work is probably thexible
Becausecyclesy,,, is integer and bounded byycles,,,, the Computational Componer{7] which, while targeted more
plotted speedups can take only a few discrete values, sigcifically to DSP kernels, is similar to the RAC in size
observed in the figures. and set of allowed operations. However, the authors do not

Our experimental setting essentially considers an EGR#esent an exploration methodology to explain quantitively
as an application-specific functional unit of a customizabt®eir choices.
processor. The speedup results of this paper show that, in SUCADRES [13], [14] also features a complex VLIW cell. Even
setting, multi-ALU cells outperform single-ALU cells foundthough it lacks the ability to perform multi-stage computations
in more traditional CGRA designs. In fact, cells consisting afithin a cell, it features strong instruction-level parallelism
only one row correspond to the low-area points in the plottingsapabilities that can be exploited by the compiler through
and have barely noticeable speedups. software pipelining [13].

Figure 11 shows four RAC designs. The first two representThe architectural choices that drove the above-mentioned
the configuration of the maximum-speedup Pareto point, igesigns are usually the result of the designer's expertise,
achieves the maximum speedup at minimal area cost, for eagbre than of systematic, quantitative exploration of the design
of the audio benchmarks; the third achieves maximum speedijrace. Therefore, the resulting designs have a fixed structure.
on both crypto benchmarks; the last finally performs well oBven when some flexibility is present (as in ADRES or Rapid),
all benchmarks but costs noticeably more area than specializedults for exploration are presented only for high-level cycle-
cells. It is important to note that trivially merging the featurebase exploration, or not given at all. The work of Bouwens [2]
of the cells in Figures 11a and 11b would use more area thignsomehow an exception as it demonstrates design space
Figure 11d, without improving performance. exploration at the synthesis and place-and-route level for the

All three solutions are 2-row RACs. It is interesting thatADRES architecture. However, it focuses on CGRA high level
despite the apparent similarity between the design of the RAGpology, without investigating the structure and coarseness of
and the CCA, they are much smaller than the exampl€oof the processing elements as done here.
figurable Computation Acceleratpresented by Clark [4]. The Our HW/SW co-exploration of different EGRA architec-
reason is that RACs can be connected to form combinationates is based on a machine description interface, shared by
structures. This features puts smaller cells to an advantafies synthesis and compilation flow; this concept is independent
since they will usually have higher utilization rates withoufrom the proposed RAC structure and has taken inspiration
sacrificing speed. from recent researches in architectural description languages

In order to evaluate fully the gains of the proposed archii7], [10].
tecture over a simpler CGRA with one ALU per cell, we Different approaches have been envisioned also for the
performed place-and-route by hand cmwdaudio for two CGRA level of integration in the architecture hierarchy, rang-
RAC configurations: a single-ALU cell, and the optimal RAGng from coprocessor (Morphosys) to tight coupling with the
of Figure 1la. processor (ADRES). Our work belongs to the latter family,

The resulting layouts in Figure 12, and the area and delbyt the multi-ALU processing unit we presented could in
numbers in Table V, show how the more complex interconngatinciple be applied to differently integrated architectures.
of the RAC allows more effective routing, so that even m this sense, the present work constitutes a contribution to
simple nearest neighbour topology is a viable choice ftine reconfigurable computing field even outside the specific
the EGRA. Indeed, the RAC-based design achieves a vamplementation detailed in this paper.
compact packing of the computation in the array; 14 usedConcerning the proposed design of the EGRA, our cell
RACs fit in a 4x4 array with only one cell (not on thedesign is inspired (as mentioned in Section 1I-A) by the CCA
critical path) used for routing only. Instead, 11 cells are usatructure proposed by Clark [4]. Besides the idea of replicating
for routing when each cell can only perform one arithmetitis structure, we introduced several other novel aspects, in
operation, ten of which are on the critical path. particular the ability to build combinational functions from

For this reason (see Table V), the two designs occupyultiple CCAs, and the usage of flags to support if-conversion
roughly the same area after place-and-route, and the sindfethe compiler. Flags are peculiar in the RAC design, and are

4as in Figure 11la
TABLE V
DATA FOR RAWDAUDIO AFTER PLACEAND-ROUTE.

inspired by the program status word of a microprocessor, mofe]
than by the carry chains available in many reconfigurable ar-
chitectures (for example, Stretch [18] or even PipeRench [8]).

In this paper, we have proposed a new coarse-grained archi-

VI. CONCLUSIONS [7]

tecture, the EGRA. The architecture builds on the well-proven

advantages of CGRAs over FPGAs and ASICs (little area ané]
delay overhead due to programmability over FPGAs, adaptiv-
ity compared to ASICs) advancing them further through the

introduction of a novel, flexible computing element (the RAC)9]
that can evaluate complete subexpressions at once.

In order to analyze the performance of this new recon-
figurable fabric, we have identified a set of parameters tHa@]
identify an exploration leveland can be varied to evaluate
guantitativelythe performance of the architecture for different
benchmarks. Evaluation is aided by automated tools that map
benchmarks on an EGRA. The tool uses area and de[éy
estimates, derived from Synopsys synthesis of different RAGs
to compile for an entire family of architectures.

Research on the EGRA is still in its infancy, and th
initial results presented here suggest multiple directions for

13]

future work. For example, the architecture could implement
various local memory configurations, so that entire loops cgﬂ]
be mapped onto the EGRA and loop pipelining techniques
can be applied. Still, our experimental study determined the

feasibility of using the EGRA to implement Instruction Se

s

Extensions (ISE) in a custom processor, achieving speedup
of up to 1.45x—competitive with other purely arithmetic
accelerators—and showing that two-row RACs achieve goPl%]
performance results and utilization rate.

(1]

(2]

(3]

(4]

(5]

REFERENCES

K. Atasu, L. Pozzi, and P. lenne. Automatic application-specifi
instruction-set extensions under microarchitectural constraint®rdn
ceedings of the 40th Design Automation Conferergages 25661,
Anaheim, Calif., June 2003. 18]
F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev. Archi*
tectural exploration of the ADRES coarse-grained reconfigurable arrib]
In Reconfigurable Computing: Architectures, Tools and Applicafion
volume 4419 oflLecture Notes in Computer Sciencpages 1-13.
Springer, Berlin, June 2007.

P. Y. Calland, A. Mignotte, O. Peyran, Y. Robert, and F. Vivien. Retimin
DAG's. IEEE Transactions on Computer-Aided Design of Integrate
Circuits and Systemd7(12):1319-25, Dec. 1998.

N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner. Application-
specific processing on a general-purpose core via transparent instruction
set customization. IIMICRO 37: Proceedings of the 37th Annual In-
ternational Symposium on Microarchitectyages 30—-40, Washington,
DC, USA, Dec. 2004. IEEE Computer Society.

J. Cong and Y. Ding. Flowmap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systemsl3(1):1-12, Jan. 1994.

7]

0]

C. Fisher, K. Rennie, G. Xing, S. G. Berg, K. Bolding, J. H. Naegle,
D. Parshall, D. Portnov, A. Sulejmanpasic, and C. Ebeling. An emulator
for exploring RaPiD configurable computing architecturesPtaceed-
ings of the 10th International Conference on Field-Programmable Logic
and Applicationspages 17-26, Jan. 2001.

M. Galanis, G. Theodoridis, S. Tragoudas, and C. Goutis. A high-
performance data path for synthesizing DSP kernélSEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems
25(6):1154-1162, June 2006.

S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor,
and R. Laufer. PipeRench: A coprocessor for streaming multimedia ac-
celeration. InProceedings of the 26th Annual International Symposium
on Computer Architecturgpages 28—-39, May 1999.

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown. MiBench: A free, commercially representative embedded
benchmark suite. IfProceedings of the IEEE 4th Annual Workshop on
Workload Characterizationpages 3-14, Dec. 2001.

A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau.
EXPRESSION: a language for architecture exploration through com-
piler/simulator retargetability. IRroceedings of the Design, Automation
and Test in Europe Conference and Exhibitigmages 485-490, Mar.
1999.

T. R. Halfhill. ARC Cores encourages “plug-ins”Microprocessor
Report 19 June 2000.

R. Hartenstein. A decade of reconfigurable computing: A visionary
retrospective. InProceedings of the Design, Automation and Test in
Europe Conference and Exhibitippages 642—-649, Mar. 2001.

B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins.
DRESC: A retargetable compiler for coarse-grained reconfigurable ar-
chitectures. InProceedings of the IEEE International Conference on
Field-Programmable Technologpages 166—173, Dec. 2002.

B. Mei, S. Vernalde, D. Verkest, and R. Lauwereins. Design method-
ology for a tightly coupled VLIW/reconfigurable matrix architecture: A
case study. IfProceedings of the Design, Automation and Test in Europe
Conference and Exhibitigrpages 1224-1229, vol.2, Feb. 2004.

L. Pozzi, K. Atasu, and P. lenne. Exact and approximate algorithms for
the extension of embedded processor instruction HeEE Transactions

on Computer-Aided Design of Integrated Circuits and SysteDidD-
25(7):1209-29, July 2006.

L. Pozzi and P. lenne. Exploiting pipelining to relax register-file
port constraints of instruction-set extensions. Rroceedings of the
International Conference on Compilers, Architectures, and Synthesis for
Embedded Systemmsages 2-10, San Francisco, Calif., Sept. 2005.

S. Rigo, G. Araujo, M. Bartholomeu, and R. Azevedo. ArchC: A
SystemC-based architecture description language.Prbteedings of

th 16th Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD’04)pages 66—73, Oct. 2004.

C. R. Rupp. Multi-scale Programmable Array. U.S. Patent 6633181,
Oct. 2003.

A. K. Verma, P. Brisk, and P. lenne. Rethinking custom ISE iden-
tification: A new processor-agnostic method. Mmoceedings of the
International Conference on Compilers, Architectures, and Synthesis for
Embedded Systemsages 125-134, Salzburg, Austria, Oct. 2007.

E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal.
Baring it all to software: Raw machine€omputer 30(9):86-93, Sept.
1997.

