
Exploring Novel Parallelization Technologies for 3-D Imaging Applications

Diego Rivera Dana Schaa Micha Moffie
David Kaeli

Department of Electrical and Computer Engineering
Northeastern University, Boston, MA∗

Abstract

Multi-dimensional imaging techniques involve the pro-
cessing of high resolution images commonly used in medi-
cal, civil and remote-sensing applications. A barrier com-
monly encountered in this class of applications is the time
required to carry out repetitive operations on large matri-
ces. Partitioning these large datasets can help improve per-
formance, and lends the data to more efficient parallel exe-
cution.

In this paper we describe our experience exploring two
novel parallelization technologies: 1) a graphical proces-
sor unit (GPU)-based approach which utilizes 128 cores on
a single GPU accelerator card, and 2) a middleware ap-
proach for semi-automatic parallelization on a cluster of
multiple multi-core processors. We investigate these two
platforms and describe their strengths and limitations. In
addition, we provide some guidance to the programmer
on which platform to use when porting multi-dimensional
imaging applications. Using a 3-D application taken from
a clinical image reconstruction algorithm, we demonstrate
the degree of speedup we can obtain from these two ap-
proaches.

1. Introduction

There has been considerable effort devoted to develop-
ing techniques that allow us to better visualize the 2-D and
3-D structure of objects by integrating multiple views and
processing high resolution images. We find these applica-
tions in medical, civil, and remote-sensing areas. One issue
with utilizing large multi-dimensional datasets is the com-
putational effort required to process the volume of data.

In this paper we focus on a subset of these applications:
those that employ iterative algorithms and are solved by ex-

∗This project is supported by the National Science Foundations Com-
puting and Communication Foundations Division, grant number CCF-
0342555 and the Institute of Complex Scientific Software. This work is
also supported by an NSF STTR Phase I Award No. 0638034.

ecuting repetitive operations on large matrices. Since these
applications typically execute the same tasks on very large
data sets, they offer many opportunities to parallelize the ex-
ecution. Some common examples of this class of computa-
tion include matrix inversions and 3D image reconstruction
using multiple 2D projections. While most of these appli-
cations are CPU-bound, then are not embarassingly paral-
lel. Most computations possess few data dependencies, and
can be effectively processed in parallel. To accelerate this
class of workload, we are exploring two recently developed
technologies: a general purpose GPU-based approach us-
ing a unified architecture (CUDA) and an MPI-based semi-
automated parallel Matlab framework (Star-P).

Unified architecture GPUs, such as NVIDIA’s CUDA
(Compute Unified Device Architecture), make use of the
immense resources available on modern GPU’s and allow
developers to access the GPU through extensions to the
C language and dedicated APIs. The CUDA toolkit en-
ables developers to execute general purpose code on GPUs.
This can also be accomplished using graphics APIs (e.g.,
OpenGL), but they are more difficult to use for general pur-
pose programming since the abstractions presented (e.g.,
shading) are intended for graphics applications.

Star-P is a semi-automated parallel computing plat-
form which allows a client machine to transparently con-
nect to a high-performance parallel server and offload the
computationally-intensive portions of the workload. Much
of the parallelization is performed automatically using high-
level language programming directives.

Our contributions in this paper are two-fold. First we
explore the strengths and limitations of these technologies,
and present a set of guidelines to determine whether code
can be ported easily and parallelized effectively with these
technologies. Second, we apply our guidelines to real code
and measure the effectiveness of each approach. We select a
medical image reconstruction application used in Tomosyn-
thesis mammography. We also relate our experience apply-
ing these methodologies to a Cardiac-CT algorithm using
CUDA and a hyperspectral imaging toolbox using Star-P.
We are not trying to compare these two technologies di-



rectly since they each have their advantages. GPUs provide
a high performance solution while Star-P provides perfor-
mance for significantly less programming effort.

This paper is organized as follows. In Section 2 we re-
view related work. In Section 3, we discuss the CUDA and
Star-P technologies. Section 4 presents our guide and com-
pares these approaches based on application characteristics.
In Section 5 we present our implementation and results, and
we summarize and propose future work in Section 6.

2. Related Work

In the past decade, GPUs have become commonplace
for processing many medical, civil, and remote-sensing
imaging applications. These imaging applications include
many tomographic reconstruction algorithms such as fil-
tered backprojection, and algebraic and expectation maxi-
mization methods [4, 14, 13]. Previously, these applications
have been programmed using graphics programming inter-
faces such as OpenGL and DirectX. Implementing these
general-purpose applications to run on GPUs was not triv-
ial, and was heavily reliant on the development of high-level
specialized programming languages and tools [2, 8, 12]. In
contrast, the unified-architecture implementations do not re-
quire us to use a graphics programming interface. In this
paper, we present the first unified-architecture implementa-
tions of two 3-D imaging applications.

Similarly, we explore a novel parallel implementation of
Matlab. A large effort has been undertaken by academia
and industry to produce parallel implementations of Mat-
lab [3]. These efforts allow the programmer to exploit par-
allelism without having to consider low-level communica-
tion and synchronization details. MathWorks, the creators
of Matlab, have produced a Distributed Computing Toolkit
for parallelization, which is similar to the MatlabMPI cre-
ated by Kepner at MIT Lincoln Labs [6]. Rice University is
developing a parallel implementation of Matlab, MatlabD,
with the goal of automatically compiling Matlab scripts into
high performance Fortran [5]. One downside of many paral-
lel implementations is that the data they use is limited to the
memory size of a single CPU memory. In contrast, Star-P
can load and store data directly from the distributed mem-
ories in a cluster, allowing for larger data set sizes. It also
contains features such as semi-automated data distribution,
and task parallelism support. Because Star-P is such a ver-
satile tool, we selected it to serve as an interesting paral-
lelization technology to contrast against GPU-based paral-
lelization.

3 Description of Technologies

Next, we introduce the two novel parallelization tech-
nologies explored in the paper, describe their operation and

interfaces, and compare them to existing technologies.

3.1 A GPU Unified Architecture Ap-
proach

The introduction of the DirectX 10 Unified Shader spec-
ification has laid a foundation for an important change in
GPU architectures. Previously, GPU architectures have in-
cluded two different types of processing units, pixel and
vertex.

As mentioned in section 2, several middleware platforms
have been developed to execute general propose applica-
tions on GPUs to exploit the pixel and vertex units on
board. However, in the new specification, the two individual
sets of instructions for pixel and vertex have been unified.
CUDA, the new middleware from NVIDIA Corporation, al-
lows programmers to use the C programming language to
develop program that target this unified-architecture GPU.

In this work we use the recently introduced GeForce
8800 GTX GPU from NVIDIA [9]. The chipset contains
128 stream processors, each with three scalar units (integer,
FP32 MAD, and FP32 MUL). The processors are organized
in groups of 16, making a total of 8 16-way multiprocessors;
each multiprocessor shares 16 KB memory and 8192 32-bit
registers. The chipset includes 768 MB of global (device)
memory shared among multiprocessors. The GPU off-chip
memory bandwidth is equal to 86.4 GB/s.

Based on a Host(CPU)/Device(GPU) scheme, the
CUDA programming model allows the execution of mul-
tiple threads on the 8800’s 8 multiprocessors. Threads ex-
ecuting the same computational kernel are grouped into a
grid of thread blocks. A block is processed by only one
multiprocessor. At any time, there is one grid assigned
to the GPU with one or several blocks per multiprocessor.
The number of blocks on a multiprocessor depends on the
thread’s complexity which is determined during compila-
tion. Threads being executing concurrently are split into
groups of 32 which are executed in Single Instruction Mul-
tiple Data (SIMD) fashion. This allows the overlap of mem-
ory latency with useful computation, however it introduces
a limitation related to the control flow. To avoid perfor-
mance penalties due to idle threads, conditional statements
should be limited to at most 7 instructions. If there are less
than 7 instructions, conditional statement bodies are exe-
cuted using predication and stalls are avoided.

There are several physical and functional limitations re-
lated to threads and computation kernels [10]. The maxi-
mum number of threads per multiprocessor is 768 and in a
block is 512. In addition, the maximum number of blocks in
a grid is 655353. There is neither support for kernel recur-
sion nor interthread communication. Consequently, to avoid
correctness issues, threads must execute independently of
one another.



3.2 A Semi-Automatic Parallel Matlab
Approach

MPI is widely used as a parallel programming middle-
ware because of its efficiency. However, it requires the
programmer to delve into the parallelization details, includ-
ing the initial environment setup, and the communication
and synchronization of processes during execution. MPI
is a practical option for experienced programmers, but is
not desirable for scientists who prefer Matlab’s flexible,
easy-to-use development and test environment. There have
been several approaches to parallelize Matlab [3]. Star-P,
an MPI-middleware, preserves the familiarity of Matlab by
hiding the details of parallelization with a semi-automatic
approach running on top of Matlab-licensed clients.

One of the main advantages of Star-P is the automatic
preparation of the communication framework, and the han-
dling of data placement and transfers. Obviously, opera-
tions that do not require communication or data transmis-
sion will run fastest, but Star-P will also automatically han-
dle operations that require data to be moved between pro-
cessor memories at different times during execution. If the
same were attempted with a lower-level framework such
as MPI, data movement would have to be coded explicitly.
Star-P inherently handles code that either contains indepen-
dent data operations, operations that require complex com-
munication, or a mixture of both.

In Star-P, data partitioning is implemented by distribut-
ing large datasets across the multiple processor memories
of a clustered system. Appending ∗p to an argument in
a Matlab constructor (such as ones, rand, etc.) creates
the data and partitions it along that dimension. In cases
where one constructor argument creates multi-dimensional
data, the data is partitioned along the highest dimension.
These partitions are then stored on the distributed memo-
ries of the system. When operations are performed on the
distributed data, each processor operates on its own subset.
Operations on the distributed data then create data that is
also distributed. Star-P also provides functions to save and
load distributed data that do require the data to be sent back
to the local machine [11].

Distributing data with Star-P also changes the data type.
Dense matrices become ddense objects, multi-dimensional
matrices become ddensend objects, and sparse matrices be-
come dsparse objects. In order for these distributed objects
to work transparently with Matlab, Star-P overloads func-
tions for each data type. These functions can be called ex-
actly the same way with distributed objects as with regular
objects, requiring no modification of the code.

In addition to supporting data parallelism, Star-P pro-
vides a construct called ppeval for exploiting task-level par-
allelism. ppeval operates by executing task parallel code
for iterations of loops on separate processors. It also al-

lows the user to split matrix dimensions across iterations
to decrease the amount of data that must be transmitted to
each processor. In Star-P terminology, split refers to the
partitioning of data on a dimension and transmitting one
partition for each iteration. Similarly, broadcast refers to
transmitting an entire data structure to all processors. To
use ppeval, the code or loop body must be coded as a func-
tion, with its input parameters specified as either split or
broadcast[11].

Since Star-P is built using MPI, it is difficult to achieve
the same speedup obtained when using hand-tuned MPI
code. However, Star-P takes advantage of the processors
and memories of a clustered system, while requiring much
less development effort. Just as with any other parallel im-
plementation, the performance benefits from Star-P vary
based on the characteristics of the serial code.

4. Application Acceleration Guides

In this section we provide guides to determine whether
code can be ported and parallelized easily and effectively
with both CUDA and Star-P. When providing our guide-
lines, we consider different aspects of the applications in-
tended to be parallelized. These aspects include the de-
gree of parallelization, how many parallel threads can be
extracted, how much work is allocated for each thread, the
amount of inter-process communication or thread synchro-
nization, the memory usage requirements, and the complex-
ity of each thread.

For these guides, we assume that a reference serial im-
plementation of the code exists. The serial implementation
may be in C, Fortran, or any other language in the case
of using a GPU. For Star-P, we assume an existing Mat-
lab program exists. It is not necessary that the serial im-
plementation be optimized. However, it is important that
the structure of the code does not hinder the extraction of
parallelism.

4.1 GPGPU-CUDA Guide

In order to achieve scalable performance with CUDA,
high utilization of all the stream processors is required. This
can be achieved by creating a very large pool of threads; un-
fortunately all threads running on the same multiprocessor
also share its resources. Requirements related to memory,
registers, and communication among threads must be con-
sidered to determine if CUDA can be used effectively to
accelerate an application.

4.1.1 Registers Required Per Thread

The number of threads that can be executed in parallel on
the multiprocessor is limited by the number of registers



available. This can become a problem when threads are
complex - as is often the case for multi-dimensional imag-
ing applications1. It is possible to reduce the number of
registers to improve performance by making simple threads,
reusing registers, and possibly using on-chip shared mem-
ory as an alternative to registers.

Using shared memory to increase the number of active
threads per processor is possible by forcing CUDA to place
variables in shared memory instead of registers. However,
over-reliance on this method can have a negative impact on
performance because of shared memory latency. At some
point, which is application-dependent, a trade-off exists be-
tween running more threads simultaneously, and running
fewer threads more efficiently. Thus, a GPU’s high uti-
lization in terms of the number of active threads does not
necessarily mean less execution time.

Both reusing registers and using shared memory have the
drawback that they require explicit hard coding that makes
the code less portable and dependent on the problem size.

4.1.2 Communication and Synchronization

CUDA provides limited support for synchronization be-
tween threads. This support only allows a thread to syn-
chronize its execution with the rest of the threads in the
same block, which ensures the completeness of different
procedures in a computation kernel. For example, it is most
efficient for all threads to load data, synchronize, and then
operate on the data.

A GPU may not be the best choice if the application
being parallelized requires intercommunication between
threads. In order to avoid correctness problems, threads
must execute entirely independently of each other and com-
mit their results to dedicated memory locations. If it is nec-
essary to communicate data between threads, the host CPU
can be used for this purpose. However, this will require
blocking the execution of all the threads, communicating
data back to the CPU, and resuming the threads’ execution.
Clearly, even if this method can be implemented for a spe-
cific application, it will be an expensive solution due to the
high cost associated with transferring data between the GPU
and the CPU.

4.1.3 Memory Limitations

The performance of an application can be limited if it re-
quires more memory than is available on the device. If the
application’s dataset can be partitioned to work on differ-
ent data subsets during execution then the subsets can be
‘manually’ swapped between the GPU memory and main

1Thread complexity increases if inner loops contain variable-length it-
erations or if sparse matrices are used.

memory using the CPU. To do this, the threads must fin-
ish execution on the current data subset, memory must be
copied to or from the GPU, and another set of threads must
be launched with the new subset. Another solution is to
use the processing power of the CPU to compute the results
that do not fit in GPU memory. This introduces a trade-off
between communication speed and computation speed.

4.2 Star-P Guide

Star-P provides several options to exploit different kinds
of parallelism. The following sections help determine
which approach should be taken based on data size, execu-
tion time, opportunities for vectorization, and code content.

4.2.1 Distributed Memory

Star-P’s approach to managing distributed data assumes that
the memory available to the programmer includes the com-
bined memories of all the processors in the cluster. This
pooling of memory resources makes Star-P a viable choice
for code that requires operations on very large data sets, on
operations that may require a large amount of intermediate
storage, or on data sets of indeterminate size. In addition,
data can be loaded directly to distributed memory so that
we do not have to worry about the implicit limitations of a
single processor memory.

4.2.2 Task Parallelism

The ppeval function distributes independent loop iterations
to each processor so that they execute in parallel. ppeval
is not appropriate in situations where a loop body’s execu-
tion time cannot amortize the overhead of data transmission
and process creation. Equation 1 explicitly expresses the
factors that determine the execution time of ppeval on each
processor.

T = tbcast + I(tsplit + tprocess creation + tbody) (1)

In Equation 1, T is the time required for ppeval to com-
plete the overall execution of the tasks assigned to a pro-
cessor, tbcast is the time to transmit the broadcast data, I is
the number of iterations executed on the processor, tsplit

is the time to transmit the split data, tbody is the execu-
tion time of the function body during each iteration, and
tprocess creation is the overhead time required to create a
process on a processor. As the equation shows, the broad-
cast data only needs to be transmitted once to each proces-
sor, and then can be reused for all iterations.

It is important to note that T may not be the same for
all processors. For example, if there are 33 iterations being



split across 32 processors, one processor will have to exe-
cute a second iteration while the other 31 sit idle. Therefore,
the total execution time of ppeval is equal to the longest ex-
ecution time of any one processor. It is only effective to
use ppeval when the longest execution time is less than the
serial execution time. If this is not the case, then the only
other option is to try to extract as much data parallelism as
possible by distributing the data and operating on it in par-
allel.

In addition, since we focus on how Star-P parallelizes
Matlab programs in this work, highly nested loops will be
difficult to work with (as they are in Matlab). Whenever
possible, inner loops should be vectorized. Since the nest-
ing of ppeval statements is not allowed, it is only possible
to remove one degree of nesting using task parallelism in
Star-P. However, with the expanded memory allowance per-
mitted by distributing data, the programmer may be able to
restructure code so that data structures can be duplicated,
potentially allowing inner loops to be removed altogether.

4.2.3 Compatibility with Matlab

Although Star-P is designed to run transparently on Mat-
lab, there are some Matlab functions that are not currently
supported for distributed data types (though all of the most
commonly used functions are). If distributed data needs to
be operated on by an unsupported function, it can easily
be recombined on the local machine. However, frequently
transmitting large data sets in this fashion will impact per-
formance.

4.3 Comparing the architectures based on
application characteristics

We consider the GPU to have a large porting effort
mainly because of the many considerations that need to be
taken into account to achieve good performance. Although
CUDA allows us to easily port C code and provides high
level constructs to do so, in order to achieve high perfor-
mance we need to understand all the limiting factors de-
scribed above (i.e., number of threads, register allocation,
etc.). The GPU’s high core density of processing should
translate to high performance, but there are a number of
limiting factors that make the actual performance highly
application-dependent.

Star-P, on the other hand, provides a very simple par-
allelization interface. But application performance is lim-
ited by the degree of data parallelism inherent in the opera-
tions in the code, the amount of communication required by
an operation, and the computing resources available in the
cluster. Code that runs well on Matlab and lends itself well
to distributed memory or task parallel operations should run
fast with Star-P.

Table 1 shows a summary of some important application
characteristics to consider when choosing either of these
parallel frameworks.

GPU Star-P

Number of High number of Not important if
Threads threads (thousands) execution time

amortizes data
transfers

Thread Simple: no or few Complex or simple
complexity control statements
Synchro- Only between threads Automated
nization on same multiprocessor
Memory Limited device memory Sum of all

(768MB on GeForce 8800) processor memories

Table 1. Desired algorithm characteristics by
technology.

5. Implementations and Results

Two parallel clustered systems were used to execute MPI
and Star-P code:

Cluster A: 33 Servers, each one contains two 2.0 GHz In-
tel Xeon dual core processors and 8/16GB of RAM. Servers
are interconnected by Gigabit Ethernet. Compiler GCC ver-
sion 3.4.5(Red Hat 3.4.5-2), optimization level O3.

Cluster B: 65 Servers, each one contains two 3.2 GHz
Intel Xeon processors and 4 GB of RAM. Servers are in-
terconnected by Gigabit Ethernet. Compiler GCC version
3.2.3(Red Hat Linux 3.2.3-42), optimization level O3.

Serial versions of the applications were run on a
1.86GHz Intel Core2 processor with 3GB RAM.

5.1 Tomosynthesis Mammography

To demonstrate the potential speedup of these ap-
proaches, we used a challenging 3-D reconstruction appli-
cation. Digital Tomosynthesis Mammography is a tech-
nique that helps to improve the early detection of breast
cancer by integrating multiple views and processing high
resolution projection images [15]. Even though this tech-
nique has been shown to be highly effective, it is a time-
consuming process due to the amount of processing neces-
sary to reconstruct a single 3-D image.

A total of 15 x-ray digital mammograms, or 2D views,
are acquired by moving an x-ray source, which hits a high-
definition detector (1900 x 2304 pixels). This data is pro-
cessed using an iterative image reconstruction algorithm to
recreate a 3D structure of the breast, which is used in the
detection and diagnosis of tumorous tissue. The image re-
construction algorithm consists of two phases per iteration:



a forward projection and a backward projection. Given an
initial estimated 3D volume of an object, the forward phase
simulates the x-ray traveling through the object, estimating
projection images. The backward phase takes each value in
the 3D volume and corrects it based on the difference be-
tween the estimated projection and the actual x-ray projec-
tions. The complexity of the algorithm, as well as the vol-
ume of the input and output data, increase linearly with the
size of the detector and the number of projection (usually
between 50 and 100). Parallelization for this application
can be exploited by partitioning the projected images and
the 3D volumes into multiple segments. These data subsets
can be processed in parallel on a clustered system.

Another alternative to expose parallelism is by process-
ing views in parallel during the forward phase, and projec-
tions in parallel during the backward phase. Although we
cannot create a full vectorization of the problem due to data
dependencies in the algorithm, it is possible to expose par-
allelism in each segment, projection, or view by creating
multiple threads to execute some of the inner loops.

5.1.1 Tomosynthesis on CUDA

The guidance provided in Section 4.1 was applied to eval-
uate the use of shared memory, registers, and communica-
tion among threads. Our implementation of Tomosynthesis
using the GPU exploits the parallelism exposed in views
and projections. The dimensions of the detector and the
number of projections make it is possible to have a signif-
icant number of threads running (2,755,584 threads, based
on number of pixels per view) during the forward and back-
ward phases. The large number of active threads is able to
hide the memory latencies associated with the use of device
memory. Consequently, the use of shared memory was not
required.

After determining the dataset size, including the input,
output, and temporary structures, we noted that the largest
data structure common to both phases could be maintained
in device memory throughout the entire program execution.
The other structures had to be swapped during execution.
Keeping this large structure in device memory throughout
the execution provided the best performance, because it
eliminates much of the data transfer time and helps to avoid
saturating the GPU off-chip memory bandwidth.

Figure 1 shows performance results for Tomosynthesis
on CUDA along with the MPI code run on the two clus-
ters. We achieved an 11X speedup for Tomosynthesis using
a GPU-based approach - a speedup comparable to our 32-
node clusters (3X slower than Cluster A, 1.5X faster than
Cluster B). Figure 2 shows a cost-performance relationship
based on the execution time of the application and the mar-
ket value2 of the evaluation environments for various num-

2Market value is based on current price in dollars for each server in

bers of iterations. Larger values in the graph represent a
higher cost of running the algorithm.

72

19
1 34

9

66
4

65

29
1

56
5

12
48

27 72

13
1 25

0

82
78

41
57

20
91

53
9

0

1000

2000

3000

1 4 8 16

Number of iterations

E
xe

cu
tio

n 
tim

e 
(s

ec
)

GeForce 8800 GTX
Cluster A - 8 servers
Cluster A - 4 servers
Cluster A - 2 servers
Cluster B - 16 servers
Cluster B - 8 servers
Cluster B - 4 servers
Serial

Figure 1. Tomosynthesis reconstruction, per-
formance

3.
9

7.
513

.836
.6

21
3.

2

40
7

74
0.

6

19
74

.9

53
5.

3

11
9.

5

61
.5

27
.8

0

100

200

300

400

500

600

700

1 4 8 16

Number of iterations

C
o

st
/P

er
fo

rm
n

ac
e 

(d
o

lla
rs

/s
ec

)

GeForce 8800 GTX
Cluster A - 8 servers
Cluster B - 16 servers

Figure 2. Cost/performance for Tomosynthe-
sis reconstruction on our 3 platforms.

5.1.2 Tomosynthesis on Star-P

Running Tomosynthesis on Star-P does not require as many
memory considerations. Instead, the interesting consider-

Clusters A and B. This value does not include cost of installation, inter-
connection, or maintenance. Market value for the GPU includes the price
of the GPU and workstation



ations are related to extracting parallelism efficiently from
the algorithm. In Tomosynthesis, both forward and back-
ward projection in the serial algorithm have four nested
for loops, which are devastating to performance in Mat-
lab. Computing the forward projection, only the inner-most
loop can be vectorized. The number of iterations in the in-
nermost loop varies per pixel, which inhibits vectorization
across the three outermost loops. Our options for paralleliz-
ing the algorithm are to distribute the data and operate on it
in parallel, or apply ppeval to one of the three outer loops.

Our guidelines can be applied to this problem in a num-
ber of ways. First, we determine if we can rule out any
of these methods based on the algorithm characteristics.
Checking the types of operations in the algorithm showed
that there are a number of conditional statements that mod-
ify data structures on a per-pixel basis, impeding data par-
allelism. Although this situation is not ideal, enough data
parallel operations occur that operating on the image us-
ing this method is still a viable choice. Applying Equation
1 we determined that the time to broadcast the data is too
large to justify using ppeval on the inner loop, which exe-
cutes a large number of fast operations. Alternatively, using
ppeval on the outer loop is a good option. Using ppeval on
the outer loop is equivalent to dividing the pixels evenly
between all processors (similar to the approach followed
in [15]). Though one inner loop iteration is short, in this
situation all iterations combine to make up the tbody value
used in Equation 1, thus amortizing the cost of data trans-
mission.

Backward projection could be parallelized identically to
forward. However, with backward we also have the op-
tion of vectorizing the outer three loops because the num-
ber of iterations for the innermost loop does not vary per
pixel. The entire backward algorithm can be condensed into
a single for loop that iterates as many times as the inner-
most loop. When this vectorization was attempted using
serial Matlab, we found that we did not have enough mem-
ory to hold the input, intermediate, and output data struc-
tures (even with 16GB of memory), because the size of the
data structures had to be significantly increased. Using dis-
tributed memory with Star-P, and splitting these structures
across memories, we were easily able to adhere to the mem-
ory restrictions.

5.2 Other Applications

5.2.1 Cardiac-CT Algorithm

A second application that we studied is a Cardiac-CT al-
gorithm [7]. This code employs a much more complex
geometric model than the model used for Tomosynthesis.
This increased complexity in geometry translates to more
significant code customization due to the associated com-
putational requirements. A high number of projections are

produced for a spiral movement of the detector around the
target object. In addition, more data dependencies are pro-
duced by assuming this geometry.

Applying the GPGPU-CUDA guide suggests that the
best strategy to produce high utilization was to reuse some
registers. This is because data dependencies and thread
complexity prevent the creation of a large number of
threads. Reusing registers allowed us to increase the num-
ber of active threads per processor. Even with the less fa-
vorable conditions of this algorithm, the GPU performance
(7X over serial execution) is still comparable to the per-
formance of Cluster B (6X over serial execution), though
not nearly as fast as Cluster A (19X over serial execution).
However, the cost-performance still greatly favors execu-
tion on the GPU as shown in Figure 3.

0.
5

1

4.
25

29
.9

59
.5

23
2.

8

48
.7

12
.8

6.
2

0

50

100

1 4 8

Number of iterations

C
o

st
/P

er
fo

rm
n

ac
e 

(d
o

lla
rs

/s
ec

)

GeForce 8800 GTX
Cluster A - 8 servers
Cluster B - 16 servers

Figure 3. Cost/performance for Cardiac-CT
on our 3 platforms.

5.2.2 Hyperspectral Toolbox

The code for the Matlab-based Hyperspectral imaging tool-
box is a collection of functions designed to analyze multi-
and hyper-spectral images [1]. The majority of the oper-
ations performed by the toolbox functions are completely
vectorized (they are performed on the entire image matrix).
When loops do exist in the code, they are mainly based on
the number of clusters specified for the classification algo-
rithms.

The Star-P guide presented in Section 4.2 was applied in
several ways. First, since hyperspectral images may contain
hundreds of 2D images, the image is initially loaded directly
into distributed memory. When loops were encountered in
the code, the decision to use data parallelism versus ppeval



required some thought because so many factors were in-
volved. Two variable factors, the number of processors and
the number of loop iterations, were especially critical (im-
age size was assumed to be large as there is less penalty
for being non-optimal with small images). If the number of
classification clusters for a hyperspectral image is small and
ppeval is used, many processors may sit idle while a few do
a large amount of work. Therefore, Equation 1 was applied
to the code, and the method of parallelization is determined
dynamically based on the system resources and algorithm
characteristics. Finally, in one loop body an unsupported
function was encountered for distributed data. Instead of
serializing the data and redistributing it with each iteration,
the data was serialized before entering the loop and redis-
tributed upon loop completion.

For the images used in this study, most algorithms saw
approximately a 2X speedup when using 4-processors.
Some of the longer algorithms had speedups closer to 3X
because of their ability to amortize the overhead costs of
broadcasting the large image to each node.

6. Summary and Future Work

In this work we have studied two approaches to paral-
lelizing multi-dimensional imaging applications with state-
of-the-art technologies. We examined the strengths and
weaknesses of the technologies, and presented a guide that
will help scientists and programmers determine the effec-
tiveness of using these approaches based on code charac-
teristics. Next, we applied our guidelines to several imag-
ing applications and found that we were able to obtain sig-
nificant speedups by coordinating our parallelization meth-
ods with the inherent strengths of the technologies. For the
Tomosynthesis algorithm a cost-performance analysis was
presented that highlights some of the tradeoffs associated
with executing this code on a single GPU compared with
two more-expensive clusters.

Our future work will include enhancing our investigation
of both technologies. Our first goal will be to make use of
two or more GPUs to accelerate the Cardiac-CT application
to extract more parallelism with fewer memory restrictions.
We also intend to investigate ways to utilize a GPU from
within the Star-P framework; this effort will start by using
a local GPU for accelerating a subset of computations. We
then plan to create a cluster where each node contains a
GPU. This will allow us to explore new ways to divide and
conquer computationally intensive applications by utilizing
both the CPU and GPU on each node. Finally, we intend
to explore ways to improve parallelization automation both
for Star-P and CUDA.

References

[1] E. Arzuaga, L. O. Jimenez, M. Velez, D. Kaeli, E. Ro-
driguez, H. T. Velazquez, A. Castrodad, L. E. Santos, and
C. Santiago. A MATLAB toolbox for hyperspectral image
analysis. In Proceedings of Geoscience and Remote Sensing
Symposium, IGARSS, volume 7, pages 4839–4842, Septem-
ber 2004.

[2] I. Buck. Stream computing on graphics hardware. PhD the-
sis, Stanford University, Stanford, CA, USA, 2005. Adviser-
Pat Hanrahan.

[3] R. Choy and A. Edelman. Parallel MATLAB: Doing it right.
Proceedings of the IEEE, 93(2), 2005. special issue on ”Pro-
gram Generation, Optimization, and Adaptation”.

[4] J. De Beenhouwer, R. Van Holen, S. Vandenberghe, S. Stae-
lens, Y. D‘Asseler, and I. Lemahieu. Graphics hardware ac-
celerated reconstruction of spect with a slat collimated strip
detector. In H. Arabnia, editor, Proceedings of the 2006 In-
ternational Conference on Image Processing, Computer Vi-
sion and Pattern Recognition, volume I, page 7 pp, Las Ve-
gas, 6 2006.

[5] M. Fletcher, C. McCosh, K. Kennedy, and G. Jin. Strat-
egy for compiling parallel matlab for general distributions.
Technical Report TR06-877, Rice University, Houston, TX,
2006.

[6] J. Kepner. MatlabMPI. J. Parallel Distrib. Comput.,
64(8):997–1005, 2004.

[7] Z. Liang, S. Do, W. C. Karl, U. Hoffmann, T. Brady, and
H. Pien. Calcium De-blooming in Coronary CT Images.
Technical report, Depart. of Biomedical engineering,BU and
Department of Radiology, MGH, 2007.

[8] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard.
Cg: a system for programming graphics hardware in a c-
like language. In SIGGRAPH ’03: ACM SIGGRAPH 2003
Papers, pages 896–907, New York, NY, USA, 2003. ACM
Press.

[9] Nvidia web page, http://www.nvidia.com/.
[10] NVIDIA CUDA Compute Unified Device Architecture pro-

gramming guide, version 1.0. NVIDIA Corporation, 2007.
[11] Star-P user guide, release 2.4.1. Interactive Supercomputing,

2007.
[12] The peakstream platform: High productivity software devel-

opment for multi-core processors. PeakStream Inc, 2006.
[13] Z. Wang, G. Han, T. Li, , and Z. Liang. Speedup os-

em image reconstruction by pc graphics card technolo-
gies for quantitative spect with varying focal-length fan-
beam collimation. IEEE Transactions on Nuclear Science,
52(5):1274–1280, 2005.

[14] F. Xu and K. Mueller. Accelerating popular tomographic
reconstruction algorithms on commodity pc graphics hard-
ware. In IEEE Transactions on Nuclear Science, volume 52,
pages 654–663, June 2005.

[15] J. Zhang, W. Meleis, D. Kaeli, and T. Wu. Acceleration
of maximum likelihood estimation for tomosynthesis mam-
mography. In ICPADS ’06: Proceedings of the 12th Inter-
national Conference on Parallel and Distributed Systems,
pages 291–299, 2006.


