
Mapping pipelined applications with replication
to increase throughput and reliability

Anne Benoit1, Loris Marchal1, Yves Robert1 and Oliver Sinnen2

1. LIP (jointly operated by CNRS, ENS Lyon, INRIA and UCB Lyon), ENS Lyon,
46 Allée d’Italie, 69364 Lyon Cedex 07, France.

{Anne.Benoit|Loris.Marchal|Yves.Robert}@ens-lyon.fr
2. Department of Electrical and Computer Engineering,University of Auckland
1142, Private Bag 92019, Auckland, New Zealand. o.sinnen@auckland.ac.nz

LIP Research Report RR-LIP 2009-28

Abstract

Mapping and scheduling an application onto the processors of a parallel system
is a difficult problem. This is true when performance is the only objective, but
becomes worse when a second optimization criterion like reliability is involved.
In this paper we investigate the problem of mapping an application consisting of
several consecutive stages, i.e., a pipeline, onto heterogeneous processors, while
considering both the performance, measured as throughput, and the reliability.
The mechanism of replication, which refers to the mapping of an application stage
onto more than one processor, can be used to increase throughput but also to
increase reliability. Finding the right replication trade-off plays a pivotal role for
this bi-criteria optimization problem. Our formal model includes heterogeneous
processors, both in terms of execution speed as well as in terms of reliability. We
study the complexity of the various subproblems and show how a solution can be
obtained for the polynomial cases. For the general NP-hard problem, heuristics
are presented and experimentally evaluated. We further propose the design of an
exact algorithm based on A* state space search which allows us to evaluate the
performance of our heuristics for small problem instances.

1 Introduction

Mapping applications onto parallel platforms is a difficult challenge. Several schedul-
ing and load-balancing techniques have been developed for homogeneous architectures
(see [15] for a survey) but the advent of heterogeneous clusters has rendered the mapping
problem even more difficult. Typically, such clusters are composed of different-speed
processors interconnected by some communication network. They constitute a common

1

platform found in industry and academia, well suited for applications with negligible or
low inter-task communication volume.

We focus in this paper on the pipeline skeleton, i.e., an application with linear de-
pendencies between stages, to be executed on such clusters. The pipeline skeleton is
typical of streaming applications like video and audio encoding and decoding applica-
tions, etc. [6, 18, 10, 19, 20]. Each stage has its own communication and computation
requirements: it reads an input file from the previous stage, processes the data and
outputs a result to the next stage. For each data set, initial data is input to the first
stage, and final results are output from the last stage. The pipeline workflow operates
in synchronous mode: after some latency due to the initialization delay, a new task is
completed every period.

Key metrics for a given workflow are the throughput and the reliability. The through-
put measures the aggregate rate of processing data, and it is the rate at which data sets
can enter the system. Equivalently, the inverse of the throughput, defined as the period,
is the time interval required between the beginning of the execution of two consecutive
data sets. The reliability of the application is the probability that all computations will
be successful. The period can be minimized by dealing different data sets to different
processors in a round-robin fashion, while reliability is increased by replicating computa-
tions on a set of processors (i.e., computing each data set several times). The application
fails to be executed only if all processors involved in a same redundant computation fail
during execution. In this paper, we focus on bi-criteria approaches, i.e., minimizing the
failure probability under period constraints, or the converse. Thus we must investigate
the trade-off of using processors to deal data sets and reduce the period, or to repli-
cate computations and increase the reliability. The optimization problem can be stated
informally as follows: which stage to assign to which processor?

We target applications and platforms on which the cost of communications is negli-
gible in comparison to the computation cost. SpeedHom platforms are made of identical
speed processors, while SpeedHet platforms consist of different speed processors. In terms
of reliability (defined as the inverse of the overall failure probability), we consider either
processors with identical failure probabilities, denoted FailureHom, or with different fail-
ure probabilities FailureHet . All four combinations of processor speed and reliability are
addressed in this paper.

We require the mapping of the pipeline graph to be interval-based, i.e., a processor is
assigned an interval of consecutive stages. A lot of work has been done to investigate the
complexity of finding the best interval mapping of such linear graphs, according to diverse
optimization criteria, onto homogeneous or heterogeneous platforms. Thus, Subhlok and
Vondran prove in [16] that a mapping which minimizes the period on a homogeneous plat-
form can be found in polynomial time. In [17], they extended this approach to bi-criteria
problems accounting for the latency of a mapping, i.e., the maximum time required to
process one single data set. This work was extended to heterogeneous platforms [4].

The use of stage replication techniques has also been widely studied. On the one hand,
some deal replication is used to reduce the period of a mapping, see for instance the Data
Cutter project [6], or a theoretical study in [3]. On the other hand, active replication
to increase reliability is also a classical technique used to overcome processor failures:
in [11, 9], the replication is such than a given number of processor failures is supported.
In [2], we defined the reliability of a pipelined application similarly than in the present

2

paper, and used replication to decrease the failure probability of an application.
To the best of our knowledge, this paper presents the first study of problems in which

both replication for performance and replication for reliability are used simultaneously,
and thus considering the two antagonist criteria, throughput and reliability. First we
formally detail the model and the optimization problems in Section 2. Then in Section 3
we establish the complexity of all problem instances, and derive some new approxima-
tion results. Bi-criteria problems are NP-hard in most cases because of the antagonistic
criteria. In particular, it is NP-hard to minimize the failure probability, given a bound
on the period of the application, when targeting heterogeneous platforms. Thus, we
introduce polynomial time heuristics in Section 4 to propose practical solutions to this
problem. One contribution is the design of an exact algorithm based on A* (see Sec-
tion 5), which allows us to evaluate the absolute performance of our heuristics on small
problem instances in Section 6. Finally, we state some concluding remarks in Section 7.

2 Framework

We outline in this section the characteristics of the applicative framework, as well as the
model for the target platform. Next we detail the bi-criteria optimization problem.

2.1 Applicative framework

We consider a pipeline of n stages Si, 1 ≤ i ≤ n, as illustrated on Fig. 1. Input data is fed
into the pipeline and processed from stage to stage, until output data exits the pipeline
after the last stage.

The i-th stage Si receives an input from the previous stage, performs a number of wi

computations, and outputs data to the next stage. Communication costs are assumed
to be negligible in comparison with the computation costs, thus the time required to
compute one data set for stage Si is proportional to wi.

Sn... ...
w1 w2 wn

S1 S2 Si

wi

Figure 1: The application pipeline.

2.2 Target platform

We target a platform with p processors Pu, 1 ≤ u ≤ p, fully interconnected as a (virtual)
clique. The speed of processor Pu is denoted as su, and it takes X/su time-units for Pu

to execute X floating point operations. We consider either SpeedHom platforms made of
identical processors: su = s for 1 ≤ u ≤ p, or general SpeedHet platforms. Moreover, we
assume that communications are negligible compared to computation costs, thus we do
not characterize here the network bandwidths and communication times.

In order to evaluate and optimize the reliability of the mappings produced, we as-
sociate a failure probability 0 < fu < 1 with each processor Pu, 1 ≤ u ≤ p. It is the

3

probability that Pu fails during the execution of the application. We consider constant
failure probabilities as we are dealing with pipelined applications. These applications are
meant to run during a very long time, and therefore we address the question of whether
the processor will fail or not at any time during execution. It might seem odd that this
probability is completely independent of the execution time, since one may believe that
the longer a processor executes, the larger the chance that it fails. However, we target
a steady-state execution of the application, for instance in a scenario in which we would
loan/rent resources. Computers could be suddenly reclaimed by their owners, as during
an episode of cycle-stealing [1, 5, 12]. The failure probability should thus be seen as
a global indicator of the reliability of a processor. Also note that we consider in this
work only fail-silent (a faulty processor does not produce any output) and fail-stop (no
processor recovery) processor failures. We do not consider link failures since in a grid
framework, a different path can be found to overcome such failures (and we consider
communication costs as negligible).

A platform composed of processors with identical failure probabilities is denoted Fail-
ureHom and otherwise FailureHet . Note that it seems natural to consider FailureHet
platforms when processors have different speeds, thus for SpeedHet platforms, while Speed-
Hom platforms are more likely to be FailureHom. However, we consider all combinations
in the complexity study in Section 3.

2.3 Mapping problem

The general mapping problem consists of assigning application stages to platform pro-
cessors. Instead of only considering the simple, but restrictive mapping of one stage
per processor, we consider so called interval mapping, where several consecutive stages
Si,Si + 1, . . . ,Sj−1,Sj, i.e., an interval, are mapped together. Such mappings have been
extensively studied, see [16, 17, 4, 3].

The cost model associated with interval mappings is the following. We search for a
partition of [1..n] intom ≤ p intervals Ij = [dj, ej] such that dj ≤ ej for 1 ≤ j ≤ m, d1 = 1,
dj+1 = ej +1 for 1 ≤ j ≤ m−1 and em = n. Interval Ij is mapped onto a set of processors,
Aj. These processors are organized into lj teams (lj ≤ |Aj|), and each team is in charge
of one round of the deal. We stress that processors within a team perform redundant
computations, while different teams assigned to the same interval execute distinct data
sets in a round-robin fashion. Note that we could envision that faster teams would perform
more computations, i.e., operate on more data sets, than slower ones. However, enforcing
a round-robin execution is the key to preventing out-of-order execution, thereby allowing
for a reasonably simple orchestration of all operations. We assume that a processor cannot
participate in two different teams, thus for all 1 ≤ j, j′ ≤ m, Aj ∩Aj′ = ∅. The period is
then expressed as:

P = max
1≤j≤m

{ ∑ej

i=dj
wi

lj ×minPu∈Aj
su

}
(1)

Indeed, for each interval, the computation is slowed down by the slowest processor
enrolled for this interval (because data sets are distributed in round robin to each team),
but the period of the slowest processor is divided by lj, since this processor gets only one
data set every over lj ones.

4

Given a partition of processors into l teams Tk, where l =
∑m

j=1 lj and 1 ≤ k ≤ l,
the failure probability of the application is computed as follows, since the computation
is successful if at least one processor per team does not break down during execution:

F = 1−
∏

1≤k≤l

(1−
∏
u∈Tk

fu) (2)

The optimization problem is to determine the best interval mapping, over all possible
partitions into intervals, and over all processor assignments. The objective can be to
minimize either the period, or the failure probability, or a combination: given a threshold
period, what is the minimum failure probability that can be achieved? and the coun-
terpart: given a threshold failure probability, what is the minimum period that can be
achieved?

3 Complexity Results

3.1 Mono-criterion problems

All mono-criterion problems have been studied previously, but we recall the results in
this section since they introduce the bi-criteria complexity results.

Failure probability [2]. Finding the interval mapping which minimizes the failure
probability F is easy on any kind of platforms: the value of Equation (2) is minimized
with l = 1 and T1 = {P1, . . . , Pp}. Thus, all stages are grouped as a single interval, and
one single team consisting of all p processors is processing this interval.

Period [3]. In order to minimize the period, we first note that there is no need to
add several processors in a team since these extra processors only aim at increasing the
reliability.

On a SpeedHom platform, P is minimized by grouping all stages as a single interval
and having p teams working on this interval, with one single processor per team. Since
all speeds are identical and equal to s, in Equation (1), we have min su = s thus no
computational power is lost due to differences in processor speeds.

However, on SpeedHet platforms, if two processors of different speeds process the
same interval, then the slowest one becomes the bottleneck and the other one is not fully
used. In this case, we derived a sophisticated polynomial time algorithm for homogeneous
applications with wi = w for 1 ≤ i ≤ n. The idea consists in first proving that there exists
an optimal solution which replicates intervals of stages onto intervals of consecutive speed
processors. Then, a binary search and a dynamic programming approach are combined
to compute which intervals of processors should be used onto which stages (see [3]). The
problem turns out NP-hard in the general case of heterogeneous pipelines, since it is no
longer possible to consider only intervals of processors. To establish the completeness,
we use a reduction from NUMERICAL 3D MATCHING [8], which is NP-complete in the
strong sense (see [3]).

3.2 Bi-criteria problems

To the best of our knowledge, it is the first time that the bi-criteria problem considering
period and failure probability minimization is studied. Since period minimization is NP-

5

hard on a SpeedHet platform, all bi-criteria problems are NP-hard on such platforms.
First we derive complexity results for SpeedHom platforms, and we provide a polynomial
time algorithm for FailureHom platforms. Then we prove that the problem becomes
NP-hard when considering FailureHet platforms. Approximation results are provided in
Section 3.3.

Preliminary result for SpeedHom platforms. We prove that there is an optimal
solution which consists of a single interval of stages if we restrict to SpeedHom platforms
with identical speed processors.

Lemma 1. For SpeedHom platforms, there exists a mapping of the pipeline as a single
interval of stages which minimizes the failure probability (resp. period) under a fixed
period (resp. failure probability) threshold.

Proof. The proof works by contradiction. Suppose that there is an optimal mapping
which consists of several interval of stages I1, . . . , Im. Processors are partitioned into l
teams T1, . . . , Tl, and we use the notations introduced in Section 2.3. The period obtained
by this solution is denoted Popt, and for 1 ≤ j ≤ m, we have

∑ej

i=dj
wi ≤ Popt × lj × s.

We build a new solution consisting of a single interval of stages which are processed
by the same l teams as in the optimal solution. According to Equation (2), the value of
the failure probability remains the same, since the teams are identical. The period of the

new solution is P =
Pn

i=1 wi

l×s
. If P > Popt, then for 1 ≤ j ≤ m,

∑ej

i=dj
wi < P × lj × s,

and if we sum this equation for all j, we obtain
∑n

i=1wi < P × l × s =
∑n

i=1wi. Thus,
P ≤ Popt, and the new solution consisting of a single interval of stages is optimal.

Note that this result does not hold on SpeedHet platforms. Consider for instance
the following problem with two stages and two processors such that w1 = s1 = 1 and
w2 = s2 = 10. The threshold on the failure probability is fixed to 1, thus it cannot be
violated. In this case, we can obtain a period 1 with two intervals while we cannot do
better than 11/10 with a single interval.

With identical failure probabilities. Building upon Lemma 1, we are able to de-
rive a polynomial algorithm to solve the bi-criteria problem when further restricting to
FailureHom platforms.

Theorem 1. For SpeedHom-FailureHom platforms, the optimal mapping which mini-
mizes the failure probability under a fixed period threshold can be determined in polyno-
mial time O(p); the optimal mapping which minimizes the period under a fixed failure
probability threshold can be determined in polynomial time O(p log(p)).

Proof. Consider first the case with a fixed value of the period, P∗. According to Lemma 1,
we restrict the search to solutions consisting in a single interval of stages. We can thus
compute the minimum number of teams required to achieve the threshold period: lmin =⌈Pn

i=1 wi

P∗×s

⌉
.

According to Equation (2), a higher value of l can only increase the failure probability:
if l > lmin teams, we can obtain a lower failure probability be removing l − lmin teams.
Moreover, the minimum of the function is reached by greedily assigning all processors to
teams in order to have balanced teams: ∀1 ≤ k, k′ ≤ l, −1 ≤ |Tk|− |Tk′ | ≤ 1. To see this,
assume that the optimal solution involves two teams with x and y ≥ x + 2 processors

6

respectively. Using two teams of x + 1 and y − 1 processors leads to a smaller failure
probability. Indeed,
(1−fx+1)(1−f y−1) > (1−fx)(1−f y)⇔ fx+1 +f y−1 < fx +f y ⇔ f y−x−1(1−f) < 1−f .
The processor assignment can thus be done in O(p), where p is the number of processors.

For the converse problem, we cannot easily derive the optimal number of teams from
the failure probability threshold F∗. Rather, we try all p possible number of teams.

With 1 ≤ l ≤ p teams, the period is P =
Pn

i=1 wi

l×s
, which is increasing when l decreases.

Starting with l = p, we use the previous algorithm to compute the corresponding failure
probability, and check if this failure probability is lower than F∗. We stop as soon as
we get a failure probability under the threshold. The overall complexity is thus O(p2)
since we may run p times the previous algorithm which works itself in O(p). We could
also perform a binary search on the number of teams, thus reducing this complexity
to O(p log(p)).

With different failure probabilities. In the previous algorithm for FailureHom plat-
forms, we exploit the fact that balancing the number of processors into teams minimizes
the failure probability. This property does not hold with different failure probabilities.
Indeed, we prove that the problem becomes NP-had in this case, even though Lemma 1
still holds.

Theorem 2. For SpeedHom-FailureHet platforms, the problem of finding a mapping
which respects both a fixed threshold period and a fixed threshold failure probability is
NP-complete.

Proof. The problem clearly belongs to the class NP: given a solution, it is easy to verify
that it is an interval mapping, that the teams are partitioning the set of processors, and
to compute its period and reliability with Equations (1) and (2) in polynomial time.

To establish the completeness, we use a reduction from 3-PARTITION, which is NP-
complete in the strong sense [8]. We consider an arbitrary instance I1 of SP: given 3n
positive integer numbers {a1, . . . , a3n} and a bound B, assuming that B

4
< ai <

B
2

for all

i and that
∑3n

i=1 ai = nB, are there n subsets I1, I2, . . . , In such that I1 ∪ I2 . . . ∪ In =
{1, 2, . . . , 3n}, Ij ∩ Ij′ = ∅ if j 6= j′, and

∑
i∈Ij

ai = B for all j (and |Ij| = 3 for

all j). Because 3-PARTITION is NP-complete in the strong sense, we can encode the 3n
numbers ai in unary and assume that the size of I1 is O(n + M), where M = maxi{ai}
(or equivalently O(n+B)).

We build the following instance I2 of our problem: the application has only one
pipeline stage with w = n, and the SpeedHom-FailureHet platform consists of 3n proces-
sors with speeds su = 1 and failure probabilities fu = 2−au , for 1 ≤ u ≤ 3n. The threshold
period is fixed to P = 1, and the threshold reliability is fixed to R = (1 − 2−B)n. We
ask whether there exists a mapping which respects both thresholds. The size of I2 is
polynomial in the size of I1: the fu can be encoded in binary with O(M) bits, and the
bound R can be encoded in binary with O(nB) bits.

We now show that I1 has a solution if and only if I2 has a solution. Suppose first
that I1 has a solution, I1, . . . , In. We build the following solution for I2: n teams are
working on the unique stage, with processors in team Tj being the three processors Pu

such that u ∈ Ij, for 1 ≤ j ≤ n. Since there are n teams, the period of this mapping is
n/n = 1 = P , and the reliability is:

7

n∏
j=1

(1−
∏

u∈Tj

fu) =
n∏

j=1

(1− 2
−

P
u∈Tj

au) =
n∏

j=1

(1− 2−B) = R.

Thus we have a solution to I2.
Conversely, if I2 has a solution with l teams T1, . . . , Tl , then the period is n/l ≤ P = 1,

and so l ≥ n. If l > n, we can build a solution with a period 1 and a higher reliability
by removing l − n teams, so we consider in the following that l = n. The reliability is∏n

j=1(1− 2
−

P
u∈Tj

au). This quantity is always strictly larger than
∏n

j=1(1− 2−B) unless
when

∑
u∈Tj

au = B for 1 ≤ j ≤ n (see Lemma 2 below, where Uj =
∑

u∈Tj
au and

C = 2−nB, hence (1−C1/n)n = R). Thus, the processor indices of the mapping correspond
to a solution of I1, which concludes the proof.

Lemma 2. Given n real numbers Uj, 0 < Uj < 1, whose product C =
∏n

j=1 Uj is given,
the quantity R =

∏n
j=1(1−Uj) has a unique maximum which is obtained when all the Uj

have the same value C1/n.

Proof. The proof is by induction. For n = 2, R = (1 − U1)(1 − C
U1

) = 1 − U1 − C
U1

+ C,

which has a unique maximum when U1 = C
U1

, hence the result. Assume the result
is true for n − 1 variables and consider the case with n variables. We have R =(∏n−1

j=1 (1− Uj)
)

(1−Un). By induction the quantity
∏n−1

j=1 (1−Uj) is maximum when the

first n − 1 variables Uj, whose product is C
Un

, have the same value
(

C
Un

) 1
n−1

. We derive

that R =

(
1−

(
C
Un

) 1
n−1

)n−1

(1− Un).

Considering R as a function R(Un) and differentiating, we obtain

R′(Un) =

(n− 1)

(
1−

(
C

Un

) 1
n−1
)n−2(

1
n− 1

C
1

n−1 U
−(1

n−1)−1
n

)
(1− Un)

−(1−
(

C

Un

) 1
n−1
)n−1

.

We simplify

R′(Un) =

(
1−

(
C

Un

) 1
n−1
)n−2(

C
1

n−1 U
−(1

n−1)−1
n (1− Un)− 1 + C

1
n−1 U

−(1
n−1)

n

)
,

which has a unique zero when C
1

n−1U
−(1

n−1
)−1

n = 1, hence when Un = C
1
n . The value of

Uj for j < n is thus
(

C
Un

) 1
n−1

= C
1
n , which concludes the proof.

3.3 Approximation results

According to Lemma 1, it is always efficient to use only one single interval for SpeedHom
platforms. In this section, we revisit the (mono-criterion) period minimization problem
for SpeedHet platforms. This problem is NP-hard but the following theorem allows us to
compare the single interval solution with the optimal one. Unfortunately, there are cases
for which the period of the optimal solution with one single interval is m times greater
than the period of the optimal solution with m intervals.

8

Lemma 3. The optimal single-interval mapping for period minimization on a SpeedHet
platform with p processors can be found in time O(p log p).

Proof. Simply sort the processors by non-increasing speed: s1 ≥ s2 ≥ . . . sp. According
to Equation (1), if we use the fastest i processors, we obtain a period P = W

i×si
, where

W =
∑n

i=1 is the total work. Therefore the optimal solution is to select the value of i,
1 ≤ i ≤ p, such that i× si is maximal and to use the fastest i processors.

Theorem 3. For a workflow with n stages, single interval mapping is a n-approximation
algorithm for the period minimization problem on SpeedHet platforms. Moreover, this
approximation factor cannot be improved.

Proof. Consider that the optimal solution consists in m ≤ n intervals, with lj processors
in charge of interval Ij and sj being the speed of the slowest processor for this interval.
The period Pm of this mapping is such that

∑ej

i=dj
wi ≤ ljsjPm.

We can build a solution with one single interval which is an m-approximation of the
solution: let k be one of the interval for which the product lksk is maximal, i.e., ljsj ≤ lksk

for 1 ≤ j ≤ m. Then we use only processors in charge of this interval to compute the
whole pipeline. The achieved period is:

P1 =
∑n

i=1 wi

lksk
=

m∑
j=1

∑ej

i=dj
wi

lksk
≤

m∑
j=1

∑ej

i=dj
wi

ljsj
≤ mPm.

Thus, P1 ≤ Pm, which proves the approximation result.

To prove that we cannot obtain a better approximation result, we consider the follow-
ing problem instance with n pipeline stages. Let K be a constant, which can be arbitrarily
large For 1 ≤ i ≤ n, we have wi = 1, and li = Ki−1 processors of speed si = 1/Ki−1.
The optimal solution has n intervals of size 1, and allocates stage Si to the li processors
of speed si. The optimal period is P = 1. There is no idle time in the previous mapping,
which shows its optimality. Furthermore, there is no other mapping without idle time,
which shows the uniqueness of the optimal solution.

With a single interval mapping, we need to decide which processors to use. If we use
the first j sets of processors, which are the fastest ones, we obtain a period

Pj =
∑n

i=1 wi

(
∑j

k=1 lk) minj
k=1 sk

=
n

(
∑j

k=1 lk)sj

=
nKj−1

1 + K + · · ·+ Kj−1
=

nKj−1(K − 1)
Kj − 1

= n(1 + o(K)).

Therefore, the optimal single-interval mapping, whose period is the minimum of the
Pj, has a period which is arbitrarily close to n for K large enough. This concludes the
proof.

The proof of Theorem 3 actually shows that single-interval mapping is am-approximation
for the period, where m is the number of intervals in the optimal solution (but of course
m is unknown a priori, and we can only bound it by n, the number of stages). However,
for bi-criteria problems, we stress that is always good to reduce the number of inter-
vals in order to reduce the failure probability. Hence it looks very challenging to derive
approximation algorithms for such problems on SpeedHet-FailureHet platforms.

9

4 Heuristics

In this section we propose heuristics for the general mapping problem on processors
that are heterogeneous both in terms of computation speed, SpeedHet , and in terms of
reliability, FailureHet . We concentrate on the optimization problem of minimizing the
failure probability under a fixed period, because this is the more frequently encountered
scenario. The opposite problem of minimizing the period under a fixed failure probability
can be tackled by doing a simple binary search over the prescribed period using the
proposed algorithms. We will see this in the evaluation of Section 6.

From Lemma 1 we know that for SpeedHom platforms, an optimal mapping can be
found using a single-interval mapping. For this reason, we start with the design of a
heuristic that employs only one interval. We expect this approach to be reasonable even
for slightly speed-heterogeneous processors. Further, it will serve as a building block for
our multiple-interval heuristic which we discuss subsequently.

4.1 Single-interval mapping

The heuristic proposed here, called OneInterval, minimizes the failure probability F
under a fixed upper period bound P on a SpeedHet-FailureHet platform. As our approach
is to group all stages into a single interval, the heuristic has to determine the number
of teams and how the processors are assigned to these teams. The idea is to test all
possible numbers of teams, i.e., from 1 to p. For each fixed number of teams l, we discard
all processors that would not allow to achieve the given period P . This procedure is
motivated by Lemma 3 for finding the optimal mapping for period minimization. The
remaining processors are assigned to the l teams, so that the total failure probability is
minimized.

From Lemma 2 we know that to minimize the total failure probability, we need to
minimize the maximum team failure probability among all teams. Note that this problem,
similar to a partition problem, remains NP-hard. However, we use a simple greedy
heuristic which is known to be efficient: we consider processors by non-decreasing failure
probability and assign the next processor to the team with the highest failure probability.
This heuristic, detailed in Algorithm 1, has a time complexity of O(p2 log p).

4.2 Multiple-interval mapping

Theorem 3 demonstrates that even an optimal single-interval solution can be far from the
absolute optimal on a SpeedHet platform. Hence we propose in this section a multiple-
interval mapping heuristic, called MultiInterval. Again the heuristic minimizes the
failure probability F under a fixed upper period bound P on a SpeedHet-FailureHet
platform.

The proof of Theorem 3 shows that it can be beneficial for the minimal period to have
multiple intervals. Our proposed heuristic therefore starts with min(n, p) intervals. Either
we create one interval per stage, or we create at most p intervals, starting from the first
stage and adding stages to the current interval while its computation cost is lower thanPn

i=1 wi

p
(step 1). The processors are then distributed over these intervals in such a way

that the maximum ratio of interval computation weight to accumulated processor speed is

10

Algorithm 1: Heuristic OneInterval optimizing F with fixed P using single
interval

for l = 1 to p do
Discard processors whose speed is less than minimum speed necessary to

achieve period with l teams: procs = {Pu, 1 ≤ u ≤ p : su ≥
Pn

i=1 wi

l×P }
Order processors procs by non-decreasing failure probability fu into list L
Create l teams Tk, 1 ≤ k ≤ l, set failure probability of all teams to fTk

= 1
foreach Pu in L do

Find team Tmax with highest failure probability
Assign Pu to Tmax ; fTmax ← fTmax × fu

Compute the total failure probability Fl = 1−
∏l

k=1(1− Tk)

Choose among the p previous solutions the one with the lowest total failure
probability Fl

minimized: we greedily add processors, sorted by non-increasing speed, to intervals with
the highest current ratio (step 2). Teams are formed and processors are allocated in each
interval using the single-interval Algorithm 1, including the utilization of processors that
were unused in the allocation of previous intervals (step 3). If no solution can be found for
an interval, we increase the bound on the period for this interval until Algorithm 1 returns
a valid allocation. Then, if the period bound is not achieved for at least one interval,
we merge the interval with the largest period, either with the previous or with the next
interval, until the bound on the period is respected (step 4). The actual optimization of
the failure probability happens in the last step (step 5), in which we merge intervals with
highest failure probability as long as it is beneficial. Indeed, we know from Section 3.1
that the fewer intervals and teams the (potentially) better is the failure probability. In
other words, Equation (2) for the failure probability F is minimized for l = 1. Note that
Algorithm 1 is called each time we try to merge intervals (steps 4 and 5).

This heuristic, described in has a time complexity of O(p3 log p).

5 Optimal algorithm using A*

In order to find optimal solutions for small instances of our problem, we employ an A*
best-first state space search algorithm [7, 13]. A* has successfully been employed before
for optimal scheduling, e.g. [14]. For the given problem it is especially interesting, as
the non-linear nature of the failure probability rules out other exact approaches, e.g.
Integer Linear Programming. A* is a generic algorithm that performs a best-first search
over all possible solutions. Every node in the search space is a state s that represents
a partial solution and has an underestimated cost value c(s) associated with it. This
value represents the minimum cost of any complete solution based on the partial solution
represented by s. For our mapping problem a state s is a partial mapping and the cost
value c(s) is either the failure probability or the period. A* maintains an OPEN list
of states, populated with the initial state in the beginning. At each step, A* expands
the state with the lowest c(s) value, i.e., it creates new states that are larger partial
solutions. A c value is calculated for each of these new states and they are inserted into

11

Algorithm 2: Heuristic MultiInterval optimizing F with fixed P using multiple
intervals

� 1. Make initial intervals
if n ≤ p then

Create n intervals, one for each stage
else

Create p intervals, each with approximate computation weight of
Pn

i=1 wi

p

Let w(I) be the computation amount of interval I
let speed(I) be the sum of all processor allocated to interval I (zero for the
moment)
� 2. Assign processors to intervals
foreach each Pu, 1 ≤ u ≤ p, in non-decreasing speed su order do

Assign Pu to interval Imax with highest ratio w(Imax)/s(max)

� 3. Build Team in each interval
for each interval Ii in non-decreasing w(Ii)

s(Ii)
order do

Apply Algorithm 1 for Ii and its allocated processors plus unused processors of
previous intervals
If Algorithm 1 is unable to find a solution within the period bound, increase
this bound and re-run Algorithm 1, until we have a valid solution

Let P(I) = w(I)/(nI × sminI), where nI is the number of teams chosen for interval
I and sminI the minimum speed of processors allocated to interval I
� 4. Merge intervals to reach period bound
while the period bound is not reached, and there are at least two intervals do

Find interval Ii with highest period P(Ii)
Merge Ii with Ii−1 if it exists; apply Algorithm 1 on this interval
Merge Ii with Ii+1 if it exists; apply Algorithm 1 on this interval
Accept the merging which results in smallest period for the current interval

� 5. Merge intervals to decrease failure probability
while we can decrease the failure probability, and there are at least two intervals
do

Find interval Ii with highest failure probability FIi

Merge Ii with Ii−1 if it exists; apply Algorithm 1 on this interval
Merge Ii with Ii+1 if it exists; apply Algorithm 1 on this interval
Accept the merging which results in better remaining highest failure
probability, provided that the period bound is satisfied

Return the current solution, provided it satisfies the period bound

12

the OPEN list, so that the list remains sorted by non-decreasing c value. The algorithm
terminates when the state s that is taken out of the OPEN list is a goal state, i.e.,
a complete solution. With a good cost estimation function c, A* can find a complete
mapping which is guaranteed to be optimal (with certain conditions on the function c(s))
without exploring the entire solution space. The determining factor in the effectiveness
of A* is the quality of the underestimated c(s) values, i.e., how tight they are to the real
costs.

A CLOSED set of the states that have already been visited, which is used in classical
A*, is not necessary to maintain, because our state space construction does not create
duplicates.

5.1 Solution space

The first step in the design of A* is to describe the solution space of the problem and
the successive construction of larger partial solutions. In order to find the optimal so-
lution for our general mapping problem, the grouping into intervals and the mapping of
the processors is integrated into one solution space. The proposed approach consists in
sequentially assigning stages to intervals, and processors to teams for these intervals. We
start with an initial state, which is an empty state, where no stage nor processor has been
assigned yet. A state can be expanded by considering the first stage Sj which is not yet
allocated. We have two choices when adding this stage:
(i) Stage Sj is included in the previous interval, and inherits from the team structure:
only one new state is added to the solution space.
(ii) Stage Sj starts a new interval, without any processor assigned to it at the moment,
which forms the new state. Then, the state expansion process continues by assigning the
not yet allocated processors, i.e., the free processors, to the current interval. For each
free processor Pu, we have three choices, hence (potential) new states:

1. Pu is not allocated to the current interval;
2. Pu is allocated to an existing team for the current interval;
3. Pu is allocated to a new team for the current interval.

Some invalid states may be created this way, but are immediately discarded, such as a
state where no processor at all has been allocated to an interval. All valid states are
added in the sorted OPEN list of states. Finally, a goal state is a state where all stages
have been included into intervals, and the process of allocating processors to the last
interval is complete.

Fig. 2 shows the state tree after expanding all states, for a small example of an
application with two stages, on two processors. For this example, the expansion reaches
six goal states and four invalid states.

5.2 Underestimate functions

The c(s) function is the central part of an A* algorithm. It is an underestimate of the
exact minimum cost c∗(s) of any goal state that is based on the state s. If the function
c(s) fulfills c(s) ≤ c∗(s) for any state s, it is called admissible. With an admissible c(s)
function, A* is guaranteed to find an optimal solution. The number of examined states

13

[Sa;Sb]
(P1, P2)
(P3, P4)

P5, P6

: first team for this interval
: second team for this interval
: processors not selected

: expansion with a new stage
: expansion with a new processor

: invalid state

: goal state

for the last interval

: one interval

Legend

[S1]

[S1] P1

[S1] P1, P2

[S1]
(P1)

[S1,S2]
(P1)

[S1] [S2]
(P1)

[S1]
(P1, P2)

[S2]

[S1]
(P1)
(P2)

[S2]

[S1,S2]
(P1)
(P2)

[S1]
(P1)
(P2)

(P1, P2)
[S1,S2]

[S1,S2] [S2][S1]

[S2][S1] P1

[S2][S1]

[S1]
(P1, P2)

[S1] P2

(P1)

[S2][S1] P2

[S2][S1]

empty state

[S1]
(P2)

P1

(P1)

(P1) (P2)

(P2)

(P2) (P1)

(P2)(P2)

Figure 2: Complete state tree for two-stage application mapped on two processors. E.g.,
state at bottom right corner is made of a single interval [S1,S2] and two teams with one
processor each: (P1) and (P2).

depends on how close c(s) is to c∗(s). In general, the more accurate, the fewer states
have to be examined.

In our problem, we have to design two such underestimate functions, both for F
and P . Like in the previous section, we concentrate on the problem of minimizing the
failure probability F with a given period bound P . Thus, we first need an underestimate
function f for the failure probability: for a partial solution s, f(s) is an underestimate
of the minimum failure probability of any complete solution based on s. We also have
to check that a solution never exceeds the period bound P . Therefore, we also use an
underestimate function p for the period: p(s) is an underestimate of the minimum period
of any complete solution based on the partial state s.

5.2.1 Estimate of the failure probability

To understand the underestimation of the failure probability of a state s, recall that
the failure probability does not depend on the structure of intervals, but only on how
processors are grouped into teams, Equation (2). Adding a new team to a partial mapping
can never reduce the failure probability, only increase it.

The underestimation must therefore assume that all remaining stages are added to
the currently open interval (having more than this last interval would at least require
one additional team). It is straight forward to calculate the failure probabilities of the
already closed teams of the closed intervals. The difficulty arises for underestimating the
failure probabilities of the teams of the last interval. It must be assumed that all free
processors are assigned to the already existing teams of the last interval (if there is no
team yet, all free processors are assigned to a single team). Assigning the free processors
to the existing teams in an optimal way is an NP-hard problem though.

From Lemma 2 we know that the best failure probability would be achieved if we
perfectly balanced the failure probability among the teams. Thus, we make the ideal-

14

izing assumption that processors are perfectly divisible, and that we have an “amount
of reliability” (corresponding to the failure probability of a single team made of all free
processors). This amount is then distributed to the existing teams, by starting with the
teams having the worst failure probability, to minimize the maximum failure probability.
The result of this procedure gives us an underestimate of the best achievable failure prob-
ability for the open teams. Together with the failure probabilities of the closed teams
we obtain an underestimate for the considered partial state. The complete process is
described in Algorithm 3.

Algorithm 3: Estimate of the failure probability for incomplete teams

Input: K teams with T1, . . . , TK , with failure probabilities f team
T1

, . . . , f team
TK

, and p
available processors with failure probabilities f1, . . . , fp

Compute the aggregated available failure probability F ←
∏p

u=1 fu; we consider
now that we have a divisible processor with failure probability F .
while F < 1 do

Select the X teams Tmax1 , . . . , TmaxX
with maximum failure probability f team

max

Compute the second maximum failure probability f team
max2 (the maximum among

all other teams)

ρ← max
{

f team
max2

f team
max

, F 1/X
}

foreach team Ti in Tmax1 , . . . , TmaxX
do

Decrease the failure probaility of Ti by ρ: f team
i ← f team

i × ρ
Update the available failure probability: F ← F/ρX

5.2.2 Estimate of the period

Our estimation of the period takes into account the stages already structured into inter-
vals, and the processors already allocated to teams for these intervals. We simply use
Equation (1) on those closed intervals. In order to better estimate the period of a final
solution expanded from the current state, we also compute the minimum period that
can be achieved with the other stages and processors. As outlined in Section 3.1, the
mono-criterion problem of period minimization is already NP-hard in the heterogeneous
case. However, we can derive a simple lower bound on the period, by assuming a perfect

load-balancing of processor speeds: P ≤
P
Si

wiP
Pu

su
.

We use this bound, with all stages that do not belong to the closed intervals, and all
processors that are not allocated to a closed interval, to derive a second underestimate
of the achievable period. The final underestimate of the period is then the maximum of
the previous two estimations.

5.3 Optimization

A classical optimization for A* is employed. We first compute the solution given by a
heuristic (in practice, the single-interval heuristic OneInterval). During A*, all states
that have an underestimated failure probability larger than the one obtained from the

15

heuristic can be immediately discarded. This does not create less states (as those states
would not have been expanded) but can save queue memory which is crucial for A*.

6 Evaluation results

In this section, we present the simulations we have undertaken to evaluate the perfor-
mance of the two proposed heuristics and the A* algorithm.

6.1 Simulation settings

We have randomly generated several workload scenarios. Stage computational weights are
uniformly distributed in the interval [1; 10]. Processor speeds are uniformly distributed
in the interval [1; 10], while processor failure probabilities are uniformly distributed in
the interval [0.1; 0.9]. The number of stages randomly varies from 5 to 20, just as the
number of processors. However, for A*, we had to limit both numbers to 10: for larger
scenarios, the memory demand of A* is too high. Finally, all tests were performed on a
quad-processor machine (64-bit AMD Operon at 2.2GHz) with 32Gbytes of RAM.

6.2 Results

We first give the results of both heuristics compared to A*. Figure 3(a) shows the behavior
of the different algorithms on a given scenario (with 8 processors and 8 stages). We see
that the heuristics approach the optimal (minimal) failure probability computed by A*.
For a period bound between 3 and 7, MultiInterval achieves a better performance than
OneInterval: the use of several intervals is then crucial to get the optimal performance.
On the contrary, for a period bound around 2, OneInterval is closer to the optimal:
because of its initial construction of the interval, and of the choice of the intervals to
merge, MultiInterval sometimes fails to find the best one-interval solution.

2 3 4 5 6 7 8 9 10

Period bound

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ai

lu
re

p
ro

b
ab

il
it

y

MultiInterval
OneInterval
A*

(a) Failure probabilities for different period
bound

1 2 3 4 5 6 7 8 9 10

Period bound

0

0.5

1

1.5

2

2.5

3

3.5

R
u
n
n
in

g
ti

m
e

(s
ec

on
d
s)

MultiInterval
OneInterval
A*

(b) Running times

Figure 3: Behavior on an example scenario.

Figure 3(b) shows the running times of the algorithms: the heuristics are extremely
fast, whereas A* need a few seconds to run on this example: when the period is neither too

16

small nor too large (say in the interval [1.5; 4.5]), A* is confronted with a large solution
space, hence it performs many operations. However, the main limitation of A* is the
memory needed to store all partial states generated during the execution; this is why we
we had to limit our search with A* to smaller scenarios.

Figures 4(a) and 4(b) show the distribution of the ratio between the failure obtained
by a heuristic, and the optimal failure computed with A*: when this ratio is close to
one, the performance of the heuristic is good. The box at 10 accounts for all scenarios
where the heuristic does not find a solution, whereas A* finds one. We can see that both
heuristics perform similarly. On average in the cases where the heuristics find a solution,
their failure probability is 20% above the optimal failure probability. In very few cases
(a couple of scenarios, representing less than 0.1% of all cases), the failure probability
can be up to 10 times the optimal one. However, the heuristic sometimes fail to find a
solution within the period bound (whereas A* exhibits a solution): this happens in 9.6%
of the cases for OneInterval, and 11.5% for MultiInterval.

1 2 3 4 5 6 7 8 9 10

Ratio of the failure probability to the optimal one

0

10

20

30

40

50

60

70

F
re

q
en

cy
(%

)

(a) Heuristic OneInterval

1 2 3 4 5 6 7 8 9 10

Ratio of the failure probability to the optimal one

0

10

20

30

40

50

60

70

fr
eq

en
cy

(%
)

(b) Heuristic MultiInterval

Figure 4: Performance of the heuristics compared to the optimal solution

In the complete set of experiments (with larger scenarios), OneInterval is better
than MultiInterval in 61% of the cases, and MultiInterval is better than OneIn-
terval in 20% of the cases (in the remaining 19% cases, either they both fail, or they
find the same solution). On average, OneInterval gives a failure probability which is
2% higher than MultiInterval.

We also compared OneInterval with the optimal solution restricted to one interval:
it is easy to limit the search space of A* to solution using only one interval. This shows
that OneInterval is very good, with an average failure probability only 0.05% larger
than the optimal one (and 5% larger in the worst case). This proves that the problem
restricted to one interval is not very difficult, but the difficult part is to find how to split
stages into intervals, and how to allocate processors to these intervals.

7 Conclusion

In this paper, we have investigated the problem of mapping pipelined applications onto
heterogeneous platforms, while maximizing both the throughput and the reliability of

17

the application. The main challenge was to perform a good trade-off between relia-
bility and performance in the use of processors. Given that the complexity of mono-
criterion problems had already been established, we presented new results concerning
bi-criteria optimization. In particular, we derived a polynomial-time algorithm for Speed-
Hom-FailureHom platforms, while we proved that the problem is NP-hard as soon as
one level of heterogeneity is introduced. Moreover, we provided approximation results to
compare the optimal mapping consisting of a single interval with any other solution.

To address the practical solution of these difficult problems, we proposed polynomial-
time heuristics for the most general problem instance SpeedHet-FailureHet . Strongly
inspired by the theoretical study, the main heuristic is built upon a simpler heuristic
which proposes a single interval mapping. Because of the strong non-linearity of the
failure probability function, we were not able to formulate an integer linear program
to compute the optimal solution for small problem instances. Rather, we investigated
the use of A*, and proposed non-trivial underestimate functions leading to an efficient
execution of this (exponential-time) algorithm. The experimental results demonstrated
the very good behavior of the heuristics, which failed only in 10% of the tests, and which
otherwise returned a failure probability only 20% worse than the optimal one.

Future work includes the investigation of further approximation results, enhanced
multi-interval heuristics, and improved cost estimation and pruning techniques for the
exact A* based algorithm.

References

[1] B. Awerbuch, Y. Azar, A. Fiat, and F. Leighton. Making commitments in the face
of uncertainty: how to pick a winner almost every time. In 28th ACM Symp. on
Theory of Computing, pages 519–530. ACM Press, 1996.

[2] A. Benoit, V. Rehn-Sonigo, and Y. Robert. Optimizing latency and reliability of
pipeline workflow applications. In HCW’2008, the 17th Heterogeneous Computing
Workshop. IEEE Computer Society Press, 2008.

[3] A. Benoit and Y. Robert. Complexity results for throughput and latency op-
timization of replicated and data-parallel workflows. Algorithmica, Oct. 2008.
http://dx.doi.org/10.1007/s00453-008-9229-4.

[4] A. Benoit and Y. Robert. Mapping pipeline skeletons onto heterogeneous platforms.
J. Parallel Distributed Computing, 68(6):790–808, 2008.

[5] S. Bhatt, F. Chung, F. Leighton, and A. Rosenberg. On optimal strategies for
cycle-stealing in networks of workstations. IEEE Trans. Computers, 46(5):545–557,
1997.

[6] DataCutter Project: Middleware for Filtering Large Archival Scientific Datasets in
a Grid Environment. http://www.cs.umd.edu/projects/hpsl/ResearchAreas/

DataCutter.htm.

[7] R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality
of A*. Journal of the ACM, 32(3):505–536, July 1985.

18

[8] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, 1979.

[9] A. Girault, H. Kalla, M. Sighireanu, and Y. Sorel. An Algorithm for Automati-
cally Obtaining Distributed and Fault-Tolerant Static Schedules. In International
Conference on Dependable Systems and Networks, DSN’03, 2003.

[10] S. L. Hary and F. Ozguner. Precedence-constrained task allocation onto point-
to-point net works for pipelined execution. IEEE Trans. Parallel and Distributed
Systems, 10(8):838–851, 1999.

[11] K. Hashimito, T. Tsuchiya, and T. Kikuno. Effective Scheduling of Duplicated Tasks
for Fault-Tolerance in Multiprocessor Systems . IEICE Transactions on Information
and Systems, E85-D(3):525–534, 2002.

[12] A. Rosenberg. Optimal schedules for cycle-stealing in a network of workstations with
a bag-of-tasks workload. IEEE Trans. Parallel and Distributed Systems, 13(2):179–
191, 2002.

[13] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, second edition, 2003.

[14] A. Z. S. Shahul and O. Sinnen. Optimal scheduling of task graphs on parallel systems.
In Proc. of 9th Int. Conf. on Parallel and Distributed Computing, Applications and
Technologies (PDCAT’08), Dunedin, New Zealand, Dec. 2008. IEEE Press.

[15] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and load balancing in
parallel and distributed systems. IEEE Computer Science Press, 1995.

[16] J. Subhlok and G. Vondran. Optimal mapping of sequences of data parallel tasks.
In Proc. 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP’95, pages 134–143. ACM Press, 1995.

[17] J. Subhlok and G. Vondran. Optimal latency-throughput tradeoffs for data parallel
pipelines. In ACM Symposium on Parallel Algorithms and Architectures SPAA’96,
pages 62–71. ACM Press, 1996.

[18] K. Taura and A. A. Chien. A heuristic algorithm for mapping communicating tasks
on heterogeneous resources. In Heterogeneous Computing Workshop, pages 102–115.
IEEE Computer Society Press, 2000.

[19] Q. Wu, J. Gao, M. Zhu, N. Rao, J. Huang, and S. Iyengar. On optimal resource
utilization for distributed remote visualization. IEEE Trans. Computers, 57(1):55–
68, 2008.

[20] Q. Wu and Y. Gu. Supporting distributed application workflows in heterogeneous
computing environments. In 14th International Conference on Parallel and Dis-
tributed Systems (ICPADS). IEEE Computer Society Press, 2008.

19

