
Memory Affinity for Hierarchical Shared Memory Multiprocessors

Christiane Pousa Ribeiro∗, Jean-François Méhaut∗, Alexandre Carissimi†, Márcio Castro‡ and Luiz Gustavo Fernandes‡
∗INRIA Mescal Research Team - LIG Laboratory

University of Grenoble, France
Email: {Christiane.Pousa, Jean-Francois.Mehaut}@imag.fr
†Universidade Federal do Rio Grande do Sul (UFRGS)

Porto Alegre, RS, Brazil
Email: asc@inf.ufrgs.br

‡GMAP - PPGCC - PUCRS
Porto Alegre, RS, Brazil

Email: {marcio.castro, luiz.fernandes}@pucrs.br

Abstract—Currently, parallel platforms based on large
scale hierarchical shared memory multiprocessors with Non-
Uniform Memory Access (NUMA) are becoming a trend in
scientific High Performance Computing (HPC). Due to their
memory access constraints, these platforms require a very
careful data distribution. Many solutions were proposed to
resolve this issue. However, most of these solutions did not
include optimizations for numerical scientific data (array data
structures) and portability issues. Besides, these solutions
provide a restrict set of memory policies to deal with data
placement. In this paper, we describe an user-level interface
named Memory Affinity interface (MAi)1, which allows me-
mory affinity control on Linux based cache-coherent NUMA
(ccNUMA) platforms. Its main goals are, fine data control,
flexibility and portability. The performance of MAi is evaluated
on three ccNUMA platforms using numerical scientific HPC
applications, the NAS Parallel Benchmarks and a Geophysics
application. The results show important gains (up to 31%)
when compared to Linux default solution.

Keywords-MAi; Menory Affinity; NUMA; NAS; ICTM.

I. INTRODUCTION

A Non-Uniform Memory Access (NUMA) platform is a
hierarchical shared memory multiprocessed system in which
the processing elements are served by multiple memory
levels, physically distributed through the platform. Such
distributed memory is seen by the developer as a single
shared memory. Since memory is physically divided in
blocks, the time spent to access a block is conditioned by
the distance between the processor and the memory block
(in which the data is physically allocated).

NUMA performance is essentially related to the affinity
between threads and data. Memory affinity is the guarantee
that memory access costs are reduced by either latency
optimization or bandwidth increasing [1], [2]. In the last
two decades, many researches have been carried out in
the context of memory affinity, resulting in several pro-
posals. These solutions were based in hardware counters,

1Research supported by CAPES (grant number 4874-06-4) and French
ANR - NUMASIS ANR-05-CIGC.

algorithms, Application Programming Interfaces (APIs) and
operating systems supports that allow some memory control
[3], [4], [5], [6], [7]. However, some problems remain: (i)
they do not include optimizations for numerical scientific
data (array data structures), (ii) they offer a limited set of
memory policies, (iii) they do not allow fine data control
and finally (iv) they do not offer platform/performance
portability.

In this paper we present an user-level interface that
deals with memory affinity for numerical scientific HPC
applications in an efficient fashion, called Memory Affinity
interface (MAi). It provides a wide set of memory policies to
manage data allocation, distribution and access for scientific
HPC applications based on shared memory programming
model over Linux ccNUMAs. In order to evaluate its porta-
bility, flexibility and efficiency, we carried out experiments
with some scientific memory-bound applications (NAS Pa-
rallel Benchmarks [8] and a Geophysics application [9]) on
three ccNUMA platforms. The results are compared with
one of the most used solution over ccNUMAs: the Linux
default memory policy (i.e., first-touch).

This paper is organized as follows: in section 2, MAi
characteristics and implementation details are presented.
The performance evaluation of MAi is shown in Section
3. Section 4 discusses the related work. The concluding
remarks and future works are pointed out in Section 5.

II. MAI: MEMORY AFFINITY INTERFACE

MAi2 is an user-level API that provides an efficient
way for managing memory affinity on ccNUMA platforms
for numerical scientific parallel applications. It simplifies
memory affinity management issues, since it offers a wide
set of memory policies to control data distribution. MAi
main goals are: (i) flexibility of use (different policies in
the same application), (ii) fine memory control (allows
to express data access patterns), (iii) portability (once a

2MAi can be download from http://mai.gforge.inria.fr/

memory policy strategy is applied in the application source
on a specific NUMA machine, it can be kept unchanged even
if one must carry out experiments on another one) and (iv)
performance gains (better performance than other solutions).
In this section we describe the memory policies supported
by MAi, the threads scheduling mechanism as well as its
implementation details.

A. Memory Policies

Before introducing the memory policies supported by
MAi, we must first explain what the memory affinity unit of
the interface is. In numerical scientific HPC, one cannot put
aside the importance of arrays. Most of the algorithms are
represented using these data structures. Due to this, in MAi,
the memory affinity unit is an array. During MAi design,
we have developped several optimizations for these data
structures, since different arrays or even the same can have
different access patterns during the application computation
steps.

MAi implements seven memory policies that can be
divided in three groups: bind, cyclic and random. The bind
group is composed of bind all and bind block memory
policies, the cyclic one of cyclic, cyclic block, skew mapp
and prime mapp, and the random one of random and
random block. The main differences between these three
groups are the memory blocks used and data distribution.
In MAi, data distribution can be performed using an array
block (rows or columns).

In bind group, the distribution of an array is restricted to
a set of memory blocks of the platform. Bind all memory
policy places all data in restricted memory block(s) specified
by the user. If more than one memory block is specified,
data will be placed in more memory blocks. However, this
policy will use all available memory (physical) from the
first memory block before using the next one. In bind block
memory policy, data is divided into blocks depending on the
number of threads that will be used in the application and
on where these threads are running. Due to this, blocks of
data are placed closer to threads which will compute them.

In MAi, a block is a set of rows or columns that can
be specified by the user. If the user does not specify the
number of rows or columns, MAi will choose the block size
automatically. The block size is computed considering the
scheduling of the workload for the threads. This strategy is
also applied for cyclic and random memory policies that use
the concept of blocks. MAi bind policies have similar beha-
vior of bind policy of the Linux NUMA solution. However,
some modifications must be done in the application source
code when applying the bind policy of the Linux NUMA
solution over different platforms (e.g., reconfigure the bit
masks in accordance with the platform number of nodes).
This code portability is guaranteed by MAi and it is done
transparently.

In Figure 1 (a) and Figure 1 (b), we show a schema
that represents how data distribution is done in bind all
and bind block memory policy. A node n is composed
of a memory block (Mn) and a set of processing units
(to simplify memory policies representation, the processing
units were not shown). Bind memory policies were designed
for applications that present a regular behavior. In such
applications, each thread always accesses the same set
of data and a static scheduling of the workload is used.
Furthermore, bind policies optimize latency over ccNUMAs,
since data is placed closer to the thread that uses it.

vector

bind_all policy bind_block policy

M0

Node 0

M1

Node 1

Mn

Node n

...M0

Node 0 Node 1

Mn

Node n

...

physical
allocation

physical
allocation

vector

M1

(a) (b)

Figure 1. Bind memory policies.

The cyclic group uses different round-robin strategies
to place data in the memory blocks of the platform. In
both cyclic and cyclic block policies, data is placed in the
memory blocks in a linear round-robin way. First policy
uses a memory page per round (Figure 2 (a)), which has
similar behavior of the interleave policy of the Linux NUMA
support, whereas the second one uses a block of memory
pages (Figure 2 (b)).

vector

cyclic policy

physical
allocation

M0

Node 0

M1

Node 1

Mn

Node n

...

vector

cyclic_block policy

physical
allocation

memory pages0 m

block size = 2 memory pages

M0

Node 0

M1

Node 1

Mn

Node n

...

memory pages0 m

(a) (b)

Figure 2. Cyclic memory policies.

The skew mapp memory policy was proposed in [10] and
it is a modification of round-robin policy that has linear
page skew. In this policy, a page i is allocated in the node
(i + bi/Mc + 1) mod M , where M is the number of
memory blocks (Figure 3 (a)). The prime mapp policy was
also proposed in [10] and uses a two-phase strategy. In the
first phase, the policy places data using cyclic policy in (P)
virtual memory blocks, where P is a prime greater or equal
to M (real number of memory blocks). In the second phase,
the memory pages previously placed in the virtual memory

blocks are reordered and placed into the real memory blocks
also using the cyclic policy (Figure 3 (b)).

vector

skew_mapp policy

physical
allocation

M0

Node 0

M1

Node 1

Mn

Node n

...

memory pages0 m

2, 4, 7

memory pages

0, 5, 8 1, 3, 6

N = 3

vector

prime_mapp policy

physical
allocation

M0

Node 0

M1

Node 1

Mn

Node n

...

0, 3, 5 1, 4, 6 2, 7, 8

N = 3

memory pages

memory pages0 m

(a) (b)

Figure 3. Cyclic memory policies.

Cyclic memory policies can be used in applications
with regular and irregular behavior (threads do not always
access the same data). These memory policies spread data
between the memory blocks minimizing concurrent access
and increasing bandwidth. However, some scientific appli-
cations can still have contention problems with cyclic and
cyclic block, since these policies make a linear distribution
of memory pages (generally, power of 2) on the platform
(it has power of 2 memory blocks). Thus, the proposal
of skew mapp and prime mapp memory policies aims at
reducing concurrent access for such applications [10].

Finally, the last group of memory policies is random. In
these memory policies, memory pages are placed randomly
in the NUMA nodes, using a random uniform distribu-
tion. The main goal of this memory policy is to increase
bandwidth in the NUMA platforms. Like the other policies,
different sizes of blocks can also be used.

One of the most important features of MAi is the fact
that changing the memory policy applied to an array during
the application execution is possible. This characteristic
allows developers to express different patterns during the
application execution. Additionally, MAi memory policies
can be combined during the application execution to im-
plement a new memory policy. Arrays are usually accessed
in different ways during the application life cycle. Thus,
it is important to give the developer the opportunity to
develop/create a memory policy suited for his application.
Finally, any incorrect memory placement can be optimized
through the use of the MAi memory migration functions.
The unit used for migration can be a set memory pages
(automatically defined by MAi) or a set of rows/columns
(specified by user). However, migration must only be used to
correct important data placement, since migration overheads
can be high [11], [12], [5].

B. Threads Scheduling

In some memory policies (bind group), to better ensure
memory affinity, both threads and memory must be con-
sidered in the solution [13], [4], [6]. In MAi, for bind

memory policies group, the default thread scheduling policy
is to fix them to processors/cores. Using such a strategy
assures that threads will not migrate (less overhead with
task migrations) and that consequently, MAi will be able to
perform a better data distribution and assure memory affinity.
This thread scheduling considers the number of threads (T)
and processors/cores (P) to decide how to fix threads. If
T ≤ P, one thread per processor/core strategy is chosen,
which minimizes the memory contention problem inside the
node, present in some NUMA platforms3. Memory con-
tention happens when several threads try to access the same
memory block. Concurrent accesses in the same memory
block can generate worse performance, since they must be
serialized. Since if T > P MAi will schedule more threads
per processor/core, scheduling one thread per processor/core
can avoid this problem.

By default, MAi do not schedule threads for cyclic and
random memory policies. Since these memory policies can
be used in irregular applications (dynamic scheduling), not
binding them to processors/cores and therefore letting the
operating system control the threads scheduling will lead to
better results. Additionally, the default scheduling strategy
can be changed during the library initialization. The develo-
per can then choose between using operating system thread
scheduling or defining his own threads and processors/cores
mapping.

C. Implementation Details and Overview

MAi interface is implemented in C for Linux based
ccNUMAs and it can be used in applications written in
C or C++. In order to use MAi, applications must be
developed using a shared memory programming model
(specially, POSIX Threads or OpenMP). Since MAi uses
some Linux NUMA system calls (mbind(), move pages()
and migratepages()), NUMA support (numaif.h) must be
available in the Linux system.

All MAi functions are array-oriented and they can be
divided in three groups: allocation, memory policies and sys-
tem (Figure 4). Allocation functions are responsible for al-
locating arrays (they are optimized for ccNUMA platforms).
Memory policies functions are used to apply a specific
memory policy for an array, allocating its memory pages in
memory blocks (as presented in section 2.1). Finally, with
system functions, collecting and printing system information
can be done (for instance memory blocks used by the
memory policies, cpus/cores used during the application
execution, memory blocks, statistics about page migration,
etc.).

The interface uses a configuration file in which the
user can describe the target NUMA platform specification
(processors/cores and memory blocks to be used) and the
thread scheduling that will be applied. If it is not specified,

3Bull Novascale Itanium 2 and SGI Altix Itanium 2 NUMA platforms.

Figure 4. MAi main functionalities.

the interface will collect the platform characteristics such as
memory blocks, cpus/cores, caches sizes and NUMA factor,
setting the configuration file automatically.

III. PERFORMANCE EVALUATION

In this section we present the performance evaluation of
MAi. First, we will describe the three NUMA platforms used
in our experiments and then the numerical scientific HPC
applications (NAS Parallel Benchmarks [8] and ICTM [9])
and their main characteristics. Finally, we will present the
results and their analysis.

A. NUMA Platforms

Our experiments were carried out in three ccNUMA plat-
forms. The first platform is a sixteen Itanium 2 processors
with 1.6 GHz each. It is organized in four nodes of four
processors with 9 MB of shared L3 cache memory each.
It has a total of 64 GB of main memory (16 GB of
local memory). The nodes are connected using a FAME
Scalability Switch (FSS), which is a backplane developed
by Bull4. This connection gives different memory latencies

4Bull - Architect of an Open World - http://www.bull.com

for remote access by nodes (NUMA factor from 2 to 2.55).
The compiler that has been used for the OpenMP code
compilation was the ICC (Intel C Compiler - version 9.0).
A schematic figure of this machine is given in Figure 6 (a).
We will use the name Itanium2 for this machine.

Itanium 2 Opteron

(a) (b)

Figure 6. Itanium2 and Opteron platforms.

The second NUMA platform is an eight dual core AMD
Opteron 2.2 GHz. It is organized in eight nodes of two
processors with 2 MB of shared cache memory for each
node. It has a total of 32 GB of main memory (4 GB of
local memory). Each node has three connections which are
used to link with other nodes (NUMA factor from 1.2 to
1.5). The compiler that has been used for the OpenMP code
compilation was the GCC (GNU C Compiler). A schematic
figure of this machine is given in Figure 6 (b). We will use
the name Opteron for this platform.

Figure 7. SGI NUMA platform.

The last NUMA platform is an SGI Altix sixteen pro-
cessors with 1.5 GHz and 4 MB of shared cache memory
each. It is organized in eight nodes of two processors with
a total of 32 GB of main memory (4 GB of local memory).
Each node has two connections which are used to link with
other nodes (NUMA factor from 1.2 to 1.3). The compiler
that has been used for the OpenMP code compilation was
the ICC (version 9.0). A schematic figure of this machine

5NUMA factor is the ratio between remote memory access latency and
local memory access latency.

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

FFT - Itanium2

Skew
Cyclic
Prime

Random

Bind-Block
Bind-All

Cyclic-Block
First-Touch

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

CG - Itanium2

Skew
Cyclic
Prime

Random

Bind-Block
Bind-All

Cyclic-Block
First-Touch

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

ICTM - Itanium2

Skew
Cyclic
Prime

Random

Bind-Block
Bind-All

Cyclic-Block
First-Touch

(a) (b) (c)

Figure 5. Speedups for FFT (a), CG (b) and ICTM (c) on the Itanium 2 Platform.

is given in Figure 7. We will use the name SGI to make
reference to this platform.

B. NAS Parallel Benchmarks

NAS Parallel Benchmarks (NPB’s) is a benchmark de-
rived from computational fluid dynamics (CFD) codes and it
is composed of applications and kernels [8]. From NPB’s, we
have selected two kernels: fast Fourier Transform (FFT) and
Conjugate Gradient method (CG). Both kernels were chosen
due to their memory access patterns (both have irregular data
access patterns) and different data types (primitive C types
and C structs). Additionally, they represent important classes
of scientific computations. Such kernels were implemented
in C using OpenMP to code parallelization.

FFT is a kernel that computes the fast transform of Fourier
for three dimensional systems. The application works with
complex numbers that are represented with structures. There
are three main steps in the FFT computation and data are
shared just in the second step. The computation is done
in one direction step by step and each thread computes
Z imaginary planes. In our experiments, we have used a
512x256x256 matrix.

CG is also a kernel that uses a conjugate gradient method
to compute an approximation to the smallest eigenvalue
of a large, sparse, unstructured matrix. This kernel tests
unstructured vector computations and communications. It
uses a matrix with randomly generated locations of entries
which gives a large amount of cache misses. The input
parameter of this kernel is the size of the array that will be
used for computation. In this case, we have used an array
of size 75000.

C. ICTM: Interval Categorizer Tessellation Model

ICTM is a multi-layered tessellation model for the catego-
rization of geographic regions considering several different
characteristics (relief, vegetation, climate, etc.), using satel-
lite images [14]. In order to categorize the regions, ICTM

executes sequential phases in two dimensional matrices that
are accessed in an irregular way. Each phase is responsi-
ble for computing data stored in different matrices. Since
the categorization of extremely large regions has a high
computational cost, a parallel solution for NUMA platforms
was proposed in [9]. ICTM was implemented in C++ using
OpenMP to code parallelization. In our experiments we have
used matrices of size 6700x6700 (2 GB of data).

D. Results

For each application and architecture, we have carried
out series of experiments using each of the seven me-
mory policies of MAi (bind all, bind block, skew mapp,
prime mapp, cyclic, cyclic block, random) and the Linux
default memory policy (first touch).

The results presented for each experiment were ob-
tained through the average of several executions varying
the number of threads from 2 to 16, excluding the best
and the worst execution times. These averages presented
a low standard deviation, since all experiments have been
done with exclusive access to the ccNUMA machines. The
analysis of our results is based on nine distinct graphics,
one for each platform/application. Each graphic compares
the performances of all MAi memory policies with the first-
touch policy.

In Figure 5, we present the speedups obtained with the
eight memory policies for the three applications on Itanium
2 platform. Considering these speedups, we observe that
the best results for ICTM (Figure 5 (c)) and CG (Figure 5
(b)) are obtained with MAi bind block memory policy. By
allocating data closer to the threads which computes them,
we have decreased the number of remote accesses and con-
sequently, the performance was increased. However, for FFT
(Figure 5 (a)), the best memory policy was MAi skew mapp.
In this application, using memory policies that spread data
among memory blocks will lead to better performance, since
the data access pattern is irregular (threads use different sets

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

FFT - Opteron

Skew
Cyclic
Prime

Random

Bind-Block
Bind-All

Cyclic-Block
First-Touch

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

CG - Opteron

Skew
Cyclic
Prime

Random

Bind-Block
Bind-All

Cyclic-Block
First-Touch

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

ICTM - Opteron

Skew
Cyclic
Prime

Random

Bind-Block
Bind-All

Cyclic-Block
First-Touch

(a) (b) (c)

Figure 8. Speedups for FFT (a), CG (b) and ICTM (c) on the Opteron Platform.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

FFT - SGI

Skew
Cyclic
Prime

Random

Bind-Block
Bind-All

Cyclic-Block
First-Touch

 1

 2

 3

 4

 5

 6

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of threads

CG - SGI

Skew
Cyclic
Prime

Random

Bind-Block
Bind-All

Cyclic-Block
First-Touch

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16
S

pe
ed

up

Number of threads

ICTM - SGI

Skew
Cyclic
Prime

Random

Bind-Block
Bind-All

Cyclic-Block
First-Touch

(a) (b) (c)

Figure 9. Speedups for FFT (a), CG (b) and ICTM (c) on the SGI Platform.

of data during the application steps).
Figure 5 also shows that Linux default memory policy

(first touch) presented one of the worst results (in some
cases they were better than bind all). First touch policy was
designed to optimize latency, since it places memory pages
once (when they are first touched) and never migrate them.
If some thread needs a memory pages different from the first
page that it touched (e.g., share some data), it will have a
remote access. Thus, it only presents interesting results in
applications that have regular access patterns. However, in
FFT, CG and ICTM, threads usually access different data
sets, so this policy does not result in a good performance.

Since Itanium 2 has a high NUMA factor, which gives
expensive remote accesses, the best memory policies for this
platform are the ones designed to bind data closer to the
threads that use them. That is the case of MAi bind block
memory policy, which optimizes latency by reducing the
number of remote accesses and NUMA effects.

In Figure 8, Opteron results that, on average, the best
speedups for FFT, CG and ICTM were obtained with
the memory policies that avoid the contention problem

(skew mapp, cyclic, random) and increase the network
bandwidth. The other memory policies resulted in worse
speedups, since they prioritize latency optimizations (which
must not be the main concern in this platform). We can
also observe that the first touch policy presents interesting
speedups. However, the speedups for this policy were 15%
lower than MAi policies. First touch is indicated for regular
applications over platforms that have high NUMA factors,
which is not the case in this platform (its main characteristics
are bandwidth problems and a small NUMA factor). As a
consequence, remote accesses are not very expensive but
contention in memory blocks can still occur. Due to this fact,
memory policies designed to spread data among the platform
memory blocks present better results. By distributing me-
mory pages in a cyclic/random way, memory contention and
consequently, the influence of network bandwidth problems
can be avoided.

In Figure 9, we present the speedups obtained on SGI plat-
form. MAi cyclic and bind block policies were the best solu-
tions for CG and ICTM applications over SGI. However, the
difference between MAi best policies and first touch was not

so high due to the network interconnection constraints (for
instance small NUMA factor). We can conclude that FFT ran
slower with MAi memory policies and did not have speedups
(in this case, First touch presented the best results). For FFT,
we have applied MAi memory policies only in the arrays,
since MAi is array-oriented whereas First touch policy was
applied for all application data segment. Another problem
remained concerning the memory contention in platform,
since the matrices of complex numbers can be accessed
in different steps by different threads. For this application,
more experiments must be performed to better understand
that behavior.

The SGI NUMA platform has, as its main characteristics,
the fat-tree network and a small NUMA factor. This hierar-
chical network connection has two levels: the first level is
inside the C-Brick (smaller latency) and the second level is
outside the C-Brick (higher latency). Thus, remote accesses
will only be expensive when threads access data outside
the C-Brick (Figure 9). In this platform, applications that
deal with unstructured and sparse matrices (e.g., CG) will
have better speedups when memory policies that spread data
among platform memory blocks are applied.

In High Performance Computing (HPC), platforms are
generally used in their full capacity in order to reach their
maximum efficiency. Because of that, we present in Table I
the highest efficiency (with 16 threads) of MAi best memory
policy for each application/platform in comparison to the
first touch policy (FT).

Table I
EFFICIENCY OF MAI BEST POLICY (MAI) AND FIRST-TOUCH (FT).

Itanium 2 Opteron SGI
MAi FT MAi FT MAi FT

FFT 67.24% 36.12% 47.54% 33.57% 1.38% 19.69%
CG 40.36% 21.03% 39.28% 20.06% 22.25% 12.19%

ICTM 98.51% 77.89% 60.18% 48.17% 66% 51.61%

Considering Itanium2 NUMA platform, MAi memory
policies improved the efficiency of FFT, CG and ICTM by
31%, 19% and 21% respectively, compared to the first touch
memory policy. On Opteron, MAi memory policies im-
proved the efficiency of FFT, CG and ICTM by 14%,
19% and 12% respectively. Finally, MAi did not present
high improvements in terms of efficiency on SGI with CG
and ICTM (10% and 15% respectively) in comparison to
first touch. For FFT, first touch memory policy were 18%
better than the best MAi policy. As mentioned before, more
experiments will be done to better explain this behavior.

IV. RELATED WORK

In scientific HPC, the assurance of memory affinity on
ccNUMA platforms is an important issue. Research groups
have studied different ways to manage memory affinity
on Linux based NUMA platforms [15]. As a result, li-
braries/interfaces [7] and design of memory policies in user

or kernel spaces of operating systems have been proposed
[6], [12], [4], [5].

Linux operating system has a basic support to manage
affinity on ccNUMAs. This support has three parts: ker-
nel/system calls, a library (libnuma) and a tool (numactl).
The kernel part defines three system calls (mbind(),
set mempolicy() and get mempolicy()) that allow the
programmer to set a memory policy (bind, interleave, pre-
ferred or default) for a memory range. However, the use
of such system calls is a complex task, since developers
must deal with pointers, memory pages, sets of bytes and
bit masks. The numactl tool allows the user to set a memory
policy for an application without changing the source code.
However, the chosen policy will be applied over all applica-
tion data (it is not possible to either express different access
patterns or change the policy during the execution [7]). The
last part of this support is a library named libnuma, which
is a wrapper layer over the kernel system calls. The limited
set of memory policies provided by libnuma is the same as
the one provided by the system calls.

The Linux NUMA support does not have portability,
since source code that manage memory affinity must be
changed for different architectures. MAi avoids this ne-
cessity of source code modifications since it collects the
architecture characteristics automatically. Moreover, after
analyzing the experimental results, we concluded that a wide
set of memory policies is necessary, since different scientific
HPC applications and ccNUMA platforms demand different
memory policies (latency or bandwidth optimizations) to
assure memory affinity.

Linux operating system implements first-touch as default
policy to manage memory affinity on ccNUMAs. This policy
places data in the node that first accesses it [4], [15]. To
improve memory affinity using this policy, it is necessary to
either execute a parallel initialization of all application data
allocated by the master thread or allocate its on data on each
thread. However, this strategy will only present performance
gains if it is applied on applications that have a regular data
access pattern. In case of irregular applications, first-touch
will result in a high number of remote memory accesses,
since threads do not access the same data. Our solution
overcomes these issues offering cyclic and random memory
policies and data migration functions.

In [6], [12], [5], the authors have designed and imple-
mented the on-next-touch memory policy on Linux operating
systems. This policy allows data migration when threads
touch them for the next time, allowing more local accesses.
Its performance evaluation has shown good performance
gains only for applications that have a single level of
parallelism. When it was applied in nested parallel levels,
it was not profitable (threads frequently lost their affinity).
Thus, many data migrations were done and this overhead
lowered the performance gains. MAi avoids it by combining
static data distribution with small number of migrations.

V. CONCLUSIONS AND FUTURE WORK

We have focused our work on MAi, a memory affinity
interface to manage memory placement on ccNUMA plat-
forms for scientific HPC applications based on arrays. We
also have presented its proposal, its main functionalities, its
implementation details and advantages (fine data control,
flexibility and portability). In order to evaluate its perfor-
mance, we have carried out experiments over three ccNUMA
platforms using NPB’s and a Geophysics application.

We have observed a performance improvement up to 31%
in relation to the first-touch (FFT kernel over Itanium 2
platform). Gains were also observed for all applications over
the three ccNUMA platforms used in our experiments. In
most of the experiments, MAi memory policies presented
better results than first touch policy. However, due to a lack
of performance in FFT kernel, MAi interface still needs to
be improved for SGI platform.

The results have also shown that different ccNUMAs
platforms and applications need different memory policies.
ccNUMAs platforms with a high NUMA factor demand
memory policies such as bind block, whereas cyclic me-
mory policies present more satisfying results in platforms
with bandwidth problems. Performance can be improved
in applications with regular data access patterns by using
bind block memory policies, since threads always access
the same data set. For irregular applications, the use of
cyclic or random memory policies usually results in higher
performance gains, since there is no specific data access
pattern in such applications (it can be changed during the
execution).

The implementation of memory policies using the con-
cept of plug-ins, hierarchical tiles for 3D/4D arrays, the
performance evaluation over several applications and MAi
integration in a compiler preprocessor are issues to be
considered in our future works.

REFERENCES

[1] F. Bellosa and M. Steckermeier, “The Performance
Implications of Locality Information Usage in Shared-
Memory Multiprocessors,” J. Parallel Distrib. Comput.,
vol. 37, no. 1, pp. 113–121, August 1996. [Online]. Available:
http://portal.acm.org/citation.cfm?id=241170.241180

[2] C. Ribeiro, F. Dupros, A. Carissimi, V. Marangozova-Martin,
J.-F. Méhaut, and M. S. de Aguiar, “Explorando Afinidade
de Memória em Arquiteturas NUMA,” in WSCAD ’08: Pro-
ceedings of the 9th Workshop em Sistemas Computacionais
de Alto Desempenho - SBAC-PAD. Campo Grande, Brazil:
SBC, 2008.

[3] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris,
C. A. Nelson, and C. D. Offner, “Extending OpenMP for
NUMA Machines,” in SC ’00: Proceedings of the 2000
ACM/IEEE Conference on Supercomputing, Dallas, Texas,
USA, 2000.

[4] A. Joseph, J. Pete, and R. Alistair, “Exploring
Thread and Memory Placement on NUMA Architec-
tures: Solaris and Linux, UltraSPARC/FirePlane and
Opteron/HyperTransport,” 2006, pp. 338–352. [Online].
Available: http://dx.doi.org/10.1007/11945918 35

[5] B. Goglin and N. Furmento, “Enabling High-Performance
Memory Migration for Multithreaded Applications on Linux,”
in MTAAP’09: Workshop on Multithreaded Architectures and
Applications, held in conjunction with IPDPS 2009,
IEEE, Ed., Rome Italie, 2009. [Online]. Available:
http://hal.inria.fr/inria-00358172/en/

[6] H. Löf and S. Holmgren, “Affinity-on-next-touch: Increasing
the Performance of an Industrial PDE Solver on a cc-NUMA
System,” in ICS ’05: Proceedings of the 19th Annual
International Conference on Supercomputing. New York,
NY, USA: ACM, 2005, pp. 387–392. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1088149.1088201

[7] A. Kleen, “A NUMA API for Linux,” Tech. Rep.
Novell-4621437, April 2005. [Online]. Available:
http://whitepapers.zdnet.co.uk/0,1000000651,260150330p,00.
htm

[8] J. Y. Haoqiang Jin, Michael Frumkin, “The OpenMP
Implementation of NAS Parallel Benchmarks and Its
Performance,” NAS System Division - NASA Ames Research
Center, Tech. Rep. 99-011/1999, 1999. [Online]. Available:
https://www.nas.nasa.gov/Research/Reports/Techreports/1999/
PDF/nas-99-011.pdf

[9] M. Castro, L. G. Fernandes, C. Pousa, J.-F. Méhaut, and
M. S. de Aguiar, “NUMA-ICTM: A Parallel Version of
ICTM Exploiting Memory Placement Strategies for NUMA
Machines,” in PDSEC ’09: Proceedings of the 23rd IEEE
International Parallel and Distributed Processing Symposium
- IPDPS. Rome, Italy: IEEE Computer Society, 2009.

[10] R. Iyer, H. Wang, and L. Bhuyan, “Design and Analysis of
Static Memory Management Policies for CC-NUMA Multi-
processors,” College Station, TX, USA, Tech. Rep., 1998.

[11] L. T. Schermerhorn, “Automatic Page Migration for Linux,”
in Proceedings of the Linux Symposium, Linux, Ed., Sydney,
Australia, 2007.

[12] C. Terboven, D. A. Mey, D. Schmidl, H. Jin, and
T. Reichstein, “Data and Thread Affinity in OpenMP
Programs,” in MAW ’08: Proceedings of the 2008 workshop
on Memory access on future processors. New York,
NY, USA: ACM, 2008, pp. 377–384. [Online]. Available:
http://dx.doi.org/10.1145/1366219.1366222

[13] F. Bellosa, “Memory Conscious Scheduling and Processor
Allocation on NUMA Architectures,” Tech. Rep. TR-I4-95-
06, Aug. 1995. [Online]. Available: http://i30www.ira.uka.de/

[14] M. S. de Aguiar, G. P. Dimuro, and A. C. da Rocha Costa,
“ICTM: An Interval Tessellation-Based Model for Reliable
Topographic Segmentation,” Numerical Algorithms, vol. 37,
no. 1–4, pp. 3–11, 2004.

[15] A. Carissimi, F. Dupros, J.-F. Mehaut, and R. V. Polanczyk,
“Aspectos de Programação Paralela em arquiteturas NUMA,”
in VIII Workshop em Sistemas Computacionais de Alto De-
sempenho, 2007.

