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Abstract

Trace reuse is an effective way of improving the perfor-
mance of superscalar processors by skipping the execution
of a sequence of instructions with known input and output
values. However, the extra hardware complexity is of spe-
cial concern when implementing such mechanisms. In this
paper, we describe ways to reduce these requirements for
Reuse through Speculation on Traces (RST). RST combines
instruction and trace reuse with value prediction in an in-
tegrated mechanism to provide missing trace inputs when
execution reaches the beginning of a trace. Speculatively
reused traces do not consume resources in the execution
pipeline, as they are not executed. In this paper, we study the
effects of constraining reuse tables to effectively reduce the
number of reuse candidates and comparisons. We compare
our approach to instruction reuse, trace reuse and value
prediction. We show that RST reuses more instructions and
has better performance than traditional trace reuse, with an
average speedup over a baseline without reuse of 1.21.

1. Introduction

Superscalar processors employed in high-performance
computing systems use aggressive speculation to achieve
maximum performance. However, control and data de-
pendencies are often significant impediments to obtaining
better performance in these processors. Simply increasing
available resources may not be the best choice because more
hardware complexity can degrade the clock rate. Data de-
pendencies also limit instruction-level parallelism, mitigat-
ing gains from using better branch prediction, larger caches,
deeper pipelines, and more functional units. Therefore,
techniques, like value reuse and value prediction, that can
successfully overcome these limits and are not overly com-

plex to implement are necessary to improve performance.
Value reuse allows a computation (e.g., an instruction or
a trace) to be skipped when the current input matches a pre-
vious input, producing the same output. It can be partic-
ularly valuable when applied to instruction traces because
many instructions can be skipped at once. Value reuse is
restricted by the availability of input values when execu-
tion reaches a reusable computation; that is, it can not be
applied unless all inputs are available. For traces, this limi-
tation is particularly severe because a trace usually has more
inputs than a single instruction, and there is a higher likeli-
hood that some input will be unavailable. Value prediction,
on the other hand, can speculate computation when input
values are unknown. But value prediction can significantly
increase pressure on machine resources, limiting its benefit.
Our past papers presented a study of how well RST can
work in ideal conditions [14], while this paper describes and
evaluates a feasible, constrained RST implementation. RST
does both value speculation and trace reuse in a single, inte-
grated mechanism that can be implemented in a superscalar
pipeline with minimal complexity, as we show in this paper.
In this work, we evaluate different ways to reduce hard-
ware complexity for a RST implementation: excluding the
instruction reuse table, reducing the number of live-in and
live-out registers, and reducing table associativity. Our sim-
ulations use a baseline architecture that is similar to the
IBM Power5 and Intel Pentium 4. We show that our ap-
proach has excellent performance, with an average speed of
1.21 over the baseline (harmonic mean). We discuss several
possible implementation issues and compare our approach
to instruction reuse, trace reuse, and value prediction. The
RST mechanism works better than these approaches, yet it
has low complexity and can be easily implemented in a su-
perscalar pipeline.
This paper is divided into the following sections. First,
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the technique of reuse through speculation on traces is pre-
sented in Section 2. Section 3 describes an architecture for
RST. Section 4 experimentally evaluates RST and compares
it to other alternatives. Section 5 discusses related work. Fi-
nally, Section 6 presents a summary of the paper.

2. Reuse through Speculation on Traces

RST improves trace reuse and hides true data dependen-
cies by allowing traces to be (i) regularly reused when all
inputs are ready and match previously stored input values or
(ii) speculatively reused when there are unknown trace in-
puts. Therefore, traces that could not be reused in previous
approaches may be reused to exploit their redundancy.

Value reuse is non-speculative. After the input values
of an instruction are verified against previous values and a
match is found, the instruction can be reused without fur-
ther execution. Resources are never wasted due to reuse
and are available to other instructions. Trace reuse [3, 5]
has been proposed as a way to go beyond single instruction
reuse. Here, a sequence of instructions—possibly spanning
multiple branches—is the granularity of reuse. Input values
to a trace are compared against previous values to check for
a reuse opportunity, and when the inputs match the previous
values, previously recorded outputs are used to update the
architecture state. In a single cycle, all instructions inside a
reused trace may be skipped and instruction fetch redirected
to the address after the trace end.

A shortcoming of trace reuse is that many traces are not
reused because some inputs are unavailable when a trace
is accessed. Indeed, it can take many cycles after execu-
tion reaches the start of a trace before all inputs are avail-
able, which limits the benefits of trace reuse. Previous stud-
ies [14] show that only half of possible traces are reused
in a non-speculative trace reuse architecture due to input
values not being ready to be compared with stored traces.
However, reusing only those traces allowed for an average
speedup of 1.19 over an architecture without reuse.

Traditional value prediction overcomes the limits im-
posed by true dependencies by executing instructions with
true dependencies in parallel [12, 18]. This technique can
also hide instructions with long execution latencies. Value
prediction does have a cost: a high misprediction rate and
recovery penalty can even lead to worse performance. It
can also increase pressure on resources, because the orig-
inal instruction has to be executed to verify a prediction.
A misprediction also wastes the resources with useless in-
structions.

RST addresses the resource demands associated with
value prediction. When traces are reused speculatively, the
output values are sent directly to the pending instructions
and the register file. Dispatch, issue, and execution are by-
passed for the entire trace in a single cycle and machine

resources are not occupied by any instruction inside of a
trace. Predictions are made for trace inputs, rather than
outputs as done in traditional value prediction. Trace in-
puts are verified by checking predictions as actual values
become available during execution. Because inputs are pre-
dicted and outputs are supplied by value reuse, a trace does
not have to be executed to verify a prediction.

RST does not need extra tables to store values to be pre-
dicted because it uses the input values (or “input contexts’)
already stored in the reuse tables needed for trace reuse.
An RST architecture, as we show in this paper, can also be
organized in a way to unify the tables normally used for
trace reuse to reduce complexity. RST can use the same
values needed for non-speculative trace reuse to make “last
value” predictions [4]. Because RST uses existing informa-
tion needed by non-speculative trace reuse, it incurs only a
small additional hardware cost.

3. Implementation in a Superscalar Processor

RST has several requirements for implementation in a
superscalar processor. An RST architecture needs (i) a
mechanism to form and store redundant traces; (ii) a reuse
test to detect reuse opportunities, even when some input val-
ues are not ready; (iii) a method to reuse a trace and update
the architecture state; (iv) a mechanism to detect misspecu-
lations; and (v) a recovery mechanism for misspeculations.
In this section, we describe an RST organization that ad-
dresses these requirements.

Traces are created during run-time based on sequences
of instructions in a reuse domain, which is the set of in-
struction classes that are allowed to be reused (e.g., integer
operations, branches, and address calculations for loads and
stores). Each trace has an input and an output context to
store live-in and live-out values. The reuse domain is consti-
tuted by integer instructions without side effects. Floating-
point instructions are not reused because they show little
redundancy [3] and because they would require larger reg-
isters to be stored in the reuse table. The length of traces
may be limited by the number of live-in and live-out val-
ues that can be stored, by the number of branches, and by
the occurrence of instructions outside of the reuse domain.
In loads and stores, the address calculation is split from the
actual memory access, and the address calculation can be
reused. System calls are not reused because they require a
mode change in the processor status. Details on trace con-
struction and reuse can be found in [14].

The RST architecture is organized as a pipeline paral-
lel to the execution pipeline, as shown in Figure 1. The
main difference from Figure 1 to previous organizations is
that stage RS1 has a single reuse table that holds both in-
structions and traces. Thus, the number of wires that go
from RS1 to RS2 is limited, and the logic in RS4 is simpli-
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Figure 1. Details of RST’s pipeline with unified reuse table

fied, which has only to identify traces. Thus, the number
of wires from RS4 to RS1 is also reduced, simplifying the
design of the processor. In this pipeline, RS1 overlaps the
fetch stages, RS2 overlaps the decode and rename stages,
and RS3 overlaps writeback. The RST stages also need
to communicate with the execution pipeline to access the
register file, to get predicted values, and to get committed
values and instructions. RS1 is the same initial step done
in DTM. RS2 and RS3 are added for value prediction, and
RS4 is extended from DTM to handle mispredictions.

Stage RS1 fetches reuse candidates from the reuse table,
using the current program counter to address it. Entries in
the reuse table are then sent to RS2. The maximum number
of candidates sent to RS2 depends on the associativity of the
tables. For example, an implementation with two-way set
associative tables could send up to two instructions and two
traces as reuse candidates for a program counter address.
RS1 also receives trace candidates from RS4.

Stage RS2 checks candidates from RS1 for reuse by
comparing values from a trace’s input context against ac-
tual values in the register file. When all inputs match reg-
ister values, the trace is reused without speculation. How-
ever, when an input is unavailable, RS2 predicts missing in-
puts using values from the reuse table. We use a confidence
scheme based on a table of saturating counters [2].

When a trace is reused, the output values are sent di-
rectly to dependent instructions. This presents a challenge
because by the time that RS2 can decide if a trace is going to
be reused, the tables that map logical registers onto physical
registers and keep the active list will be in an inconsistent
state. For example, consider the register mapping in Fig-
ure 2(a). The list would be analyzed from the last instruc-
tion in the trace to the first instruction in the trace. Logical
registers r2 and r3 are written by the trace. Thus, we must
search for the last write for each of these registers in the
list. In Figure 2(b) instructions with the last mapping to the
registers in the output context are marked in gray.

Here, the processor knows that it can free the mappings
for registers p56 and p59, and that p57 and p70 provide the
last values inside the trace. After the unnecessary mappings
are freed, the mapping is as Figure 2(b). The mappings

logical physical

il 3 p54 logical physical

i2 r2 p56 13 p54
reused ) i3 r3 p57 r3 ps7 collapsed
inatrace] i4 | 12 | ps5o | e h70 }reg rename

i5 r2 p70 5 p72

i6 5 p72 rl2 p75

i7 [ 12 | _p75

(a) (b)

Figure 2. Discovering register mappings to be
freed

from reused instructions are freed, except for the last as-
signments, which are used to write the output scope of the
reused trace.

Stage RS3 verifies predictions of a speculatively reused
trace. If a misprediction is found, then fetch is redirected to
the beginning of the trace. When all predictions are correct,
RS3 commits the trace. The prediction outcome is sent to
RS2 to update the confidence table entry for that trace.

Because multiple inputs can be predicted for a trace, the
Recovery Table (RT) tracks the number of correctly pre-
dicted trace inputs. When all inputs are correct, the trace
can be committed. On a misprediction, all entries that
are related to traces predicted after the misprediction are
squashed. The RT is organized similarly to a reorder buffer,
and on a misprediction, it is searched with the trace id to
find the position from which to purge the table.

Stage RS4 detects and stores traces. RS4 has two buffers
dedicated to creating the input and the output contexts and a
buffer to store branch bitmaps for a trace being constructed
for reuse. Once a trace is constructed, the trace is sent to
RS1, where it may be stored in the reuse table. RS4 is also
responsible for squashing traces and instructions dependent
on a mispredicted trace as they exit the pipeline. This mech-
anism is the same one used for branch mispredictions.

4. Evaluation

We experimentally evaluated RST to determine its effec-
tiveness and performance benefit when design issues such
as the number of wires between stages and chip area are
considered. This study investigated how RST improves per-
formance and reuse in comparison to non-speculative trace

IEE l-i

COMPUTER
SOCIETY

Proceedings of the 18th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'06)
0-7695-2704-3 /06 $20.00 © 2006 1EEE



reuse, how RST’s configuration influences performance,
whether RST increases demands on processor resources,
and how RST compares to alternative designs.

The simulation environment used a modified version of
sim-outorder from SimpleScalar [1], version 3.0b, modified
to model pipelines of varying length. Our simulated pro-
cessor has 19-stages and an issue width of 4 instructions;
the pipeline corresponds to Figure 1. Other architecture pa-
rameters for the baseline are shown in Table 1. For most
experiments, we simulate two processors: a baseline pro-
cessor without reuse or prediction, and a processor with
speculative trace reuse (RST). The baseline and the RST
processor share the same pipeline configuration, except for
the inclusion of the RST mechanism. We have also sim-
ulated many other baselines with different amounts of L1,
L2, and L3 cache (e.g., 32-KB L1 1&D, 512-KB L2, 2-MB
L3), pipeline depths (from 6 to 30 stages), and issue widths
(up to 8 instructions/cycle). Although the absolute numbers
differ, the performance trends for these other pipelines are
the same as the results reported in this paper. The RST ar-
chitecture employed a confidence table with 4096 entries,
each one a 2-bit saturated counter.

Table 1. Architecture configuration

[ Parameter [ Value |
Pipeline width 4 (2 ALUs, 2 memory, 1 mult)
L 19 (4 fetch, 4 decode, 2 dispatch,
Pipeline depth 5 issue, 1 execute, 2 writeback, 1 commit)
IFQ, RUU, LSQ 16 instructions, 128 entires, 64 entries

Branch predictor
First level
Second level

gshare
13-bit register (xored with PC)
8192 entries

BTB 4096 entries, 2-way

Instruction set PISA

L1 cache 32KB I & D, 4-assoc, 64B lines, 1 cycle hit
L2 cache 512KB, 8-assoc, 256B lines, 5 cycles hit
L3 cache 2MB, 8-assoc, 256B lines, 20 cycles hit
Memory 200 cycles first chunk, 20 cycles next chunk

The simulated workload is composed from
SPEC CPU 2000 benchmarks, using both the binaries
and the reduced input sets from the ARCTiC Labs[10].
These benchmarks and input sets were chosen because they
represent both integer and floating-point programs, and can
be simulated to completion.

4.1. Performance with reuse table organizations

This first experiment is designed to find a configuration
for RST that has good performance and can be easily imple-
mented, addressing the issues with bandwidth from stages
RS1 to RS2. Figure 3 shows the speedups over the baseline
for different configurations of the reuse tables. The first
bar in each set (gray) shows the results for RST with two
reuse tables: one for instructions and one for traces. The
trace table has 512 entries, with input scopes of 3 registers
and output scopes composed of 2 registers. (We also sim-
ulated wider scopes, but average performance slightly de-

creases when more input and output registers are allowed in
traces.) The instruction table has 2048 entries. Both tables
are 4-way set associative. This configuration provides the
best average performance, with a harmonic mean speedup
of 1.23 over the baseline architecture without reuse. How-
ever, this configuration has significant implementation com-
plexity because the number of wires from stage RS1 to
stage RS2 is very large. This size is a function of the num-
ber of traces, instructions, the size of the trace input/output
scopes, and table associativity. For the studied configu-
ration with 4-way set associative tables, there can be up
to 4 candidate traces and 4 candidate instructions for each
fetched instruction (i.e., a total of 8 candidates). A can-
didate trace may have 3 inputs and a candidate instruction
may have 2 inputs. For each instruction that is fetched, there
are 20 inputs that have to be conveyed between RS1 and
RS2. Thus, in a 4-wide issue architecture, 80 inputs, each
with 32 bits, has to be transmitted between RS1 to RS2!
This number would be even larger if the output contexts
were considered as well.
Speedup over Baseline

RST with Different Table Configurations
1.50

RST with two reuse tables (512 t + 2048 i, 4-way, 3-in, 2-out)) 1.69|
RST with unified table (1024 entries, 4-way, 3-in, 2-out)
RST with unified table (1024 entries, DM, 3-in, 2-out)
RST with unified table (4096 entries, DM, 2-in, 1-out)
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Figure 3. Speedup for RST over baseline with
different table configurations

There are two approachs to reduce the bandwidth: (7) de-
creasing the number of trace/instruction candidates, and
(i) decreasing the size of trace contexts. We explored both
approaches. The second bar in each set in Figure 3 shows
the results with a single reuse table that can hold traces with
at least one instruction (thus being able to reuse instructions
too). This configuration conveys fewer candidates between
RS1 to RS2: it conveys 4 candidates, rather than 32. In
this configuration, we increased the table size to occupy the
same area as having the two reuse tables. For most bench-
marks, except bzip2.graph, mcf, and vpr.route, perfor-
mance decreases slightly when compared to the previous
RST configuration with two tables. However, performance
is still good, with an average speedup of 1.21 over the base-
line. This configuration still demands a large number of
values to be transmitted from RS1 to RS2. In this case,
there are 4 candidate traces per fetched instruction, each
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with 3 inputs, leading to a total of 48 values (4-way set asso-
ciative * 3 inputs * 4-wide issue = 48). The next set of bars
(black) depicts results with a direct-mapped reuse table. In
this configuration, each PC address would have at most one
reuse candidate, hence effectively reducing the number of
wires by 75% (only 12 inputs are sent between RS1 and
RS2). Again, in most benchmarks there was a decrease in
performance as the possibilities of reuse were reduced, but
an average speedup of almost 1.21 over the baseline was
still achieved.

After reducing the number of tables from two to one, and
the associativity from 4 to direct-mapped, the next step was
to reduce the size of trace contexts. Each register in the in-
put or output contexts adds 37 bits to a reuse table entry (32
for the value plus 5 for the register index). Reducing from
3 inputs to only 2 inputs and from 2 outputs to only 1 out-
put allows constructing a table with two times more entries,
while occupying roughly the same area. The last bar in each
set (white) of Figure 3 shows the results for this configura-
tion. Performance was just slightly better than the previous
configuration (black bar); however, there are fewer registers
in each input context. This further reduces the number of
wires from RS1 to RS2. Importantly, in this case, a trace
entry with 2 inputs and 1 output occupies as much space in
the reuse table as a single instruction in an instruction reuse
scheme, without limiting the number of instructions that can
be skipped by a single resue table entry. It also has the same
bandwidth requirements between RS1 and RS2 as a conven-
tional instruction reuse scheme. However, our scheme can
reuse and collapse more instructions than instruction reuse
in a single cycle. This new configuration with a single, uni-
fied reuse table can also speculatively reuse individual in-
structions in addition to traces.

Thus, we infer from the results presented in Figure 3
that it is possible to significantly reduce the required band-
width between the reuse stages without losing much per-
formance. In the following sections, we evaluate the re-
sults obtained with the final configuration (RST with uni-
fied, direct-mapped reuse table with 4096 entries, contexts
with 2 inputs and 1 output) in more detail.

4.2. Results with unified reuse table

In the next graph, Figure 4, we show the speedups over
the baseline for the direct-mapped, 4096-entry reuse table
configuration of RST. All benchmarks had performance im-
provements over the baseline, ranging from a speedup of
1.08 for gzip.program to 1.62 for mesa, and the average
speedup is 1.21 (harmonic mean). The results for mesa
are very interesting if we consider that it is a floating-point
benchmark (whose instructions are not included in RST’s
reuse domain).

An important question is the amount of useful work that

Speedup over Baseline
RST with Unified Table (4K entries)
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R 1.6zu
- N
120H H H ——= — H—THAdH
LIOFH H oo [ o Ho
O e e s e 55 128 FE 03
5E 4S8 E 2 ELc4E 7 EEE
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Figure 4. Speedup for RST over baseline

is skipped. Figure 5 shows the contribution of reused in-
structions to committed instructions. There is a strong cor-
relation between speedup and reused instructions as we ex-
pected. In mesa, 73% of all committed instructions are
provided by the RST mechanism, which explains its large
speedup of 1.62. Results for vpr.place and vpr.route are
also remarkable. In this case, most of the reuse is actually
due to speculative reuse (10.8% and 9.6% of committed in-
structions). Although the percentage of committed instruc-
tions that were speculatively reused is not larger than the
other benchmarks, the contribution is comparatively larger
when we consider the number of non-speculatively reused
instructions. This result indicates that vpr would not get
much benefit from non-speculative reuse, because most of
the time the inputs for reusable traces were not ready for
the reuse test. However, with RST it was able to achieve
speedups of up to 1.26 (vpr.place).

Percent of Reused Instructions
RST with Unified Table (4K entries)
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Figure 5. Contribution to reused instructions

After each misspeculated trace, the fetch unit is redi-
rected to the first instruction in the mispredicted trace,
like for branch mispredictions. Figure 6 shows the mis-
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prediction rates. On average, 9.4% of all speculatively
reused traces are mispredicted. The benchmark with more
misspeculations is gce, with 18% of traces being mispre-
dicted. The benchmark mesa has only 6% of mispredicted
traces. This rate and the large amount of reused traces (Fig-
ure 5) explains why mesa achieve such good performance
with RST. The benchmark gzip.random has the smallest
misprediction rate, with only 2.3% of mispredictions.

Misprediction Rate
RST with Unified Table (4K entries)
20%
15%
10% o —
5% HoH
47 222 FgE e

bzip2.grap

bzip2.prog
gzip.prog
vpr.place
vpr.route

Figure 6. Misprediction rate for RST
Figure 7 depicts the average number of instructions in

reused traces. For all benchmarks, except art, specula-
tive reuse has longer traces than non-speculative trace reuse
(average of 1.8 instructions per trace against 1.2 for non-
speculative reuse). This result demonstrates that as traces
grow in length, there is a greater probability that not all in-
puts will be available for the reuse test. In non-speculative
trace reuse, this imposes a severe restriction on average
trace length. Adding speculation to the trace reuse mech-
anism, as done by RST, allows the traces to grow longer
and skip more instructions, leading to a performance im-
provement.

Trace Length
RST with Unified Table (4K entries)
2.5
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2.0 T W
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Figure 7. Length of reused traces

4.3. Implementation issues

After reducing the bandwidth from stage RS1 to RS2,
we are left with three issues to deal with: () access time
to reuse table; (i¢) storing and testing predictions; and
(4i7) possible increased pressure in the register file.

First, we measured the access time for the reuse table
with CACTI [19], version 3.2. For a direct-mapped 64 KB
table and a technology of 0.05 pm, we obtained an access
time of 0.61 ns, which could be done in two cycles for a
3 GHz processor. As RST runs a parallel pipeline (Fig-
ure 1), we conclude that this would not be an impediment to
RST’s implementation. Reducing the size of the reuse table
can be done, trading size for less performance.

The second issue is how to deal with unresolved predic-
tions. In RST, predictions are stored in the Recovery Ta-
ble (RT). We measured the number of entries that are re-
quired to hold all the predictions at any moment to ensure
that RT’s size is reasonable. On average, RST required 24%
fewer entries than the maximum used for pure value predic-
tion, and for all benchmarks, RST had fewer inflight pre-
dictions. This is due to the mixed nature of RST, which is
able to both reuse and speculatively reuse values. The aver-
age number of inflight predictions is less than 4 predictions,
hence a small RT is enough and would not pose a significant
problem to be implemented.

Another relevant issue is the pressure on the register file.
We measured the number of read and write ports used at
each cycle by both the baseline and the RST architectures,
and the results show that even though the RST architecture
accesses more registers on average, the maximum number
of read ports required for RST was larger in only two bench-
marks (gzip.source and art) and by only one port (for 99%
of time). 7 register read ports are enough for all benchmarks
for both architectures. The maximum number of write ports
did not noticeably change.

From these experiments, we can infer that the studied
issues do not restrict implementation of RST in deeply
pipelined superscalar architectures.

4.4. Comparison to alternative schemes

Our final experiments compared RST to alternative
schemes, including trace reuse, instruction reuse, and value
prediction. For the value prediction experiment, we apply
value prediction and reuse to single instructions, including
memory operations.

Figure 8 shows the speedups for DTM (Dynamic Trace
Reuse, a trace reuse technique [3]) with two tables, DTM
with unified reuse table, and RST with unified reuse table
over the baseline architecture (without reuse). DTM has
good performance when two reuse tables are used, with an
average speedup of 1.16 over the baseline. However, with
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an unified table, reduced context sizes, and a direct-mapped
table is used, the speedup decreases to only 1.06. As DTM
can only reuse traces with ready inputs, it requires a less
speculative trace construction technique and does not adapt
well to a unified table scheme. RST has better performance
than any of the DTM configurations, with a speedup of 1.21
over the baseline. RST has a small extra cost over DTM
with unified reuse table (i.e., the RT and misspeculation
detection hardware) but much simpler hardware than DTM
with two reuse tables (a fraction of the number of wires and
comparators in stages RS1 and RS2).

Speedup over Baseline
RST x DTM

1.40

O DTM with two reuse tables (512 t, 2048 i, 3-in, 2-out)

L DTM with unified reuse table (4096 entries, DM, 2-in, 1-out)

W RST with unified reuse table (4096 entries, DM, 2-in, 1-out)
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Figure 8. Comparison to DTM

Figure 9 shows the speedups over the baseline architec-
ture for instruction reuse, a value prediction scheme, and
RST, using similar table areas. On average, RST outper-
formed the other mechanisms, with a speedup of 1.21 over
the baseline, while value prediction achieved a speedup
of 1.20 and instruction reuse only 1.12. For the value pre-
diction simulations, we permitted load instructions to be
predicted using an oracle scheme. Thus, the results ob-
tained with this value prediction scheme are expected to be
much better than those of an actual implementation. Even
with perfect load prediction, our realizable RST implemen-
tation still did slightly better than the ideal value prediction
scheme.

We also experimented with cache sizes, doubling the size
of first level caches from 32 to 64 KB to compare with the
same area required to implement RST’s reuse table. The
results showed only a small increase in performance of 1%
when compared to the baseline architecture.

5. Related Work

Many different mechanisms based on value reuse have
been proposed. The reuse granularity includes instruc-
tions [15, 20], expressions and invariants [13], basic
blocks [9], traces [3, 5], as well as instruction blocks and
sub-blocks of arbitrary size [8]. The techniques vary in

Speedup over Baseline
Instruction Reuse, VP, RST

1.40

1.91
O Instruction Reuse o 1.62
Value Prediction 7
B RST v
7
7
7
1.30
7 o
0
7
7|
’
1.20 7 7

1.10

NN

ESEEEEEEEEERTEREERREERRRRRRSR)

RN RN AR NARNRANNNANAS

R RRRRRRRRRRRRRRRRNRY

R RN

RN

AR AR AR AR AN
SARRTALATATARATARATARRR AR AR ANAANANANS

NN NN RN AN AN RN NN

BN

gce

1.00

B
2

mef §
art
HIGEE SO A i i IR TR RRRRRRRRRRSRDOSS

bzip2.src SESSSSSRSERRE R TR Ry
HM

7
&

A
A
A
A
P
g
s
g

bzip2.grap
bzip2.prog
gzip.grap &=
gzip.log
gzip.prog §
gzip.rand E
g
parser
vortex
vpr.place
vpr.route
equake {3

Figure 9. Comparison to Instruction Reuse
and Value Prediction

terms of their dependence on hardware and compiler sup-
port [8, 22].

Loads and stores are typically not reused, because of side
effects and aliasing problems. One approach to implement
load and store reuse is to manage registers as a level in the
memory hierarchy [24]. Another approach uses instruction
reuse to exploit both same instruction and different instruc-
tion redundancy [23].

Many variations on value prediction have been proposed,
including two-level value prediction [21], hybrid value pre-
diction [17, 21], and others, many of which were inspired
by branch prediction. Value prediction based on corre-
lation [18, 21] uses global information about the path in
selecting predictions. Prediction of multiple values for
traces [17] may be done for only the live-out values in a
trace, reducing necessary bandwidth in the predictor. Spec-
ulation control [6] is used to balance the benefits of specula-
tion against other possibilities. Confidence mechanisms [2]
are employed to improve value prediction by restricting pre-
diction of unpredictable values. Past work that explored the
limits of value prediction with trace reuse has shown there
is much potential for performance improvement [14].

The most similar work related to ours was proposed by
Wu et al [22]. Comparison between the two works is dif-
ficult because that their study uses a compiler-driven simu-
lation. Thus, some constraints may not be reflected in their
results. Our approach has the advantage of being indepen-
dent of special compiler support, ISA changes, and extra
execution engine for misprediction recovery.

Huang er al proposed a scheme that uses a Specula-
tive Reuse Cache (SRC) and Combined Dynamic Predic-
tion (CDP) to exploit value reuse and prediction [7]. Dur-
ing execution, a chooser picks a prediction from the value
predictor or a speculatively reusable value from SRC. With
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this approach, they have achieved a speedup of 10% in a 16-
wide, 6-stage superscalar architecture, with 128 KB of stor-
age for the CDP. Our approach has higher overall speedups
and requires less storage.

Liao et al [11] combined instruction reuse and value
prediction, using a reuse buffer and a value prediction ta-
ble, that are accessed in parallel. If inputs are unavailable,
the value predictor is used. For a 6-stage pipeline, they
achieved an average speedup of 9%. Unlike RST, this ap-
proach speculatively reuses instructions, rather than traces,
and it requires two tables.

6 Summary

In this paper, we presented a study on how a RST im-
plementation can be constrained and still achieves better
performance than alternative designs. RST has several ad-
vantages over other value reuse and speculation techniques,
including(i) minimal extra complexity when compared to
non-speculative instruction and trace reuse; (ii) no changes
to the ISA, which provides support for legacy codes; (iii) no
need for an extra execution engine to recover from mispre-
diction; (iv) does not increase the pressure on resources un-
like other value prediction techniques; (v) can be combined
with other instruction-level parallelism and speculation ap-
proaches; and (vi) traces may encapsulate critical paths and
their reuse can collapse data dependencies in a single cycle.

With an unified reuse table, small input and output
contexts, and direct-mapped tables, the number of bits
that are transported through pipeline stages is more than
8 times smaller than in previous studies. Yet, we showed
that RST with a simple, low cost configuration improved
performance by a harmonic mean of 21% for several
benchmarks in a 19-stage superscalar for the simulated
SPEC2000 benchmarks. RST also outperformed alternative
schemes for instruction reuse, trace reuse, and value predic-
tion. RST had good performance even in FP benchmarks,
although floating-point instructions are not included in the
reuse domain.

We showed that the overhead of RST in terms of both
memory and hardware support is practical. The low over-
head and performance improvement demonstrated that in-
tegrating trace speculation with value prediction is a worth-
while approach to improving trace reuse, and ultimately,
performance as well. In a future work, we intend to add
FP instructions to the reuse domain, and explore RST as an
alternative similar to strands [16] to save power.
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