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Abstra
t

Although re
ent works try to improve 
olle
-

tive 
ommuni
ation in grid systems by separating

intra and inter-
luster 
ommuni
ation, the optimisa-

tion of 
ommuni
ations fo
us only on inter-
luster


ommuni
ations. We believe, instead, that the over-

all performan
e of the appli
ation may be improved

if intra-
luster 
olle
tive 
ommuni
ations perfor-

man
e is known in advan
e. Hen
e, it is important

to have an a

urate model of the intra-
luster 
ol-

le
tive 
ommuni
ations, whi
h provides the ne
essary

eviden
es to tune and to predi
t their performan
e 
or-

re
tly. In this paper we present our experien
e on

modelling su
h 
ommuni
ation strategies. We de-

s
ribe and 
ompare di�erent implementation strategies

with their 
ommuni
ation models, evaluating the mod-

els' a

ura
y and des
ribing the pra
ti
al 
hallenges

that 
an be found when modelling 
olle
tive 
ommuni-


ations.
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1. Introdu
tion

The optimisation of 
olle
tive 
ommuni
ations in

grids is a 
omplex task be
ause the inherent hetero-

geneity of the network limits the use of general solu-

tions. To redu
e the 
omplexity 
ost, most systems 
on-

sider grids as inter
onne
ted islands of homogeneous


lusters. Although there are no restri
tions on the num-

ber of layer that 
onne
t those �islands�, as su

essfully

demonstrated by [7℄, most systems only optimise 
om-

muni
ations at the inter-
luster level, be
ause wide-

area networks are slower than LANs. Some examples

∗ Supported by grant BEX 1364/00-6 from CAPES - Brazil

† This proje
t is supported by CNRS, INPG, INRIA and UJF

of this �two-layered� approa
h in
lude ECO [15℄, Mag-

PIe [8℄[10℄, that apply this 
on
ept for wide-area net-

works, and even LAM-MPI 7 [12℄, that 
onsider SMP

ma
hines as islands of fast 
ommuni
ation.

We believe that while inter-
luster optimisation is

ne
essary to a
hieve good performan
es in grid-like

environments, its optimisation should not be dis
on-

ne
ted from the intra-
luster level. A
tually, the mod-

elling and optimisation of intra-
luster 
ommuni
ation

is spe
ially important when the 
lusters are stru
tured

in multiple layers. In this situation, the grid-aware tools

must deal with both 
ommuni
ation and topology map-

ping, and a priori knowledge on the intra-
lusters 
om-

muni
ation may lead to more important redu
tions of

the overall exe
ution time than a simple minimisation

of the wide-area 
ommuni
ations.

Hen
e, in this paper we investigate how performan
e

models 
an be used to 
hara
terise the 
ommuni
ation

patterns of the 
olle
tive 
ommuni
ations. These mod-

els 
an be used both to predi
t the performan
e of these

operations and to de
ide whi
h implementation te
h-

nique is the better adapted for a spe
i�
 set of param-

eters (number of pro
esses, message size, network per-

forman
e, et
.).

Consequently, to model 
olle
tive 
ommuni
ations

we need a good performan
e model. There are several

performan
e models for message-passing parallel pro-

grams, some of them widely known like BSP [20℄ or

LogP [5℄. Although these two models are equivalent

in most 
ir
umstan
es [17℄, LogP is slightly more gen-

eral than BSP, as it does not requires a global barrier

to separate 
ommuni
ation and 
omputation phases,

and be
ause it adds the notion of �nite network 
a-

pa
ity that 
an only support a 
ertain number of mes-

sages in transit at on
e. As 
onsequen
e, we 
hoose to

use, in this paper, the parameterised LogP model [10℄.

pLogP is an extension of the LogP model that 
an a

u-

rately handle both small messages and large messages

with a low 
omplexity. Due to its simpli
ity, this model

http://arxiv.org/abs/cs/0408032v2


allows a fast prototyping of the 
ommuni
ation per-

forman
e, even though it has di�
ulties to represent


ontention situations. Nevertheless, our pLogP mod-

els were able to predi
t with enough a

ura
y the sys-

tem performan
e in most 
ases presented in this paper,

allowing the sele
tion of the most adapted implemen-

tation te
hnique to a spe
i�
 network environment.

To illustrate our approa
h, we present three exam-

ples, the Broad
ast, S
atter and All-to-All operations,

whi
h respe
tively represent the �one-to-many�, �per-

sonalised one-to-many� and �many-to-many� 
olle
tive


ommuni
ations.While 
on
eptually simple, Broad
ast

and S
atter operations have 
ommuni
ation patterns

that 
an be found in many other operations, like Bar-

riers, Redu
es and Gathers. The All-to-All operation,

instead, has a 
omplex 
ommuni
ation pattern, but is

one of the most important 
ommuni
ation patterns for

s
ienti�
 appli
ations. Additionally, an All-to-All op-

eration is subje
ted to important problems with 
om-

muni
ation 
ontention, representing a real 
hallenge to

performan
e modelling.

The rest of this paper is organised as follows: Se
-

tion 2 presents the de�nitions and the test environ-

ment we will 
onsider along this paper. Se
tions 3, 4

and 5 present, respe
tively the 
ommuni
ation models

we developed for both Broad
ast, Gather and All-to-

All, while 
omparing the predi
tions from those models

with experimental results. Finally, Se
tion 6 presents

our 
on
lusions, as well as the future dire
tions of the

resear
h.

2. System Model and De�nitions

In this paper we model 
olle
tive 
ommuni
ations

using the parameterised LogP model, or simply pLogP

[10℄. As pLogP parameters depend on the message

size, it 
an be a

urate when dealing with both small

and large messages. Further, the paper that des
ribes

pLogP presents several 
ommuni
ation models for grid-

aware 
olle
tive 
ommuni
ations, whi
h served as guide

to many of our own 
ommuni
ation models.

Therefore, all along this paper we shall use the same

terminology from pLogP's de�nition, su
h as g(m) for

the gap of a message of size m, L as the 
ommuni
a-

tion laten
y between two nodes, and P as the number

of nodes. In the 
ase of message segmentation, the seg-

ment size s of the message m is a multiple of the size

of the basi
 datatype to be transmitted, and it splits

the initial message m into k segments. Thus, g(s) rep-

resents the gap of a segment with size s.

The pLogP parameters used to feed our models were

obtained with the MPI LogP Ben
hmark tool [9℄ using

LAM-MPI 7.0.4 [12℄, and are presented in Figure 1.
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Figure 1: pLogP parameters for the i
luster-2 network

The experiments to obtain pLogP parameters, as

well as the pra
ti
al experiments, were 
ondu
ted on

the ID/HP i
luster-2 from the ID laboratory Cluster

Computing Centre

1

. This 
luster 
ontains 100 Itanium-

2 (IA-64) ma
hines (Dual pro
essor, 900MHz, 3GB)

inter
onne
ted by a swit
hed Ethernet 100 Mbps net-

work, running Red Hat Linux Advan
ed Server 2.1AS

with kernel 2.4.18smp. The experiments 
onsisted on

100 measures for ea
h set of parameters (message size,

number of pro
esses), and the values presented here are

the average of su
h measures.

3. One-to-Many: Broad
ast

With Broad
ast, a single pro
ess, 
alled root, sends

the same message of size m to all other (P − 1) pro-

esses. Classi
al implementations of the Broad
ast op-

eration rely on d-ary trees 
hara
terised by two param-

eters, d and h, where d is the maximum number of su
-


essors a node 
an have, and h is the height of the tree,

the longest path from the root to any of the tree leaves.

While an optimal tree shape 
an be dedu
ed from the

network parameters and from d, h ∈[1...P -1℄ for whi
h
∑h

i=o d
i ≥ P is true, most MPI implementations usu-

ally rely on two �xed shapes, the Flat Tree, for small

number of nodes, and the Binomial Tree.

Be
ause most MPI implementations rely only on

Flat and Binomial Broad
ast, some te
hniques were de-

veloped to improve its e�
ien
y. This way, it is usual

to apply di�erent strategies a

ording to the message

size, as for example, the use of a rendezvous message

that prepares the re
eiver to the in
oming of a large

message, or the use of non-blo
king primitives to over-

lap 
ommuni
ation and 
omputation. Unfortunately,

su
h te
hniques bring only minimal improvements to

1 http://www-id.imag.fr/Grappes/



Table 1: Communi
ation models for Broad
ast

Strategy Communi
ation Model

Flat Tree (P − 1) × g(m) + L

Flat Tree Rendezvous (P − 1) × g(m) + 2 × g(1) + 3 × L

Segmented Flat Tree (P − 1) × (g(s) × k) + L

Chain (P − 1) × (g(m) + L)

Chain Rendezvous (P − 1) × (g(m) + 2 × g(1) + 3 × L)

Seg. Chain (Pipeline) (P − 1) × (g(s) + L)+

(g(s) × (k − 1))

Binary Tree ≤ ⌈log2P⌉ × (2 × g(m) + L)

Binomial Tree ⌊log2P⌋ × g(m) + ⌈log2P⌉ × L

Binomial Tree Rendezvous ⌊log2P⌋ × g(m)+

⌈log2P⌉ × (2 × g(1) + 3 × L)

Seg. Binomial Tree ⌊log2P⌋ × g(s) × k + ⌈log2P⌉ × L

the �nal performan
e, and their e�
ien
y still depends

mostly on the network 
hara
teristi
s.

Another possibility, however, is to 
ompose a Chain

among the pro
esses, pipelining messages [1℄. This

strategy bene�ts from the use of message segmenta-

tion, presenting many advantages as re
ent works in-

di
ate [10℄[18℄. In a Segmented Chain Broad
ast, the

transmission of messages in segments allows a node to

overlap the transmission of segment k and the re
ep-

tion of segment k+1, redu
ing the overall gap time.

However, the size of the segments should be 
are-

fully 
hosen a

ording to the network environment. In-

deed, too small messages pay more for their headers

than for their 
ontent, while too large messages do not

explore enough the network bandwidth. The sear
h for

the segment size s that minimises the 
ommuni
ation

time 
an be done using the 
ommuni
ation models pre-

sented on Table 1 and the network parameters. An ef-

�
ient method 
onsists in sear
hing through all values

of s su
h that s = m/2i, i ∈ [0 . . . log2m]. To re�ne

the sear
h, we 
an also apply some heuristi
s like lo-


al hill-
limbing, as proposed by Kielmann et al. [10℄.

In our work we developed the 
ommuni
ation mod-

els for some 
urrent te
hniques and their ��avours�,

whi
h are presented on Table 1. Most of these vari-

ations are 
learly expensive, while others have only an

�histori
al� interest. Hen
e, we 
hose for the experi-

ments from Se
tion 3.1 two of the most e�
ient te
h-

niques, the Binomial and the Segmented Chain Broad-


asts, and the simplest one, the Flat Tree Broad
ast.

3.1. Pra
ti
al Results

To evaluate the a

ura
y of our models, we mea-

sured the 
ompletion time of the Flat, Binomial and

the Segmented Chain Broad
asts in real experiments,

and we 
ompared these results with the model predi
-

tions. Although Flat tree is not adequate for a large

number of pro
esses, we in
luded it be
ause its sim-

pli
ity is a good parameter to evaluate other algorithms

that use more 
omplex strategies. Hen
e, Figures 2, 3

and 4 present ea
h strategy 
ompared to its perfor-

man
e model's predi
tions. Despite some performan
e

variations found mostly in the Segmented Chain and

the Binomial Broad
ast, we 
an observe that predi
-

tions seem to follow the real experiments general be-

haviour. A
tually, as these variations are mu
h less im-

portant in the 
ase of the Flat Broad
ast, we think that

they are related to 
ommuni
ation delays in some ma-


hines, whi
h are further propagated by the message

forwarding, a 
hara
teristi
 present only on Binomial

and Chain broad
asts. As the Flat Tree Broad
ast 
on-

ta
ts ea
h node dire
tly, variations in a ma
hine 
an-

not be propagated to the others, resulting in more a
-


urate predi
tions, as observed in Figure 4.
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Figure 2: Real and expe
ted performan
e for the Seg-

mented Chain Broad
ast

Figures 2, 3 and 4, however, are not in the same

s
ale due to the di�erent performan
e level of ea
h al-

gorithm. To 
ompare these algorithms and to better

observe the models' a

ura
y, we present on Figure 5

the results obtained for a group of 16 ma
hines. Here,

we observe that the Segmented Chain Broad
ast is the

better adapted strategy for our 
luster, even if the mod-

els predi
tions have slightly underestimated the 
om-

muni
ation 
ost. While the observed error rate does

not interfere in the sele
tion pro
ess, our attention was

drawn by the unexpe
ted delay presented by the Bino-



Binomial
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e for the Bino-

mial Broad
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Figure 4: Real and expe
ted performan
e for the Flat

Tree Broad
ast

mial broad
ast when messages are small. A 
lose look

on small messages, as presented in Figure 6, shows that

not only the Binomial Broad
ast was a�e
ted, but also

the Segmented Chain Broad
ast. Although this varia-

tion does not a�e
t the 
hoi
e on the best algorithm,

we de
ided to investigate it 
loser.

In fa
t, similar dis
repan
ies were already observed

by the LAM-MPI team [13℄, and a

ording to Lon
ari


[14℄, they 
an be due to the TCP a
knowledgement

poli
y in some Linux versions. This problem may de-

lay the transmission of some small messages even when

the TCP_NODELAY so
ket option is a
tive (a
tually,

only one every n messages is delayed, with n varying

from kernel to kernel). It is true that these e�e
ts were

mostly present in Linux kernels 2.0.x and 2.2.x, but a
-


ording to Lon
ari
 [14℄, it seems that �ane
dotal evi-

den
e suggests that the improved TCP sta
k in Linux

2.4 may have problems with many-to-many 
ommuni-


ation patterns even though ea
h point-to-point link

performs �ne�.
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However, if this problem a�e
ts the transmission of

small messages, it should also a�e
t the Segmented

Chain Broad
ast with any message size, as large mes-

sages are split in segments with relatively small sizes.

As the delay observed in Figure 6 does not seem to be

mu
h evident in the 
ase of Segmented Chain, we be-

lieve that this problem is also related to the manage-

ment of the send bu�ers. We think that the arrival of

su

essive segments for
es the transmission of the mes-

sages, masking the undesirable e�e
ts when messages

are larger. We plan to answer this question through

the investigation of the segmented variations of the

Flat and the Binomial Broad
ast, whi
h similarly to

the Segmented Chain, have to deal with small mes-

sages but send many more messages than their tradi-

tional versions.



4. Personalised One-to-Many: S
atter

The S
atter operation, whi
h is also 
alled �person-

alised broad
ast�, is an operation where the root holds

m × P data items that should be equally distributed

among the P pro
esses, in
luding itself. As this is ex-

a
tly the opposite operation from the Gather primi-

tive, on
e modelling the S
atter we have a good ap-

proximation with the Gather model, whi
h represents

the "Many-to-One" 
ommuni
ation pattern.

In the 
ase of S
atter, whose root holds a di�erent

message for ea
h pro
ess, it is believed that optimal al-

gorithms for homogeneous networks use �at trees [10℄,

and by this reason, the Flat Tree approa
h is the de-

fault S
atter implementation in most MPI implemen-

tations.

A
tually, any other alternative to perform S
atter

parallelising the 
ommuni
ations requires the transmis-

sion of large sets of data to the auxiliary pro
esses, be-


ause messages are not identi
al. Taking for example

the Binomial tree, the root will send down the tree

�bulk� messages 
omposed by subsets of the total data.

Be
ause this strategy allows parallel sends, the 
om-

pletion time 
ould be redu
ed, but be
ause the �bulk�

messages are larger than a simple message, they take

more time to be sent. Hen
e, the e�
ien
y of the Bi-

nomial S
atter strategy depends on how good the net-

work deals with large messages, and how the trade-o�

between parallel sends and transmission of large mes-

sages will a�e
t the 
ompletion time.

Table 2 presents the 
ommuni
ation model we 
on-

stru
ted for the strategies presented above, and in this

paper we 
ompare Flat S
atter and Binomial S
atter in

real experiments. In a �rst look, a Binomial S
atter is

not as e�
ient as the Flat S
atter, be
ause ea
h node

re
eives from the parent node its message as well as the

set of messages it shall send to its su

essors. On the

other hand, the 
ost to send these �
ombined� messages

(where most part is useless to the re
eiver and should

be forwarded again) may be 
ompensated by the possi-

bility to exe
ute parallel transmissions. As the trade-o�

between transmission 
ost and parallel sends is repre-

sented in our models, we 
an evaluate the advantages

of ea
h strategy a

ording to the 
lusters' 
hara
teris-

ti
s.

4.1. Pra
ti
al Results

In the 
ase of S
atter, we 
ompare the experimental

results from Flat and Binomial S
atters with the pre-

di
tions from their models. Due to our network 
hara
-

teristi
s, our experiments shown that a Binomial S
at-

ter 
an be more e�
ient than Flat S
atter, a fa
t that

Table 2: Communi
ation models for S
atter

Strategy Communi
ation Model

Flat Tree (P − 1) × g(m) + L

Chain

∑
P−1

j=1
g(j × m) + (P − 1) × L

Binomial Tree

∑⌈log2P⌉−1

j=0
g(2j × m) + ⌈log2P⌉ × L

is not usually explored by traditional MPI implemen-

tations. As a Binomial S
atter should balan
e the 
ost

of 
ombined messages and parallel sends, it might o
-


ur, as in our experiments, that its performan
e out-

weighs the �simpli
ity� from the Flat S
atter with 
on-

siderable gains a

ording to the message size and num-

ber of nodes, as shown Figures 7 and 8. In fa
t, the

Binomial S
atter performan
e depends on the num-

ber of pro
esses, whi
h gives its 
hara
teristi
 �stair�

shape, while the Flat Tree model, limited by the time

the root needs to send su

essive messages to di�erent

nodes (the gap), follows a more linear behaviour. The

varying trade-o� on the Binomial S
atter algorithm en-


ourages the use of our models to identify whi
h imple-

mentation is the better adapted to a spe
i�
 environ-

ment and a set of parameters (message size, number of

nodes), as shown in Figure 9.
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ted performan
e for the Bino-

mial S
atter

Nevertheless, Figure 9 shows that the models, espe-


ially in the 
ase of the Binomial S
atter, 
ould not

avoid a 
ertain level of impre
ision. We believe that

this di�eren
e is mostly due to the manipulation of

large amount of data, whi
h in the 
ase of the Bino-

mial S
atter is heavily required due to the �
ombined�

messages the nodes re
eive and forward.
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e for the Flat

S
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5. Many-to-Many: All to All

The most intensive and one of the most important


ommuni
ation patterns for s
ienti�
 appli
ations is

the 
omplete ex
hange, or All-to-All. There are several


on
rete problems whose parallel or distributed algo-

rithms alternate periods of 
omputing with periods of

data ex
hange among the pro
essing nodes, with dif-

ferent messages for ea
h other pro
ess. A
tually, the

All-to-All operation performs a transposition of data

stored a
ross a set of pro
esses, be
ause every pro
ess

holds m × P data items that should be equally dis-

tributed among the P pro
esses, in
luding itself.

There are many works that fo
us on the optimisa-

tion of All-to-All and its variant All-to-All-v, where

messages 
an have arbitrary sizes. Most of these pro-

posals are adapted only to spe
i�
 network stru
tures,

like meshes, toroids and hyper
ubes [3℄. General solu-

tions, like those found in well known MPI distributions,


onsider that ea
h pro
ess engages a point-to-point


ommuni
ation with ea
h other, and by 
onsequen
e,

the simplest algorithm for All-to-All is 
alled Dire
t

Ex
hange, where all sends and re
eives are started si-

multaneously.

An example of implementation of the Dire
t Ex-


hange algorithm is the LAM 6.5.2 MPI_Alltoall [11℄.

A problem with this algorithm, however, is that pro-


esses usually start 
ommuni
ation in the same order,

and 
onsequently, may overload a link by simultane-

ously sending messages to a single pro
ess ea
h �round�.

Hen
e, a little optimisation 
onsists on rotating the


ommuni
ation order from ea
h pro
ess, as now im-

plemented in both LAM 7.0.4 [12℄ and MPICH 1.2.5

[16℄. In spite of this optimisation, that avoids the over-

load of a spe
i�
 pro
ess, both strategies do not min-

imise 
ommuni
ation, and by 
onsequen
e, 
ommuni-


ation 
ongestion is highly probable when the number

of nodes in
reases.

Thus, a major 
hallenge on modelling the 
om-

muni
ation performan
e of the All-to-All operation is

the in�uen
e of network 
ontention. Models like those

presented by [3℄ are simply extension to the S
atter

model that do not take in a

ount the spe
i�
ities of

the All-to-All 
ommuni
ation pattern, nor the non-

deterministi
 behaviour of the network 
ontention.

Although non-deterministi
 behaviours are di�
ult

to model, [4℄ introdu
ed a simple mean to a

ount 
on-

tention in shared networks, su
h as non-swit
hed Eth-

ernet, 
onsisting in a 
ontention fa
tor γ that augments

the linear 
ommuni
ation model T:

T = l+
bγ

W

where l is the link laten
y, b is the message size and

W is the bandwidth of the link, and γ is equal to the

number of pro
esses. Using this approa
h, they found

that this simple 
ontention model greatly enhan
ed the

a

ura
y of their predi
tions for essentially zero extra

e�ort.

Similarly, we assume that 
ontention is su�
iently

linear to be modelled. Our approa
h, however, 
on-

sists on identifying the performan
e bounds for the All-

to-All operation, and deriving a relation between su
h

bounds that �ts with the experimental results for the

All-to-All operation. As this ratio depends on the net-

work 
hara
teristi
s, it is a �signature� of su
h network,

and therefore 
an be used in further predi
tions to ob-

tain results with a 
onsiderable pre
ision.

Our performan
e bounds were also de�ned as an ex-

tension to the S
atter model, but they 
onsidered the

main restri
tions to the 
ommuni
ation in the all-to-all

pattern, spe
ially the nodes' 
apa
ity to overlap sends

and re
eives. Indeed, we explore the fa
t that even if



Table 3: Communi
ation bounds for the All-to-All op-

eration

Communi
ation Model

Upper Bound (P − 1) × g(m) + (P − 1) × or(m) + L

Lower Bound (P − 1) × os(m) + (P − 1) × or(m) + L

two messages 
annot be sent 
onse
utively in less than

g through the same link, it takes only os to send a

message (more spe
i�
ally, to deliver the message to

the network 
ard) and or to re
eive it. Consequently,

a lower bound represents the 
apability to a

ess the

network interfa
e as soon as the pre
edent send opera-

tion returned, while in the upper bound a node needs

to serialise its transmissions due to the link 
ontention.

These two limits are represented on Table 3.

5.1. Pra
ti
al Results

To illustrate our approa
h to represent the All-to-

All operation in an environment subje
ted to network


ontention, we present, in Figure 10, a 
omparison

among the measured performan
e for both Dire
t Ex-


hange algorithm and its optimised version with the

predi
ted performan
e bounds for a group of 24 ma-


hines. It 
an be observed that both algorithms behave

almost identi
ally, and that their performan
e di�ers

from the "S
atter-based" model (Lower bound) in a

non-negligible amount, whi
h indi
ates the in�uen
e of

network 
ontention.

In fa
t, the analysis 
ondu
ted by Grove [6℄ indi-


ated that �slow 
ompletion times were due to pa
ket

losses and their asso
iated TCP/IP retransmit time-

out, 
aused by extreme network load�. Another fa
t

that 
orroborates Grove's observations is the similar-

ity between the Dire
t Ex
hange and the Optimised

Dire
t Ex
hange performan
es (Figure 11). This result


learly indi
ates that the 
ontention in our experiments


omes from the network itself, and not from the over-

load of a spe
i�
 ma
hine.

Therefore, we were able to determine a ratio between

the predi
ted Upper and Lower bounds that provides

good predi
tions on the performan
e of the All-to-All

operation. This 
ontention ratio γ is 
onstant and de-

pends only on the network 
hara
teristi
s, whilst the

Lower and Upper bounds depend on the number of pro-


esses, giving a predi
ted performan
e of:

T = Lower + (Upper − Lower) × γ

As a result of our pra
ti
al experiments, the 
on-

tention ratio that better represents the 
hara
teristi
s

of our network was assumed to be γ = 2
5 . The pre-

di
ted performan
es �t with most of the observed re-

sults, with a small variation only in the 
ase of small

messages, whi
h are also subje
ted to the TCP A
-

knowledgement problem dis
ussed on Se
tion 3.1.

This way, despite the non-deterministi
 behaviour of

the network 
ontention, we adopted a linear approa
h

where a 
onstant fa
tor, 
hara
teristi
 to ea
h network,

allows the generation of a

urate predi
tion results.
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6. Con
lusions and Future Works

Existing works that explore the optimisation of het-

erogeneous networks usually fo
us only the optimisa-

tion of inter-
luster 
ommuni
ation. We do not agree

with this approa
h, and we suggest to optimise both

inter-
luster and intra-
luster 
ommuni
ation.

For instan
e, in this paper we propose the use of per-

forman
e models to de
ide, among well known te
h-



niques for 
olle
tive 
ommuni
ation, whi
h is the bet-

ter adapted for a spe
i�
 set of parameters (number of

pro
esses, message size).

As our approa
h suggests the use of 
ommuni
ation

models to allow a fast performan
e predi
tion, its a

u-

ra
y needed to be validated. Consequently, in this pa-

per we presented three 
ases that 
ompare the models'

predi
ted performan
es and the real results for three


olle
tive 
ommuni
ation patterns - �one-to-all�, �per-

sonalised one-to-all� and �many-to-many�. We veri�ed

that the models we 
onstru
t were a

urate enough to

predi
t the performan
e of the 
olle
tive 
ommuni
a-

tions, and to allow the sele
tion of the implementation

strategy that better adapts to our network.

For the modelling of the All-to-All operations, we


hose to represent the e�e
ts of network 
ontention as

a linear fa
tor. Although our experiments demonstrate

that linear assumptions were a

urate enough to pre-

di
t the performan
e of su
h operation, we agree that

this approa
h does not 
over all possibilities in a real

environment. Even though, the results presented in this

work o�ers many 
lues to future investigations on the

modelling of 
ommuni
ation operations subje
ted to

non-deterministi
 network 
ontention behaviours.

In parallel, we should 
ontinue our resear
h on grid-

aware 
olle
tive 
ommuni
ations. We wish to evaluate

the a

ura
y of our models with other network inter-


onne
tions, like Myrinet, and we are espe
ially inter-

ested on the automati
 organisation of multi-level 
ol-

le
tive 
ommuni
ations. Hen
e, our �nal obje
tive is

to integrate both performan
e predi
tion and wide-area


ommuni
ation optimisation in a highly automated 
ol-

le
tive 
ommuni
ation library for grid environments.
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