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Abstrat

Although reent works try to improve olle-

tive ommuniation in grid systems by separating

intra and inter-luster ommuniation, the optimisa-

tion of ommuniations fous only on inter-luster

ommuniations. We believe, instead, that the over-

all performane of the appliation may be improved

if intra-luster olletive ommuniations perfor-

mane is known in advane. Hene, it is important

to have an aurate model of the intra-luster ol-

letive ommuniations, whih provides the neessary

evidenes to tune and to predit their performane or-

retly. In this paper we present our experiene on

modelling suh ommuniation strategies. We de-

sribe and ompare di�erent implementation strategies

with their ommuniation models, evaluating the mod-

els' auray and desribing the pratial hallenges

that an be found when modelling olletive ommuni-

ations.

Keywords: olletive ommuniation, performane

models, MPI

1. Introdution

The optimisation of olletive ommuniations in

grids is a omplex task beause the inherent hetero-

geneity of the network limits the use of general solu-

tions. To redue the omplexity ost, most systems on-

sider grids as interonneted islands of homogeneous

lusters. Although there are no restritions on the num-

ber of layer that onnet those �islands�, as suessfully

demonstrated by [7℄, most systems only optimise om-

muniations at the inter-luster level, beause wide-

area networks are slower than LANs. Some examples
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of this �two-layered� approah inlude ECO [15℄, Mag-

PIe [8℄[10℄, that apply this onept for wide-area net-

works, and even LAM-MPI 7 [12℄, that onsider SMP

mahines as islands of fast ommuniation.

We believe that while inter-luster optimisation is

neessary to ahieve good performanes in grid-like

environments, its optimisation should not be dison-

neted from the intra-luster level. Atually, the mod-

elling and optimisation of intra-luster ommuniation

is speially important when the lusters are strutured

in multiple layers. In this situation, the grid-aware tools

must deal with both ommuniation and topology map-

ping, and a priori knowledge on the intra-lusters om-

muniation may lead to more important redutions of

the overall exeution time than a simple minimisation

of the wide-area ommuniations.

Hene, in this paper we investigate how performane

models an be used to haraterise the ommuniation

patterns of the olletive ommuniations. These mod-

els an be used both to predit the performane of these

operations and to deide whih implementation teh-

nique is the better adapted for a spei� set of param-

eters (number of proesses, message size, network per-

formane, et.).

Consequently, to model olletive ommuniations

we need a good performane model. There are several

performane models for message-passing parallel pro-

grams, some of them widely known like BSP [20℄ or

LogP [5℄. Although these two models are equivalent

in most irumstanes [17℄, LogP is slightly more gen-

eral than BSP, as it does not requires a global barrier

to separate ommuniation and omputation phases,

and beause it adds the notion of �nite network a-

paity that an only support a ertain number of mes-

sages in transit at one. As onsequene, we hoose to

use, in this paper, the parameterised LogP model [10℄.

pLogP is an extension of the LogP model that an au-

rately handle both small messages and large messages

with a low omplexity. Due to its simpliity, this model
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allows a fast prototyping of the ommuniation per-

formane, even though it has di�ulties to represent

ontention situations. Nevertheless, our pLogP mod-

els were able to predit with enough auray the sys-

tem performane in most ases presented in this paper,

allowing the seletion of the most adapted implemen-

tation tehnique to a spei� network environment.

To illustrate our approah, we present three exam-

ples, the Broadast, Satter and All-to-All operations,

whih respetively represent the �one-to-many�, �per-

sonalised one-to-many� and �many-to-many� olletive

ommuniations.While oneptually simple, Broadast

and Satter operations have ommuniation patterns

that an be found in many other operations, like Bar-

riers, Redues and Gathers. The All-to-All operation,

instead, has a omplex ommuniation pattern, but is

one of the most important ommuniation patterns for

sienti� appliations. Additionally, an All-to-All op-

eration is subjeted to important problems with om-

muniation ontention, representing a real hallenge to

performane modelling.

The rest of this paper is organised as follows: Se-

tion 2 presents the de�nitions and the test environ-

ment we will onsider along this paper. Setions 3, 4

and 5 present, respetively the ommuniation models

we developed for both Broadast, Gather and All-to-

All, while omparing the preditions from those models

with experimental results. Finally, Setion 6 presents

our onlusions, as well as the future diretions of the

researh.

2. System Model and De�nitions

In this paper we model olletive ommuniations

using the parameterised LogP model, or simply pLogP

[10℄. As pLogP parameters depend on the message

size, it an be aurate when dealing with both small

and large messages. Further, the paper that desribes

pLogP presents several ommuniation models for grid-

aware olletive ommuniations, whih served as guide

to many of our own ommuniation models.

Therefore, all along this paper we shall use the same

terminology from pLogP's de�nition, suh as g(m) for

the gap of a message of size m, L as the ommunia-

tion lateny between two nodes, and P as the number

of nodes. In the ase of message segmentation, the seg-

ment size s of the message m is a multiple of the size

of the basi datatype to be transmitted, and it splits

the initial message m into k segments. Thus, g(s) rep-

resents the gap of a segment with size s.

The pLogP parameters used to feed our models were

obtained with the MPI LogP Benhmark tool [9℄ using

LAM-MPI 7.0.4 [12℄, and are presented in Figure 1.
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Figure 1: pLogP parameters for the iluster-2 network

The experiments to obtain pLogP parameters, as

well as the pratial experiments, were onduted on

the ID/HP iluster-2 from the ID laboratory Cluster

Computing Centre

1

. This luster ontains 100 Itanium-

2 (IA-64) mahines (Dual proessor, 900MHz, 3GB)

interonneted by a swithed Ethernet 100 Mbps net-

work, running Red Hat Linux Advaned Server 2.1AS

with kernel 2.4.18smp. The experiments onsisted on

100 measures for eah set of parameters (message size,

number of proesses), and the values presented here are

the average of suh measures.

3. One-to-Many: Broadast

With Broadast, a single proess, alled root, sends

the same message of size m to all other (P − 1) pro-
esses. Classial implementations of the Broadast op-

eration rely on d-ary trees haraterised by two param-

eters, d and h, where d is the maximum number of su-

essors a node an have, and h is the height of the tree,

the longest path from the root to any of the tree leaves.

While an optimal tree shape an be dedued from the

network parameters and from d, h ∈[1...P -1℄ for whih
∑h

i=o d
i ≥ P is true, most MPI implementations usu-

ally rely on two �xed shapes, the Flat Tree, for small

number of nodes, and the Binomial Tree.

Beause most MPI implementations rely only on

Flat and Binomial Broadast, some tehniques were de-

veloped to improve its e�ieny. This way, it is usual

to apply di�erent strategies aording to the message

size, as for example, the use of a rendezvous message

that prepares the reeiver to the inoming of a large

message, or the use of non-bloking primitives to over-

lap ommuniation and omputation. Unfortunately,

suh tehniques bring only minimal improvements to

1 http://www-id.imag.fr/Grappes/



Table 1: Communiation models for Broadast

Strategy Communiation Model

Flat Tree (P − 1) × g(m) + L

Flat Tree Rendezvous (P − 1) × g(m) + 2 × g(1) + 3 × L

Segmented Flat Tree (P − 1) × (g(s) × k) + L

Chain (P − 1) × (g(m) + L)

Chain Rendezvous (P − 1) × (g(m) + 2 × g(1) + 3 × L)

Seg. Chain (Pipeline) (P − 1) × (g(s) + L)+

(g(s) × (k − 1))

Binary Tree ≤ ⌈log2P⌉ × (2 × g(m) + L)

Binomial Tree ⌊log2P⌋ × g(m) + ⌈log2P⌉ × L

Binomial Tree Rendezvous ⌊log2P⌋ × g(m)+

⌈log2P⌉ × (2 × g(1) + 3 × L)

Seg. Binomial Tree ⌊log2P⌋ × g(s) × k + ⌈log2P⌉ × L

the �nal performane, and their e�ieny still depends

mostly on the network harateristis.

Another possibility, however, is to ompose a Chain

among the proesses, pipelining messages [1℄. This

strategy bene�ts from the use of message segmenta-

tion, presenting many advantages as reent works in-

diate [10℄[18℄. In a Segmented Chain Broadast, the

transmission of messages in segments allows a node to

overlap the transmission of segment k and the reep-

tion of segment k+1, reduing the overall gap time.

However, the size of the segments should be are-

fully hosen aording to the network environment. In-

deed, too small messages pay more for their headers

than for their ontent, while too large messages do not

explore enough the network bandwidth. The searh for

the segment size s that minimises the ommuniation

time an be done using the ommuniation models pre-

sented on Table 1 and the network parameters. An ef-

�ient method onsists in searhing through all values

of s suh that s = m/2i, i ∈ [0 . . . log2m]. To re�ne

the searh, we an also apply some heuristis like lo-

al hill-limbing, as proposed by Kielmann et al. [10℄.

In our work we developed the ommuniation mod-

els for some urrent tehniques and their ��avours�,

whih are presented on Table 1. Most of these vari-

ations are learly expensive, while others have only an

�historial� interest. Hene, we hose for the experi-

ments from Setion 3.1 two of the most e�ient teh-

niques, the Binomial and the Segmented Chain Broad-

asts, and the simplest one, the Flat Tree Broadast.

3.1. Pratial Results

To evaluate the auray of our models, we mea-

sured the ompletion time of the Flat, Binomial and

the Segmented Chain Broadasts in real experiments,

and we ompared these results with the model predi-

tions. Although Flat tree is not adequate for a large

number of proesses, we inluded it beause its sim-

pliity is a good parameter to evaluate other algorithms

that use more omplex strategies. Hene, Figures 2, 3

and 4 present eah strategy ompared to its perfor-

mane model's preditions. Despite some performane

variations found mostly in the Segmented Chain and

the Binomial Broadast, we an observe that predi-

tions seem to follow the real experiments general be-

haviour. Atually, as these variations are muh less im-

portant in the ase of the Flat Broadast, we think that

they are related to ommuniation delays in some ma-

hines, whih are further propagated by the message

forwarding, a harateristi present only on Binomial

and Chain broadasts. As the Flat Tree Broadast on-

tats eah node diretly, variations in a mahine an-

not be propagated to the others, resulting in more a-

urate preditions, as observed in Figure 4.
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mented Chain Broadast

Figures 2, 3 and 4, however, are not in the same

sale due to the di�erent performane level of eah al-

gorithm. To ompare these algorithms and to better

observe the models' auray, we present on Figure 5

the results obtained for a group of 16 mahines. Here,

we observe that the Segmented Chain Broadast is the

better adapted strategy for our luster, even if the mod-

els preditions have slightly underestimated the om-

muniation ost. While the observed error rate does

not interfere in the seletion proess, our attention was

drawn by the unexpeted delay presented by the Bino-



Binomial
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mial Broadast
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Tree Broadast

mial broadast when messages are small. A lose look

on small messages, as presented in Figure 6, shows that

not only the Binomial Broadast was a�eted, but also

the Segmented Chain Broadast. Although this varia-

tion does not a�et the hoie on the best algorithm,

we deided to investigate it loser.

In fat, similar disrepanies were already observed

by the LAM-MPI team [13℄, and aording to Lonari

[14℄, they an be due to the TCP aknowledgement

poliy in some Linux versions. This problem may de-

lay the transmission of some small messages even when

the TCP_NODELAY soket option is ative (atually,

only one every n messages is delayed, with n varying

from kernel to kernel). It is true that these e�ets were

mostly present in Linux kernels 2.0.x and 2.2.x, but a-

ording to Lonari [14℄, it seems that �anedotal evi-

dene suggests that the improved TCP stak in Linux

2.4 may have problems with many-to-many ommuni-

ation patterns even though eah point-to-point link

performs �ne�.
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messages

However, if this problem a�ets the transmission of

small messages, it should also a�et the Segmented

Chain Broadast with any message size, as large mes-

sages are split in segments with relatively small sizes.

As the delay observed in Figure 6 does not seem to be

muh evident in the ase of Segmented Chain, we be-

lieve that this problem is also related to the manage-

ment of the send bu�ers. We think that the arrival of

suessive segments fores the transmission of the mes-

sages, masking the undesirable e�ets when messages

are larger. We plan to answer this question through

the investigation of the segmented variations of the

Flat and the Binomial Broadast, whih similarly to

the Segmented Chain, have to deal with small mes-

sages but send many more messages than their tradi-

tional versions.



4. Personalised One-to-Many: Satter

The Satter operation, whih is also alled �person-

alised broadast�, is an operation where the root holds

m × P data items that should be equally distributed

among the P proesses, inluding itself. As this is ex-

atly the opposite operation from the Gather primi-

tive, one modelling the Satter we have a good ap-

proximation with the Gather model, whih represents

the "Many-to-One" ommuniation pattern.

In the ase of Satter, whose root holds a di�erent

message for eah proess, it is believed that optimal al-

gorithms for homogeneous networks use �at trees [10℄,

and by this reason, the Flat Tree approah is the de-

fault Satter implementation in most MPI implemen-

tations.

Atually, any other alternative to perform Satter

parallelising the ommuniations requires the transmis-

sion of large sets of data to the auxiliary proesses, be-

ause messages are not idential. Taking for example

the Binomial tree, the root will send down the tree

�bulk� messages omposed by subsets of the total data.

Beause this strategy allows parallel sends, the om-

pletion time ould be redued, but beause the �bulk�

messages are larger than a simple message, they take

more time to be sent. Hene, the e�ieny of the Bi-

nomial Satter strategy depends on how good the net-

work deals with large messages, and how the trade-o�

between parallel sends and transmission of large mes-

sages will a�et the ompletion time.

Table 2 presents the ommuniation model we on-

struted for the strategies presented above, and in this

paper we ompare Flat Satter and Binomial Satter in

real experiments. In a �rst look, a Binomial Satter is

not as e�ient as the Flat Satter, beause eah node

reeives from the parent node its message as well as the

set of messages it shall send to its suessors. On the

other hand, the ost to send these �ombined� messages

(where most part is useless to the reeiver and should

be forwarded again) may be ompensated by the possi-

bility to exeute parallel transmissions. As the trade-o�

between transmission ost and parallel sends is repre-

sented in our models, we an evaluate the advantages

of eah strategy aording to the lusters' harateris-

tis.

4.1. Pratial Results

In the ase of Satter, we ompare the experimental

results from Flat and Binomial Satters with the pre-

ditions from their models. Due to our network hara-

teristis, our experiments shown that a Binomial Sat-

ter an be more e�ient than Flat Satter, a fat that

Table 2: Communiation models for Satter

Strategy Communiation Model

Flat Tree (P − 1) × g(m) + L

Chain

∑
P−1

j=1
g(j × m) + (P − 1) × L

Binomial Tree

∑⌈log2P⌉−1

j=0
g(2j × m) + ⌈log2P⌉ × L

is not usually explored by traditional MPI implemen-

tations. As a Binomial Satter should balane the ost

of ombined messages and parallel sends, it might o-

ur, as in our experiments, that its performane out-

weighs the �simpliity� from the Flat Satter with on-

siderable gains aording to the message size and num-

ber of nodes, as shown Figures 7 and 8. In fat, the

Binomial Satter performane depends on the num-

ber of proesses, whih gives its harateristi �stair�

shape, while the Flat Tree model, limited by the time

the root needs to send suessive messages to di�erent

nodes (the gap), follows a more linear behaviour. The

varying trade-o� on the Binomial Satter algorithm en-

ourages the use of our models to identify whih imple-

mentation is the better adapted to a spei� environ-

ment and a set of parameters (message size, number of

nodes), as shown in Figure 9.
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Nevertheless, Figure 9 shows that the models, espe-

ially in the ase of the Binomial Satter, ould not

avoid a ertain level of impreision. We believe that

this di�erene is mostly due to the manipulation of

large amount of data, whih in the ase of the Bino-

mial Satter is heavily required due to the �ombined�

messages the nodes reeive and forward.
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5. Many-to-Many: All to All

The most intensive and one of the most important

ommuniation patterns for sienti� appliations is

the omplete exhange, or All-to-All. There are several

onrete problems whose parallel or distributed algo-

rithms alternate periods of omputing with periods of

data exhange among the proessing nodes, with dif-

ferent messages for eah other proess. Atually, the

All-to-All operation performs a transposition of data

stored aross a set of proesses, beause every proess

holds m × P data items that should be equally dis-

tributed among the P proesses, inluding itself.

There are many works that fous on the optimisa-

tion of All-to-All and its variant All-to-All-v, where

messages an have arbitrary sizes. Most of these pro-

posals are adapted only to spei� network strutures,

like meshes, toroids and hyperubes [3℄. General solu-

tions, like those found in well known MPI distributions,

onsider that eah proess engages a point-to-point

ommuniation with eah other, and by onsequene,

the simplest algorithm for All-to-All is alled Diret

Exhange, where all sends and reeives are started si-

multaneously.

An example of implementation of the Diret Ex-

hange algorithm is the LAM 6.5.2 MPI_Alltoall [11℄.

A problem with this algorithm, however, is that pro-

esses usually start ommuniation in the same order,

and onsequently, may overload a link by simultane-

ously sending messages to a single proess eah �round�.

Hene, a little optimisation onsists on rotating the

ommuniation order from eah proess, as now im-

plemented in both LAM 7.0.4 [12℄ and MPICH 1.2.5

[16℄. In spite of this optimisation, that avoids the over-

load of a spei� proess, both strategies do not min-

imise ommuniation, and by onsequene, ommuni-

ation ongestion is highly probable when the number

of nodes inreases.

Thus, a major hallenge on modelling the om-

muniation performane of the All-to-All operation is

the in�uene of network ontention. Models like those

presented by [3℄ are simply extension to the Satter

model that do not take in aount the spei�ities of

the All-to-All ommuniation pattern, nor the non-

deterministi behaviour of the network ontention.

Although non-deterministi behaviours are di�ult

to model, [4℄ introdued a simple mean to aount on-

tention in shared networks, suh as non-swithed Eth-

ernet, onsisting in a ontention fator γ that augments

the linear ommuniation model T:

T = l+
bγ

W

where l is the link lateny, b is the message size and

W is the bandwidth of the link, and γ is equal to the

number of proesses. Using this approah, they found

that this simple ontention model greatly enhaned the

auray of their preditions for essentially zero extra

e�ort.

Similarly, we assume that ontention is su�iently

linear to be modelled. Our approah, however, on-

sists on identifying the performane bounds for the All-

to-All operation, and deriving a relation between suh

bounds that �ts with the experimental results for the

All-to-All operation. As this ratio depends on the net-

work harateristis, it is a �signature� of suh network,

and therefore an be used in further preditions to ob-

tain results with a onsiderable preision.

Our performane bounds were also de�ned as an ex-

tension to the Satter model, but they onsidered the

main restritions to the ommuniation in the all-to-all

pattern, speially the nodes' apaity to overlap sends

and reeives. Indeed, we explore the fat that even if



Table 3: Communiation bounds for the All-to-All op-

eration

Communiation Model

Upper Bound (P − 1) × g(m) + (P − 1) × or(m) + L

Lower Bound (P − 1) × os(m) + (P − 1) × or(m) + L

two messages annot be sent onseutively in less than

g through the same link, it takes only os to send a

message (more spei�ally, to deliver the message to

the network ard) and or to reeive it. Consequently,

a lower bound represents the apability to aess the

network interfae as soon as the preedent send opera-

tion returned, while in the upper bound a node needs

to serialise its transmissions due to the link ontention.

These two limits are represented on Table 3.

5.1. Pratial Results

To illustrate our approah to represent the All-to-

All operation in an environment subjeted to network

ontention, we present, in Figure 10, a omparison

among the measured performane for both Diret Ex-

hange algorithm and its optimised version with the

predited performane bounds for a group of 24 ma-

hines. It an be observed that both algorithms behave

almost identially, and that their performane di�ers

from the "Satter-based" model (Lower bound) in a

non-negligible amount, whih indiates the in�uene of

network ontention.

In fat, the analysis onduted by Grove [6℄ indi-

ated that �slow ompletion times were due to paket

losses and their assoiated TCP/IP retransmit time-

out, aused by extreme network load�. Another fat

that orroborates Grove's observations is the similar-

ity between the Diret Exhange and the Optimised

Diret Exhange performanes (Figure 11). This result

learly indiates that the ontention in our experiments

omes from the network itself, and not from the over-

load of a spei� mahine.

Therefore, we were able to determine a ratio between

the predited Upper and Lower bounds that provides

good preditions on the performane of the All-to-All

operation. This ontention ratio γ is onstant and de-

pends only on the network harateristis, whilst the

Lower and Upper bounds depend on the number of pro-

esses, giving a predited performane of:

T = Lower + (Upper − Lower) × γ

As a result of our pratial experiments, the on-

tention ratio that better represents the harateristis

of our network was assumed to be γ = 2
5 . The pre-

dited performanes �t with most of the observed re-

sults, with a small variation only in the ase of small

messages, whih are also subjeted to the TCP A-

knowledgement problem disussed on Setion 3.1.

This way, despite the non-deterministi behaviour of

the network ontention, we adopted a linear approah

where a onstant fator, harateristi to eah network,

allows the generation of aurate predition results.
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6. Conlusions and Future Works

Existing works that explore the optimisation of het-

erogeneous networks usually fous only the optimisa-

tion of inter-luster ommuniation. We do not agree

with this approah, and we suggest to optimise both

inter-luster and intra-luster ommuniation.

For instane, in this paper we propose the use of per-

formane models to deide, among well known teh-



niques for olletive ommuniation, whih is the bet-

ter adapted for a spei� set of parameters (number of

proesses, message size).

As our approah suggests the use of ommuniation

models to allow a fast performane predition, its au-

ray needed to be validated. Consequently, in this pa-

per we presented three ases that ompare the models'

predited performanes and the real results for three

olletive ommuniation patterns - �one-to-all�, �per-

sonalised one-to-all� and �many-to-many�. We veri�ed

that the models we onstrut were aurate enough to

predit the performane of the olletive ommunia-

tions, and to allow the seletion of the implementation

strategy that better adapts to our network.

For the modelling of the All-to-All operations, we

hose to represent the e�ets of network ontention as

a linear fator. Although our experiments demonstrate

that linear assumptions were aurate enough to pre-

dit the performane of suh operation, we agree that

this approah does not over all possibilities in a real

environment. Even though, the results presented in this

work o�ers many lues to future investigations on the

modelling of ommuniation operations subjeted to

non-deterministi network ontention behaviours.

In parallel, we should ontinue our researh on grid-

aware olletive ommuniations. We wish to evaluate

the auray of our models with other network inter-

onnetions, like Myrinet, and we are espeially inter-

ested on the automati organisation of multi-level ol-

letive ommuniations. Hene, our �nal objetive is

to integrate both performane predition and wide-area

ommuniation optimisation in a highly automated ol-

letive ommuniation library for grid environments.
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