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Abstract

Technology scaling is having an increasingly detrimental effect on
microprocessor reliability, with increased variability and higher sus-
ceptibility to errors. At the same time, as integration of chip multi-
processors increases, power consumption is becoming a significant
bottleneck that could threaten their growth. To deal with these com-
peting trends, energy-efficient solutions are needed to deal with reli-
ability problems.

This paper presents a reliable multicore architecture that provides
targeted error protection by adapting to the characteristics of indi-
vidual cores and workloads, with the goal of providing reliability
with minimum energy. The user can specify an acceptable reliabil-
ity target for each chip, core, or application. The system then ad-
justs a range of parameters, including replication and supply volt-
age, to meet that reliability goal. In this multicore architecture, each
core consists of a pair of pipelines that can run independently (run-
ning separate threads) or in concert (running the same thread and
verifying results). Redundancy is enabled selectively, at functional
unit granularity. The architecture also employs timing speculation
Sfor mitigation of variation-induced timing errors and to reduce the
power overhead of error protection. On-line control based on ma-
chine learning dynamically adjusts multiple parameters to minimize
energy consumption. Evaluation shows that dynamic adaptation of
voltage and redundancy can reduce the energy delay product of a
CMP by 30 — 60% compared to static dual modular redundancy.

1 Introduction

Transistor scaling to minute sizes makes modern micropro-
cessors less reliable and their performance and power con-
sumption less predictable and highly variable. Microproces-
sor chips are especially vulnerable to three classes of errors.
Soft errors, or single event upsets (SEU), occur as a result of
particle strikes from cosmic radiation and other sources. As
technology scales, the soft error rate in chips is expected to
increase due to the higher number of transistors and the lower
operating voltages. Timing errors occur when the propaga-
tion delay through any exercised path in a pipeline stage ex-
ceeds the cycle time of the processor. Timing errors can have
multiple causes including variation in threshold or supply volt-
ages, circuit degradation as a result of aging, high tempera-
ture, etc. Hard errors are permanent faults in the system,
caused by breakdown in transistors or interconnects. Several
factors can cause permanent failures including aging, thermal
stress and manufacturing variation [1]. To ensure the contin-
ued growth in chip performance, microprocessors must be re-
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silient to all of these types of errors. Moreover, reliability so-
lutions must work within limited power budgets.

The core of our solution is a reliable processor architec-
ture that dynamically adapts the amount of protection to the
characteristics of each individual chip and its runtime behav-
ior. In this multicore architecture, each core consists of a pair
of pipelines that can run independently (separate threads) or
in concert (running the same thread and checking for errors).
Redundancy is enabled selectively, at pipeline stage granular-
ity, to allow targeted error protection at reduced cost. The ar-
chitecture also employs timing speculation for mitigation of
variation-induced timing errors and fine-grain voltage scaling
to reduce the power overhead of the error protection.

Different applications have different reliability require-
ments. An OS kernel or financial application may require very
high protection, and previous works provide numerous solu-
tions to this problem. On the other hand, less critical applica-
tions like word processors and video players can tolerate the
occasional error and therefore require only a moderate or low
level of protection. Our system allows failure rate targeting in
which the user or the system is allowed to specify an accept-
able failures-in-time rate (or FIT target) for the entire chip or
individual cores. Targeting a desired FIT rate has several ben-
efits. It allows the same CMP to be deployed in systems with
different reliability requirements. It allows the system to dy-
namically adjust the amount of protection needed to achieve a
FIT depending on the application activity and supply voltages,
resulting in energy savings. And it allows distinct reliability
goals to be assigned to individual applications.

Our system uses an optimization algorithm that adjusts a
range of parameters, including which functional units (FUs)
are replicated and their supply voltage, to meet that target
with minimum energy. Our optimization relies on models of
key parameters of the system such as power consumption and
expected error rates. In the presence of variation, these pa-
rameters are difficult to model analytically so we use machine
learning-based models that are trained at runtime.

Compared to static dual modular redundancy (DMR), our
system reduces the average energy delay product by 30%
when no errors are allowed and up to 60% as the FIT target
is relaxed. Based on preliminary results from synthesis of a
simple RISC processor implementation we find the area over-
head of our system to be about 4% and the impact on cycle
time to be about 10% compared to static DMR.

This paper makes the following contributions:

e Presents an architecture that provides simultaneous protec-
tion against soft and timing errors and some hard errors.



e Introduces FIT targeting which allows the degree of error
protection to vary dynamically to reduce energy usage.

e Proposes a machine-learning approach to online model-
ing of power consumption and timing errors of variation-
affected, unpredictable CMPs and an optimization algo-
rithm based on hill-climbing that uses these models to find
optimal energy configurations.

e Presents a novel implementation of timing speculation that
uses pipeline registers of the shadow pipeline instead of
dedicated flip-flops. This implementation allows no-cost
timing speculation when full replication is enabled.

2 Related Work

Several existing or proposed architectures deal with soft er-
rors by replicating entire functional units (FUs). The IBM G5
[2] uses full replication in the fetch and execution units with
a unified ECC-protected L1 cache. Others proposed repli-
cation and checking for soft errors at latch level [3]. Fine-
grain replication is appealing because it allows targeted pro-
tection of only the sections or paths in a chip that are deemed
most vulnerable at design time. However, dynamically en-
abling/disabling replication at latch level would make control
very complex and costly. Our architecture uses replication at
FU granularity that is selectively enabled at runtime depending
on desired protection.

Techniques that detect and correct timing errors take two
main approaches. One is to use secondary latches to capture
the delayed signals like in Razor [4]. Another uses a sim-
ple checker that verifies execution of the main processor as in
DIVA [5]. Timing speculation has been used to reduce voltage
aggressively to save power [4] or to over-clock a processor to
improve performance [6]. We implement timing speculation
differently from prior work. We use the pipeline registers of
the shadow pipeline instead of special flip-flops.

Previous work on hard faults has proposed mechanisms for
efficient detection of hard errors using the processor’s built
in self-test (BIST) mechanism [7] and using spare logic to
replace faulty components [8, 9]. In Core Cannibalization
[8], pipelines are arranged in triples; two pipelines are used
for execution, and the third is used for spare parts at the
pipeline stage granularity. In StageNet [9], multiple proces-
sor pipelines are interconnected using crossbar switches after
each pipeline stage allowing re-routing of instructions in case
of failures. The complex routing logic introduces longer and
variable pipeline latency, requiring additional logic to make up
for the loss of result forwarding. Our design groups pipelines
into pairs, with simple two-way routing logic with less impact
on the processor design.

EVAL [10] uses on-line adaptation of supply voltage and
body bias, controlled by a machine learning algorithm. EVAL
is targeted exclusively at timing errors and improving perfor-
mance in the face of process variation. While EVAL is ef-
ficient for this purpose, it has no capability to mitigate soft
errors or hard failures.

Aggarwal et al. [11] present a mechanism for partition-
ing CMP blocks at coarse granularity. Processor cores and
memory controllers can be configured into groups to achieve,
among other possibilities, dual and triple modular redundancy.

This system can be configured for different reliability needs
but the coarse granularity makes the approach less flexible.
Our architecture provides redundancy and checking at fine
granularity, allowing more efficient recovery and more tar-
geted error protection.

In [12], authors present a reinforcement learning approach
to schedule requests from multiple out-of-order processors
competing for access to a single off-ship DRAM channel. In
a circuit area no worse than a branch predictor, they enjoy a
22% boost in throughput over other cutting-edge schedulers.

3 Flexible Redundant Architecture

In this architecture, each core consists of a pair of pipelines.
Routing and configuration logic allows each pipeline to run
independently (each running a separate thread) or in concert
(both running the same thread and checking results at the end
of each pipeline stage). Routing and checking logic is pro-
vided at pipeline stage granularity.
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Figure 1: Architecture of the proposed “pipeline pair” for one core, with rout-
ing and checking logic at pipeline stage granularity.

3.1 Support for Soft Error Detection

Figure 1 shows an overview of a pipeline pair, based on
the Intel Core architecture. Some blocks in the diagram, such
as Decode, are comprised of multiple pipeline stages, and
the Execute block stands in for several multi-stage functional
units (FUs), including integer and floating point ALUs, and
load/store. One pipeline is always enabled, referred to as the
main pipeline. The second, shadow, pipeline can have some
of its FUs selectively enabled. Each pipeline stage has routing
and checking logic, indicated by ¢/r in the diagram. All stages
are separated by simple two-way routers (multiplexers) that al-
low results from one stage to be routed to the inputs of the next
stages in both pipelines. This allows stages that are disabled
in the shadow pipeline to be bypassed. The shadow stages that
are enabled can receive their inputs from the previous stage of
the either pipeline.

We assume a deterministic out-of-order architecture. Al-
though instruction scheduling decisions are made dynami-
cally, if the two pipelines start with identical initial conditions
and receive identical inputs, they will make identical schedul-
ing decisions. At each pipeline stage, computation results and
control signals are forwarded to checkers. Checkers are used
to verify the computation of stages that are replicated. The
checking takes place in the cycle following the one in which
the signals are produced, and the inputs to the checkers come
from the pipeline control and data registers. This keeps check-
ers out of the critical path.



Fetch and Decode are replicated, and individual pipeline
stage outputs are verified by checkers. The reservation station
(RS) allows for register renaming and forwarding of operands
between instructions. The RS (also replicated) has multi-
ple outputs corresponding to each compute unit it serves (i.e.
ALU, Multiplier, Load/Store). The RS outputs corresponding
to each compute unit are verified by separate checkers. The RS
entry is not freed until commit from the reorder buffer (RoB)
succeeds. In the following cycle, checkers compare the issued
instructions. The same is true for each pipeline stage of each
Execute unit.

Retirement from the RoB is handled by a special Commit
unit. When only timing speculation is being performed, Com-
mit acts like any other checker; if a timing error is detected,
execution is stalled, and results are taken from the shadow
pipeline. When full replication is enabled, Commit checks the
integrity of instructions dequeued from the two RoBs. If a
disagreement is detected, Commit discards the instruction and
signals reservation station(s) to reissue. The Commit stage is
not replicated and represents a potential single point of failure.
To protect it, some other hardening approach must be used.
For instance, latch-level redundancy [3] or transistor up-sizing
can be employed.

The L1 instruction and data caches are not replicated and
are shared by the two pipelines. The caches are protected by
ECC so replication is not necessary for data integrity. Cache
supply voltage is kept high enough to avoid timing errors. In
replicated mode, both pipelines fetch the same instructions and
data from the L1. In independent mode, the two pipelines
fetch separate instruction and data streams from a shared L1.
To ensure fairness, half of the cache ways (of set associativ-
ity) are reserved for each pipeline. Arbitration logic (Mem
Arb) manages memory allocation and requests in the cache.
When full replication is enabled, both pipelines will request
the same access; arbitration ensures that the addresses (and
data for writes) are the same, issues one access to the memory
array and returns data to both pipelines.

3.2 Support for Timing Speculation

This architecture can also be configured to implement tim-
ing speculation at pipeline stage granularity. Timing specu-
lation is useful in mitigating the effects of variation on cir-
cuit delay and also allows the aggressive lowering of supply
voltage to save power. If a FU is not fully replicated, this
is achieved by selectively enabling only the pipeline registers
of the shadow pipeline, which has a slightly delayed clock at
the same clock frequency as the main pipeline. Using routing
logic, computation results of a stage in the main pipeline are
also latched in the pipeline registers of the shadow pipeline as
shown in Figure 2. The delay in the shadow pipeline’s clock
(AT) gives extra time to the signals propagating through the
main pipeline. Computation results are latched in the main
pipeline’s register at time 7" and in the shadow pipeline’s reg-
ister at time T+ AT If a timing error causes the wrong value
to be latched by the main pipeline, the extra time AT will al-
low the correct value to be latched in the shadow register. The
content of the two registers is compared by a checker in the
next cycle.
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Figure 2: Main and shadow pipeline stages with timing speculation enabled.
Only the shadow registers are turned on in the shadow pipeline.

Our implementation is different from previous work [4] in
that we use the shadow pipeline registers as a safety net for
delayed signals, instead of special flip-flops. Our approach
has significant advantages: it allows us to cover all the critical
paths in the system, rather than trying to predict which paths
are likely to be critical (which is almost impossible because
of variation), and it also allows no-cost timing speculation for
FUs that have full replication enabled.

3.3 Support for Mitigation of Hard Faults

Although it is not the main focus of this paper, this architec-
ture can cope with some hard faults. When the two pipelines
have complementary failures, they can be merged at pipeline
stage granularity to form one functional pipeline, as in [8].

3.4 Error Recovery

Errors are detected by comparing the content of the main
and shadow pipeline registers (data and control signals). The
comparison takes place in the cycle following the computa-
tion. When the results disagree, a stall signal is asserted and
recovery is initiated. The recovery process depends on the type
of error each FU is configured to capture.

When a FU is configured to detect only timing errors, the
pipeline registers in the shadow pipeline have extra time to
latch the results of the previous stage and are therefore as-
sumed to hold the correct results. These recovered results are
forwarded to the corresponding pipeline register in the main
pipeline through the routing logic as shown in Figure 2. Exe-
cution then resumes with the correct result in the main pipeline
register. The penalty for a timing error is at most two cycles
and may be hidden if it occurs after the RS stage.

When a FU is fully replicated, both soft errors and timing
errors can be detected but not distinguished. When an error is
detected in the reservation station or a stage prior, the checker
triggers a full pipeline flush followed by a re-execution, simi-
lar to a branch mispredict. When an error is detected in a stage
following the RS, the checker logic in Commit causes the in-
struction to be discarded and reissued from the RS. If the fault



was caused by a soft error, re-executing the instruction will
eliminate the fault. However, if the error is timing-related, it
is likely to reoccur. To deal with the latter case, both instruc-
tions and stages that experience errors are flagged with an error
marker. If the error occurs again in the same stage, while exe-
cuting a marked instruction, the error is assumed to be timing
related and the correct result is forwarded from the shadow
pipeline register.

The checkers represent single points of failure in this sys-
tem. Since checkers are small, hardening (transistor replica-
tion and up-sizing) can be done with low overhead.

3.5 Additional Hardware Needed

Routing and checking — The routing configuration for a
FU pair selects which block of combinatorial logic feeds each
pipeline register. Each pair of pipeline stages has an associ-
ated checker that can detect when the pair of pipeline registers
disagrees. This can be enabled when pipelines are running in
lockstep or phase-shifted.

Power gating — Each FU and each pipeline register can
be enabled separately. Power gating cuts both leakage and
dynamic power by disconnecting idle blocks from the power
grid. This technique has been extensively studied and can be
implemented efficiently at coarse (FU) granularity [13].

Voltage selects — As part of a strategy to minimize energy
consumption we allow different FUs to receive different sup-
ply voltage levels. Depending on the number of separate volt-
ages needed, different hardware support is needed. To keep
the overhead low, rather than providing each FU with its own
supply voltage, one option is to have only two or three voltage
levels. Each FU (and its pipeline register(s)) selects among
those. For two or three voltage levels, off-chip voltage regu-
lators are sufficient. Chips in production today commonly use
several voltage domains [14] using off-chip regulators. In or-
der to provide each FU with its own voltage, on-chip voltage
regulators [15] must be used.

Clock controls — There are two PLL circuits for each
pipeline pair, and each PLL produces a configurable clock sig-
nal, along with a phased-delayed clock with configurable de-
lay for timing speculation.

4 FIT Targeting and Timing Speculation

An important feature of the proposed architecture is its abil-
ity to adapt to different reliability goals depending on the
needs and resource constraints of the system. When maximal
protection against soft errors is not needed, some redundancy
can be selectively and dynamically disabled to reduce power.
The system designer can choose a tolerable error rate or FIT
(the number of failures for 1 billion hours of operation). For
instance, IBM targets a FIT of 114 or 1000 years mean time
between failures (MTBF) for its Power2 processor-based sys-
tems [16].

A FIT target can be set for the entire CMP, for individ-
ual cores, or per-application. This allows the system to adapt
the level of protection against soft and timing errors to differ-
ent applications and environments. For instance, a core run-
ning essential system services might be configured with a low
FIT target, while cores running user services might tolerate a

higher FIT. Moreover, when targeting a system FIT rate, the
number of cores in the system will determine the per-chip FIT
rates since their contribution to the total FIT rate is additive.
The expected FIT for a core is the sum of the FIT for all its
functional units (FUs). In our system, caches are protected
with ECC, so their contribution to the expected system FIT
rate is assumed to be zero. The FIT rate for a FU with full
redundancy enabled is also assumed to be zero. If redundancy
is not enabled, the FIT rate is a function mainly of the raw soft
error rate for that FU, its supply voltage and the FU’s archi-
tectural vulnerability factor (AVF), or a probability that a soft
error will result in an actual system error.

Previous work [17, 18] has demonstrated that predicting
AVF is possible and practical at runtime by examining a
set of architectural parameters such as IPC, ROB utilization,
branch mispredictions, reservation station utilization, instruc-
tion queue utilization, etc. We use a similar approach to pre-
dict dynamic AVF, but at FU granularity.

4.1 Saving Energy with Timing Speculation

In addition to selective replication, timing speculation is
used to save power independent of the FIT target. To reduce
power consumption the voltage is lowered, on a per FU ba-
sis, to the point of causing timing-related errors with a low
probability. As long as the cost of detecting and correcting er-
rors is low enough, the voltage level that achieves minimum
energy will often come with a non-zero error rate. If full repli-
cation is enabled, timing speculation can be performed with
no additional power overhead. However, if full replication is
not enabled the system must determine if, for each FU, timing
speculation is beneficial. As a failsafe mechanism, we deter-
mine whether or not pipeline register replication and checking
are required, using a special circuit path (called a critical path
replica— CPR) embedded in each FU [19]. The CPR is longer
than the critical path of the unit, allowing detection of impend-
ing timing errors. Replication is automatically switched on
and off based on this sensor.

5 Runtime Control System

FIT targeting and timing speculation are controlled by a run-
time optimization mechanism. The system is first assigned a
FIT target by the manufacturer or user. The FIT target can
change at runtime if the reliability goals for the system or
application change. Next, the runtime optimization system
searches for the replication and timing speculation settings
that achieve the FIT target with minimum energy. This step
is solved using an optimization algorithm with inputs from a
set of machine learning-based models for power and timing
error probability.

5.1 Machine Learning-based Modeling

Process variation results in different power and delay char-
acteristics for each FU within each pipeline [20, 19]. These
characteristics are difficult to predict and model analytically.
To deal with this challenge we use artificial neural nets
(ANNS5) to model the power and timing error probability for
all FUs in the system. The models are trained using measured
data such as temperature, current power consumption for each
pipeline, past error rate and utilization.
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Figure 3: The architecture of Artificial Neural Nets used for power and error probability prediction.

5.1.1 ANN Architecture

To model energy based on temperature, voltage, and utiliza-
tion, we use three ANN architectures, shown in Figure 3. An
ANN models a function that takes N inputs and yields M out-
puts. ANNs are typically architected in layers of nodes. In
the input layer, there are /N nodes, each corresponding to an
input. Likewise, in the output layer there are M nodes. A sim-
ple ANN with no hidden layers is called an ADALINE (Adap-
tive Linear Element), where each output is simply the inner
product of the IV inputs and a set of N weights, plus a linear
bias. An ADALINE requires M (N + 1) weights. To model
nonlinear functions, we add hidden layers. The first hidden
layer is computed as in the ADALINE, but then each hidden
node’s value is processed though an activation function that
adds nonlinearity.

Primary Power ANNs (Figure 3(a)) predict power con-
sumption for the primary pipeline (F,). There are 3 inputs for
each FU: voltage, utilization (counted proportion of active cy-
cles), and temperature (interval average). There are 12 nodes
in one hidden layer and one output node.

Shadow Power ANNSs (Figure 3(b)) predict power consump-
tion for the shadow pipeline (P;). There are 5 inputs for each
FU: voltage, utilization, temperature, and binary values indi-
cating replication (11, for none, 01, for full, 10, for pipeline
register only). There are 10 nodes in one hidden layer and one
output node.

Error Probability ANNs (Figure 3(c)) predict raw probabil-
ity of an error occurring on each cycle (P(F)). Since each FU
has its own error counter, error probability for each is modeled
separately. Each ANN has two inputs: voltage and tempera-
ture (interval average). There are four nodes in each of two
hidden layers and one output node.

The number of errors (Ng) experienced by a given FU is
the product of P(E), utilization, and clock cycles in the mea-
surement interval (C, ), rounded to the nearest integer. Recov-
ery penalty (1?),) is computed from the total number of errors
over all FUs, which depends on the error protection mode of
each FU. When full replication is not required, a FU’s shadow
pipeline register is enabled when Ny > 0. Total energy is
(Pp+Ps)x (14 Rp/Cra).

ANNSs are trained on-line by comparing predictions against
measurements and adjusting weights to improve prediction.

There are several approaches for implementing ANNs in
hardware. In [21], a small, fast, low-power ANN is built from
analog circuitry. Other alternatives include simple digital logic
as in [12]. We give an estimate for the amount of hardware
needed in our case in Section 7.1.

5.2 Runtime Optimization System

The energy optimization given a FIT target is performed at
regular intervals. Figure 4 shows a flowchart of the optimiza-
tion process. The optimizer relies on profiling information
collected during most of the interval, followed by optimiza-
tion calculations. Profiling and optimization is performed in
parallel to program execution. At the end of a profiling phase,
temperatures are measured and utilization counters are used as
input to the error, power, and FIT models during optimization.
When optimization has completed, new voltages and replica-
tion settings are applied. The optimizer could be implemented
in software and run periodically at the end of each adaptation
interval or run continuously in an on-chip programmable con-
troller similar to Foxton [22].
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Figure 4: Runtime optimization system

For every interval, our objective is to find a set of config-
uration settings that (a) minimize energy or the energy delay
product, (b) prevent timing errors, and (c) meet a specified FIT
target. The number of combinations of voltage and replication
settings to consider is exponential, and interactions between
settings make it impossible to compose local optimizations to
find a global optimum. We therefore employ a hill-climbing
algorithm (Figure 5) to search the voltage space and an error
analysis function to compute replication settings. The algo-
rithm starts with maximum voltages for all FUs and lowers
them one step at a time, checking for errors, and computing
ED. Voltages are lowered until minimum ED is found.

Given a vector of voltages, the Error Analyzer computes
replication settings that meet the FIT target and prevent tim-
ing errors. If requirements can be met, the analysis yields a
set of replication settings (none, full, or partial for each FU).
Otherwise, it reports failure to invalidate this configuration.

To meet a FIT target, the Error Analyzer identifies a set of
FUs for which full redundancy must be enabled in order to
get as close as possible to the FIT target without exceeding



Create an array of voltages, one for each functional unit; initialize all to 1.0V.
Repeat
For FU in functional units
Lower voltage for FU by one step
Calculate total ED
If total ED is less than the best so far, keep this voltage level and flag
— a change. Otherwise, restore it to the previous value.
End For
Until there are no more changes
Repeat
For FU in functional units
For V in all possible voltage levels
Holding all other units constant, set voltage for FU to V/
Calculate total ED
If total ED is less than the best so far, keep this voltage level and
— flag a change. Otherwise, restore it to the previous value.
End For
End For
Until there are no more changes

Figure 5: Hill-climbing search for optimal voltages

it. To do this, we apply a greedy algorithm that we call “best
fit FIT first.” A FU is selected whose estimated FIT rate! is
closest to the difference between the target FIT and the current
estimated total. Enabling full redundancy effectively reduces a
FU’s FIT to zero, yielding a reduced estimated total FIT. If the
FIT target is not met, another FU is selected to be replicated.
This is repeated until the FIT target is met.

For each remaining FU that has not been selected for full
replication, the Error Analyzer selects partial (pipeline regis-
ter) replication if it is vulnerable to timing errors at its current
voltage. ANNs are used to predict power and probability of
error. The optimization yields the voltages for which ED was
minimum, along with replication settings.

6 Evaluation Methodology

We use a modified version of the SESC cycle-accurate
execution-driven simulator [23] to model a system similar to
the Intel Core 2 Duo modified to support redundant execution.
Table 1 summarizes the architecture configuration.

Architecture: Core 2 Duo-like processor
Technology: 32nm, 4GHz (nominal)
Core fetch/issue/commit width: 3/5/3
Register file size: 40 entry; Reservation stations: 20
L1 caches: 2-way 16K each; 3-cycle access
Shared L2: 8-way 2 MB; 7 cycle access
Branch prediction: 4K-entry BTB, 12-cycle penalty
Die size: 195mm?; Vpp: 0.6-1V (default is 1V)
Number of dies per experiment: 100
Vip: i 250mV at 60 °C

o/p: 0.03-0.12 (default is 0.12)

¢ (fraction of chip’s width): 0.5

Table 1: Summary of the architecture configuration

6.1 Variation, Power and Temperature Models

We model variation in threshold voltage (Vi) and effective
gate length (Legr) using the VARIUS model [24, 19]. Table 1
shows some of the process parameters used. Each individual
experiment uses a batch of 100 chips that have a different Vi

'Dynamic FIT rate for a FU is a function of unit-specific architecture vul-
nerability factor (AVF), raw soft error rate, utilization (for logic) or occupancy
(for memory), and voltage. AVF is determined through simulation or testing.
Raw soft error rate is a user-provided environmental factor. Utilization and
occupancy are measured at run time. Voltage is selected by the optimizer.
Each FU’s AVF is not substantially affected by variation, so a simple analyti-
cal model is used to estimate FIT.

(and L) map generated with the same u, o, and ¢. To gen-
erate each map, we use the geoR statistical package [25] of
R [26]. Resolution is 1/4M points per chip.

To estimate power, we scale results given by popular
tools using technology projections from ITRS [27]. We use
SESC [23] to estimate dynamic power at a reference technol-
ogy and frequency. In addition, we use the model from [24]
to estimate leakage power for same technology. We use
HotSpot [28] to estimate on-chip temperatures.

6.2 Timing and Soft Error Models

We use the timing error model developed in [24]. The model
takes into account process parameters such as Viy,, Legr as well
as floorplan layout and operating conditions such as supply
voltage and temperature. It considers the error rate in logic
structures, SRAM structures and hybrids of both, with both
systematic and random variation. The model has been val-
idated with empirical data [29]. With this, we estimate the
timing error probability for each functional unit (FU) of each
chip at a range of supply voltages.

For soft errors, we use the approach in SoftArch [30].
We determine the raw soft error rate for 50nm technology
from [31]. Failure in Time (FIT) values for latch and combina-
tional logic chain were also extracted from [31]. We scale that
to 32nm using the predictions from [32]. Based on the transis-
tor count for the Core 2 Duo floorplan we estimate the number
of transistors in latches and combinational logic in each FU.
Based on that count and the mix of logic chains and latches,
we determine FIT values for each FU. To model AVF we use
an approach similar to [17]. For logic-dominated FUs we mea-
sure activity for those units and scale the expected FIT accord-
ingly. For memory dominated FUs we consider both activity
and occupancy.

6.3 Benchmarks

We use benchmarks from the SPEC CPU2000 suite (bzip2,
crafty, gap, gzip, mcf, parser, twolf, vortex, applu, apsi, art,
equake, mgrid and swim). The simulation points present in
SESC are used to run the most representative phases of each
application with the reference input set.

7 Evaluation

In this section, we show the effects of FIT targeting and tim-
ing speculation on energy reduction. We also show an evalu-
ation of the area, power and timing overheads of the proposed
architecture.

7.1 Overheads

The proposed architecture introduces some timing, power
and area overhead. To estimate it, we synthesized the Open
Graphics Project HQ microcontroller [33] for Xilinx Spartan 3
FPGA. The synthesis was performed with and without routing
and checker logic to determine the additional area consumed.
Based on synthesis results, verified against related work [8],
we estimated area overhead for parts of our design, as follows:
2% for pipeline registers, per pipeline; 2% for routing, per
pipeline; and 2% for the shared checker. Therefore, the addi-
tional die area powered on for timing speculation is up to 6%.
In the experiments we conservatively assumed an overhead of



N N N

\

|
\
\
\
\
\
\
N

7722222220722
|y v s>,
2222222222
|y I s res
SRS
22727200

|y v rrrrrs.

\
\
\
\
\
\
)
\

begosisiizs
ORI

v ,
A\ A
N\ \
N N
\ N
N A
N N
N N
N N
N N
N N

Relative ED
o o o
S o)
S LN
| ——
N0 NN NNANRH
I
A
722022222222
| rrrrry.
SN
ANNNRNNANNNN
AN
ESSSSS SN
AN
RSSSSSNNNNN SRR
AN
ISSSS SN
AN\
ANNNNNNNANN W
NSV
ANNNNNNNNA Y
SN NWS
ANNNNANANNN Y

applu ar bzip2 crafty equake ga| gzip

©

m

A
7222222202227

Q

H FIT=Inf
OFIT=114
ZFIT=57.1
EFIT=28.5
OFIT=11.4
IT=2.28
FIT=1.14

K FIT=Zero
W SimpleDMR

N\

P I I T T I I FFTZ
Ssswws
[NNNNNNNNNNE
A
Q2722222227272 7224
PV T I 7 T 7 ¥ 5T
SR sw Wy
[NNNNNNNNNNE
Q2222222202222
Py s s s s 7 E]
AR NNT

[ NNNNNNNNNNY
Yz72222220022022227 2%

| P I T I FT!
AN
[NNNNNNNNNNY
AR
Y2722/

| r v s v s
AN
[ANNNNNNNNNNNNE
OO O NS
Y7222

| v s rrrsrs.
AN NNN
[ANNNNNNNNNNN

OO NN\ \\M
7722222220227,

| s Vs sy

<
o
=
@
x

mgrid parser swim twolf g.mean

Figure 6: ED savings for different FIT targets. Different applications require different amounts of energy to achieve the same FIT target.
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Figure 7: Average number of replicated FUs per benchmark for multiple FIT targets.

10%. The cycle time overhead is incurred due to the presence
of multiplexing before pipeline registers and routing between
pipelines. To estimate this impact synthesis was performed
with and without routing logic. Depending on target die size,
cycle time impact ranged between 10% and 15%. All of these
overheads are accounted for in the energy evaluation.

The optimization algorithm described in Section 5.2 re-
quires fewer than 1300 queries of the error analysis function,
which translates into under 1300 forward evaluations of each
ANN and a small amount of computation for the dynamic FIT
rate. We use an optimization interval of 1 millisecond. We pro-
file over one interval and then perform the search for the best
voltages to use over the next interval. To share ANN hardware
across an 8 core system, a decision must be made in 0.125ms,
or 500K cycles at 4GHz. There are less than 1500 weights for
all ANNs. Thus, there are less than 2 million products and
sums to be computed. The complete optimization can be per-
formed in the given time using 4 single-precision multipliers,
4 adders, and one logistic function.

7.2 Energy Reduction with FIT Targeting

We evaluate the energy reduction from FIT targeting and
timing speculation compared to a configuration that uses full
replication with no timing speculation (StaticDMR). We also
compare to a lower overhead DMR with replication at core
level that we refer to as Simple DMR. The SimpleDMR does not
have the overhead of routing and fine-grain checking needed
for fine-grain redundancy allowing it to run at a 10% faster
clock rate. We use the energy delay product (ED) a common
metric to evaluate energy efficiency that accounts for both en-
ergy and execution time.

Figure 6 shows the reduction in ED relative to StaticDMR
for all benchmarks, averaged across all dies, at FIT targets
ranging from zero to unlimited. The higher the FIT rate we are
willing to tolerate, the lower the energy delay relative to Stat-
icDMR. For a high FIT (above 50, corresponding to MTBF of
about 2 x 102 years) little replication is needed for most bench-
marks, and power savings approach 60%. As the FIT target is
lowered, replication is enabled more often, and power savings
are less. A FIT target of 11.4 (MTBF=10° years) yields av-

erage power savings of about 50%. For very low FIT rate of
1.1 — 1.4, savings are around 30%. Note that even in the ex-
treme case in which no errors are allowed (FIT target is zero),
the energy reduction from timing speculation alone is 24%
compared to StaticDMR.

Compared to our baseline StaticDMR, the SimpleDMR has
about 12% lower ED mainly due to the faster clock rate. Dy-
namic adaptation however more than makes up for the increase
in cycle time, resulting in 10% lower ED than SimpleDMR
even in the conservative case of zero FIT.

Some of the ED savings come from selective enabling of
FU replication. Figure 7 shows the average number of FUs
replicated for each benchmark at the various target FIT rates.
For a FIT target of 11.4, replication is enabled for an average
of 3 FUs across benchmarks. Replication varies significantly
across benchmarks. For instance, for a FIT of 2.3 there is
significant variation in average replication across benchmarks
from 10 for vortex to 4 for art. This is due to variation in uti-
lization and occupancy of various FUs. This shows the impor-
tance of dynamic adaptation of redundancy settings to match
not only the FIT target but also the behavior of the application.

7.3 ANN Prediction Accuracy

An important factor in the performance of the energy op-
timization algorithm is the accuracy of the ANN predictions.
In our experiments, the average ANN prediction error is less
than 0.5% and the maximum prediction error is less than 5%.
We also conduct the energy reduction experiments with a per-
fect predictor instead of the ANNs. We found that the average
energy delay for the experiments with the ANN comes within
2% of that achieved with a perfect predictor.

8 Conclusions

This paper proposes a new approach to reliability manage-
ment that allows FIT targeting in which the user or the system
is allowed to specify an acceptable FIT target for individual
cores or applications. We show that FIT targeting coupled with
voltage tuning and timing speculation can result in significant
energy savings compared to a static DMR architecture.
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