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Abstract This work presents a new parallel procedure designed to process
combinatorial branch-and-bound (B&B) algorithms by using GPU. Our strat-
egy is to perform B&B sequentially until a specific depth, saving the cur-
rent path in the B&B tree as a node into the Active Set, and then force the
backtracking. Each node into the Active Set is a DFS-B&B root that will be
concurrently processed by the GPU. We compare our results with multicore
and serial versions of the same search schema, using explicit enumeration (all
possible solutions) and implicit enumeration (branch-and-bound search), for
some asymmetrical traveling salesman problem instances. Our computational
results indicate the superiority of our GPU computing-based method mainly
for the B&B’s worst case.
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1 Introduction

Improvement in computer’s processing capability, along years, were mainly
based on rising of the processors’ clock frequencies. For each generation of
new processors, clock frequencies were almost twice faster than the previous
generation’s clock. Under the perspective of this fast performance growth,
a great variety of applications have aroused, from scientific to real-time 3D
applications [45]. Due to this gradual clock rising, programmers got used to
see the computer as a serial machine and to wait for the next generation of
processors and the inherent speedup in their applications.

Economical and physical limitations, such as exorbitant project prices,
power consumption, heat dissipation and miniaturization, forced the computer
industry to change their approach: performance gain of a processor would no
longer be achieved by increasing the clock, but by adding more cores in a
single chip [3,10]. Brodtrorb et al. [5] believe that the tendency to the future
is a processor containing a large number of simple cores, known as manycore
processors.

Manycore’s properties mitigate some economical and physical limitations,
and make this kind of processor is suitable for applications with a large number
of threads [29]; but, according to Amdahl [2], code’s performance is limited
by its serial portion; Therefore, something is interesting regarding many cores,
the system design possesses a faster core to accelerate code’s inherent serial
regions or regions with few threads [26]. To the use of different architectures
to process distinct portions of the same code, to maximize the performance, it
is given the name Heterogeneous Computing [34,39]; Asanovic et al [3] agree
that Heterogeneous Computing is a trend not only for the high-performance
computing, but to the general-purpose computing too, for, at least, the next
thirty years.

The use of graphics processing units (GPU) to process general-purpose
applications [35], in order to accelerate computationally intensive routines
(GPGPU), has been the most highlighted heterogeneous architecture due to
some factors: high rate of megaflop per dollar, low power consumption and the
GPUs are, nowadays, easy to program [43].

These great shifts, recently faced by the computers industry, has been
named as “Concurrency Revolution” [16,40]. The revolution is not only a
hardware revolution but a software revolution too, since it drastically affected
the whole creative process involved in the construction of algorithms, known
as “Computational Thinking” [10,44].

This work explores the point of view in which programmers must learn how
to “think in parallel”, and presents a new parallel procedure designed to pro-
cess combinatorial branch-and-bound (B&B) algorithms by using GPUs. B&B
is a methodological type of complete algorithms of paramount importance to
academy and industry; they are mainly designed to search for optimal solu-
tions to hard combinatorial problems. Serial and even parallel B&B algorithms
must be reformulated in order to take advantage of new emergent parallel ar-
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chitectures, since improvements in processors’ computational power will no
longer mean clock frequencies increasing.

In some scenarios, it’s too expensive to get tight bounds for a combinatorial
problem; but, to prove the optimality of a problem, it is necessary to evaluate
the whole solution space [36,47]. Once this space could be huge, and due to the
B&B’s inherent parallel design [1,23], B&B algorithms has been parallelized
with great success along the years; but, according to [12,19,20], little attention
has been given to the study of B&B in massively parallel environments like in
GPGPU.

GPUs are, nowadays, easier to program, but GPU’s architecture has so
many peculiarities that not all kinds of applications are suitable to be exe-
cuted in this kind of hardware. The main objective of this paper is to show
that even very complex algorithms, such as branch-and-bound search algo-
rithms, can be adapted to be executed by a GPU, in such a way that the high
throughput of this kind of hardware can be exploited, and to present details
about a new GPGPU parallel schema for combinatorial B&B algorithms. The
schema involves so elementary concepts such way that any combinatorial B&B
algorithm based on DFS could be easily adapted, taking advantage of the high
GPU’s throughput. The schema was tested to prove optimality of asymmet-
rical travelling salesman problem (ATSP)’s instances, and showed to be far
superior to the serial and multicore versions of the same DFS-B&B algorithm,
mainly in B&B’s worst case.

The remainder of this paper is organized as follows. Section 2 presents
a brief introduction about branch-and-bound method. Section 3 presents the
proposed GPGPU B&B schema. Section 4 presents details about how the
implementation was performed. Section 5 presents details about the compu-
tational evaluation of the method by using serial, manycore and multicore
approaches. In Section 6 conclusions and future remarks are considered.

2 Branch-and-bound search algorithms

The combinatorial optimization, when compared to other areas of knowledge,
is indeed young. But, because of its great number of problems applications,
this matter is, nowadays, one of the most active topics in operational research
and number theory [22,36].

Due to the combinatorial optimization problems’ relevance, a great number
of algorithms were created to solve them. These algorithms can be divided
into complete and approximate methodologies [4]. Complete algorithms are
those that guarantee to find an optimal solution to the instance at hand,
in a certain amount of time. Among the complete algorithms, the branch-
and-bound method [25,31], whose origin dates back to the fifties, is the most
popular way of solving combinatorial optimization problems to optimality [46,
48].

The B&B method is not a specific algorithm, but a class of; all implemen-
tations of the B&B method largely depends on the problem at hand, but they
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all follow three main concepts: branching, a step that breaks the problem in
sub problems; bounding, concerning the use of upper and lower bounds to
guide the search strategy and evaluate subproblems and, finally, the step is
known as pruning, which represents the act of eliminating large portions of
the search space.

Generally, to determine how nodes will be branched, B&B algorithms use
Depth-first search (DFS) techniques, where the most recently generated sub-
problem is explored first, or Best-first search (BeFS), breadth-first search plus
evaluation, where the most promising sub-problem is explored first.

According to Grama and Kumar [13] and Van Le [42], the BeFS is optimal
in the number of nodes branched, once the BeFS does not process nodes with
a lower bound greater than the optimal solution. But, to prove the optimality,
this search strategy needs to keep a large number of nodes in a priority queue,
which makes the BeFS space complexity exponential in the search depth and
suitable only for smaller or easier instances [30].

Depth-first search, on other hand, has space complexity linear in the search
depth and can find new upper bounds quickly [46,48]; these new solutions
may not be the optimum, but these new upper bounds make the bounds
tighter, leading to a more effective pruning process, which makes DFS suitable
to harder instances. The greatest flaw of DFS is the search can get stuck
in unpromising branches and generate a B&B tree greater than BeFS one.
However, closer is the initial upper bound (solution) to the global optima,
smaller is the gap between the DFS B&B and the BeFS tree size [7], mitigating
this problem.

3 The GPGPU branch-and-bound schema

In a B&B algorithm, the search starts at a root node. This node is an in-
complete solution and, generally, is a representation of a lower bound to the
optimal solution. The starting node is kept in the Active Set, a set responsi-
ble to keep nodes evaluated, but not yet branched. Bounding procedures are
responsible for this evaluation. As mentioned in Section 2, the chosen search
strategy is the one that determines how nodes belonging to the Active Set are
branched. A graphical schema of a B&B algorithm can be seen in Figure 1.

GPUs are massively parallel processors, and they are supposed to execute
a large number of threads concurrently, each thread doing simple operations.
To generate a considerable number of threads, the GPGPU B&B procedure
starts serially, populating the Active Set, until the set has so many nodes as
desirable.

In our schema, each node belonging to the Active Set will be a concurrent
depth-first branch-and-bound (DFS-B&B, Figure 2) root. This DFS-B&B will
be performed by each thread, which means that each thread will be respon-
sible to evaluate a small portion of the search space. In order to evaluate the
search space, each thread must have its Active Set, be aware of lower and up-
per bounds, branching rules, and bounding procedures; i.e., these procedures



A New Parallel Schema for Branch-and-Bound Algorithms Using GPGPU 5

Fig. 1 Crainic, Le Cun and Roucairol’s (2006) representation of a B&B algorithm.

must be implemented as device functions (for more details about GPGPU
implementation, see [21,35,38]).

1 current best solution = ∞;
2 place the root node on the top of the stack ;
3 while stack is not empty do
4 select a node from the top of the stack;
5 if selected node is not a solution then
6 evaluate the best possible solution this node can lead to;
7 assign this value to node bound ;
8 if node bound < current best solution then
9 generate successors of selected node;

10 install generated successors into the stack;

11 end

12 else
13 if solution cost < current best solution then
14 current best solution = solution cost ;
15 end

16 end

17 end

Fig. 2 Grama and Kumar [13] depth-first branch-and-bound algorithm.

Unlike the general-purpose processors, each GPU’s stream processor is a
simple unity and runs in a frequency lower than mainstream general-purpose
processors [5,26,32]. Thus, labored branching rules and bounding procedures
could affect the GPU portion’s performance.

As a way to mitigate this GPU limitation, new nodes will be generated
adding the next element in the sub-solution lexicography, following DFS’s
properties. These newly generated nodes are then evaluated by a simpler
bounding procedure than the serial’s portion procedure. If the problem de-
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mands a huge computational power to prove the optimality, the kernel (proce-
dure executed by the GPU) can be executed several times; each time producing
new nodes to the Active Set and updating the bounds. Each time the kernel is
called, more threads could run concurrently and subproblems would be more
restricted than the subproblems used as DFS-B&B roots by the concurrent
searches in the previous kernel execution.

Threads are arranged in blocks of threads. Block’s size can be statically
determined by the programmer, or based on GPU’s properties and character-
istics of the instance to be solved. Block’s size and the number of threads are
parameters to the kernel launch. Initially, the number of threads launched is
the size of ActiveSet. If this number is greater than the number of threads the
GPU can handle or is handleable, but the execution is too heavy to the GPU,
leading to poor performance, the Active Set must be portioned and the kernel
called several times.

If each thread explores the solution space based on its own upper bound,
the resulting B&B three could be greater than the serial one [7], i.e., a lot of
unnecessary work would be done. In other hand, According to Brodtkorb et
al. [5] and Kirk and Hwu [21], synchronization between threads is something
costly in GPU computing. To deal with this trade-off in our schema the threads
are divided into blocks, and each block has its own upper bound shared by
its threads (which is quite faster in the GPU architecture). Threads evaluate
the solution space based on the block’s upper bound, and blocks synchronize
upper bounds among them less often, as shown in Figure 3.

Grid of threads

block 0

Global UB

block 1 block 2

Fig. 3 Blocks of threads share upper bounds through a global upper bound.

To avoid synchronization of upper bound values and to produce small B&B
trees, the initial upper bound, called z in Figure 4, must be started by a
good heuristic or polynomial-time approximation scheme, which guarantee
the quality of the upper bound produced [36].

After kernel execution, the block’s master thread (thread’s inblock identi-
fication equals to zero) will inform the best solution found by the block and,
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1 I = get instance( );
2 p = get gpu properties( );
3 z = calculate initial ub(I );
4 l = calculate initial lb(I );
5 A = generate initial active set(p,z,l);
6 t = calculate no threads per block(p,A);
7 b = calculate no blocks(t);
8 allocate instance on gpu(I );
9 while A is not empty: do

10 S = a subset of A;
11 A = A− S;
12 allocate data on gpu(S );
13 concurrent DFS BnB<<<b,t>>>(z,l,S ); /* Kernel */

14 synchronize gpu cpu data(z,l);

15 end
16 return z ;

Fig. 4 Pseudo-code of the proposed GPGPU B&B schema.

if the search is set up this way, will put new nodes into the Active Set. If
necessary, a new number of threads and blocks would be calculated, in order
to fit the new properties of the updated Active Set.

This procedure will produce B&B trees generally greater than the same
search applying labored branching rules and bounding procedures. The strength
of the proposed GPGPU schema is to take advantage of great segmentation of
the search space, which allows hundreds of tiny pieces of the solutions space
to be evaluated concurrently and in less time.

4 Implementation of the proposed GPGPU B&B schema for
solving the ATSP

This section presents details about two implementations of the proposed B&B
schema presented in Section 3: a complete enumeration and a DFS-B&B, both
designed to prove optimality of ATSP’s instances.

According to Zhang [47], in the worst case, a B&B algorithm must evalu-
ate the whole solution space to prove the optimality. This behavior is observed
when bounds are not tight [8]. Hence, the first implementation will enumerate
all possible solutions of an ATSP instance. The objective of this implementa-
tion is to eliminate the effect of pruning and to verify whether our GPGPU
schema can be more efficient than a multicore CPU implementation, despite
GPU’s lower clock and simpler processors unities.

The second implementation is a manycore DFS-B&B, designed to prove the
optimality of ATSP instances by performing implicit enumeration. This im-
plementation aims to verify whether branch-and-bound search algorithms can
be adapted to be executed by a GPU, in such a way that the high throughput
of this kind of hardware can be exploited. We also could observer the interfer-
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ence of pruning in massively parallel implementation of B&B where the upper
bound is shared.

Both implementations are quite similar and have two main steps: Active
Set creation and concurrent search. The only difference between them is the
first one, complete enumeration, does not prune subtrees, i.e., the only node
evaluation performed on the first implementation is to verify whether a node
is a feasible solution or not.

The Active Set population for both implementations is better explained in
the following section.

4.1 Active Set population

In both implementations, the serial portion starts with the Ative Set con-
taining only a root node at level zero. A node, in this context, represents an
incomplete Hamiltonian Cycle and its properties; a node at level x represents
an incomplete Hamiltonian Cycle containing the start city (level zero) plus
x other different cities. A feasible solution is found whenever a Hamiltonian
Cycle is formed, i.e., when the search reaches level N , where N is the number
of cities of the instance.

The Active Set population is responsible to segment the search space in tiny
little pieces in such a way that GPU’s massively parallel hardware can handle
the B&B search procedure. To produce this population, the limit level (L) of
the Active Set nodes ought to be informed. Figure 5, for instance, represents
an Active Set population for a 4x4 ATSP instance where 2 was taken as limit
level (L = 2) in order to populate the Active Set.

For the complete enumeration implementation, if L = x and instance’s size

is n, then, the Active Set will contain exactly (n−1)!
x! nodes, since there is no

prune. Each one of these nodes represents an incomplete cycle containing the
start city plus L different cities. This number of possible nodes in level L is an
upper bound to the number of nodes present in DFS-B&B implementation’s
Active Set, since prune of subtrees may occur.

In Figure 5 the Active Set is in grey, and each box is a node. Nodes are
labeled with their prefixes, i.e., with the cities sub-sequence which indicates
the initial visiting order.

As shown in Figure 6, each node i belonging to the Active Set will be a
DFS-B&B root Ri, that will be used by thread Ti, that will explore the region
Si of the search space. It is important to emphasize that every solution for
node Ri is a valid solution to the problem [36].

4.2 The kernel

The DFS-B&B implementation performed by the kernel, in both algorithms, is
an implementation of Grama and Kumar [13] DFS-B&B (Figure 2). The search
was designed in such a way that no dynamic data structure was necessary to
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Fig. 5 Initial portion of the code that populates the Active Set.

Fig. 6 Each node in Active Set will be a concurrent search root.

represent the Active Set, which is a stack in Figure 2; This strategy avoids
the use of the GPU’s slow global memory and takes advantage of fast thread’s
local memory.

In GPGPU DFS-B&B implementation, each concurrent DFS-B&B initial
cost is the root’s lower bound. As mentioned in Section 3, each thread performs
DFS-B&B based on blocks’ upper bound. This upper bound is started by the
master thread with the upper bound value passed by the serial region as a
kernel parameter.

At a specific point of the algorithm, the block’s master thread verifies
the global upper bound value to ensure the block is performing B&B with
the lowest possible upper bound. If the global upper bound is greater than
the block’s upper bound, the block’s master thread updates the global upper
bound, if it is lesser, updates its own upper bound value. The kernel is launched
only once, and the number of threads launched is the size of Active Set.

At the moment the block has finished its evaluation, the block’s master
thread informs the best solution found by the block, and the CPU portion
sorts the vector containing all solutions returned by the kernel in order to
identify the optimal one, as shown in Figure 7.

In GPGPU complete enumeration, each concurrent search cost starts with
the node’s cost, i.e., the cost of the incomplete Hamiltonian Cycle the node
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Fig. 7 After the concurrent search, all threads will inform the amount of solutions found
and the best one.

represents. Since the instances this implementation is about to solve are small,
when the kernel is launched, the cost matrix is copied to block’s fast shared
memory. This strategy speedups the access to edge values present in the cost
matrix, avoiding access to slow global memory. After the kernel execution,
each thread returns the amount of found solutions and the best one. The
serial portion performs the reduction and informs the optimal solution and
the total amount of found solutions.

4.3 Aspects of implementation

Both implementations of the proposed GPU Computing B&B schema were
implemented with C++ and parallelized by using NVidia’s CUDA 4.0.

Other four algorithms were conceived: a serial complete enumeration, se-
rial DFS-B&B, a multicore DFS-B&B, and a multicore complete enumera-
tion. Serial DFS-B&B is a loyal implementation of Grama and Kumar [13]
depth-first branch-and-bound algorithm. Complete enumeration is the same
algorithm, but do not prune subtrees. In order to provide a fair comparison
further, multicore implementations are quite similar to the manycore (CUDA)
implementations and were conceived as follows.

At the starting city, the traveling salesman has N − 1 possible paths to
follow. In OpenMP implementations, this N − 1 paths are independent DFS-
B&B, and this work is divided by all system’s processors. As for the CUDA
implementation, all independent DFS-B&B synchronize upper bounds at a
certain part of the code, in order to avoid unnecessary evaluations.

Serial and multicore algorithms were implemented with C++, compiled by
GCC [14] 4.6.2. GCC’s -O2 code optimization flag was employed. Multicore
implementations were parallelized by using OpenMP API 3.0 [9] provided by
GCC 4.6.2.

All DFS-B&B implementations (serial, multicore and manycore) use Martello
and Toth’s [27] primal-dual implementation of the Assignment Problem (AP)
as lower bound and perform implicit enumeration following Tucker [41] schema.
As an initial upper bound (solution), all three implementations employ Karp’s
[18] modified patching procedure, which uses the result of AP, i.e., a set of
sub-cycles, to form a Hamiltonian cycle. This decision was made once Karp’s
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patching constructive heuristic generally returns a good solution to the ATSP
[6,11] and due to convenience, once patching’s main step, the AP, was already
available. These three DFS-B&B implementations do not consider the initial
cost matrix, but a reduced matrix build with AP’s dual variables.

In manycore DFS-B&B, since the instances this implementation is about
to solve are greater than complete enumeration’s, the cost matrix is placed on
texture region; the texture region is slower than block’s shared memory, but
is faster than global memory. For more details about NVidia’s GPUs memory
hierarchy, see [33].

The limit depth of the search space that must be evaluated, in order to
create the Active Set, in all manycore implementations, was statically set.
In complete enumeration, instances with size five to seven cities had L = 3.
Instances greater than seven, L = 5. In manycore DFS-B&B, the limit depth
was set L = 7.

5 Computational evaluation

GPUs are nowadays easy to program, but GPU’s architecture has so many
peculiarities that not all kinds of applications are suitable to be executed in
this kind of hardware. The objective of this section is to verify if branch-and-
bound search algorithms are suitable to be executed by a GPU, exploiting
GPU’s high throughput.

To do this verification, two computational experiments were performed:
complete enumeration and B&B search. In each experiment, three implemen-
tations of the same algorithm were compared: serial, multicore (OpenMP) and
manycore (CUDA). All implementations will prove optimality of asymmetrical
traveling salesman problem’s instances, and data collected in each experiment
is the time necessary by the implementation to experiment. It is important to
empathize that the whole application time, not only the time of the concurrent
process (in parallel implementations) is considered, since parallel applications
have the overhead of thread creation, synchronization, convergence, etc., and
this overhead time must be considered too [28].

The traveling salesman problem (TSP) consists of finding the shortest
Hamiltonian cycle through a given number of cities, in such a way each city
is visited only once. It is the most well-known and studied combinatorial op-
timization problem of history, and has plenty of real-world applications[15,24,
36]. The versions of the TSP can be defined as symmetric, if the cost matrix
is symmetric (∀[i, j] : cij = cji, ), asymmetric otherwise (∃[i, j] : cij 6= cji).

The asymmetrical case is a more general way of representing TSP, and its
instances are frequently harder to solve than the symmetric case’s instances
[6,17,50,49]. Although we made this choice for the proposal of this study;
the method can be extended to other important combinatorial problems like:
knapsack, coloring, covering, max satisfiability, etc.

The parameter employed to compare the implementations is the speedup.
The speedup means the benefit of solving a problem in parallel, i.e., how many
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times the parallel code using n processors is faster than the serial code doing
the same job [1], and is represented as follows:

S(n) =
ts
tn

(1)

where ts is the serial time, and tn the parallel time with n processors.
The experiments were conducted on an Intel Core i7 2600 (3.4 GHz, 3.8

GHz when over demand)1, with four cores, but each core can run two simul-
taneous threads; thus, the operating system (OS) sees i7 2600 as having eight
cores; the system has 4 GB RAM and Ubuntu GNU Linux 11.10 OS (kernel
3.0.1).

The GPU used to run CUDA codes was a NVidia GeForce GTX 5802.
GTX 580 is a compute capability 2.1 GPU, has 512 stream processors, each
stream processor at 1,544 MHz; 1.5 GB of GDDR5 RAM at 2.004 GHz; 384
bits memory interface.

5.1 Computational experiment: complete enumeration

In this experiments, each implementation will perform a complete enumera-
tion, i.e., enumerate all possible solutions of a randomly generated ATSP in-
stance, each instance of size five to sixteen cities. The solution space that each
implementation must evaluate is (N − 1)! solutions, where N is the number
of cities of the instance. The ATSP instances used in this section were con-
structed by using glibc’s rand( ) function, where each element ri,j belonging
to the RNxN matrix can vary in the interval [0,1000].

Figure 8 shows the time required by each implementation (serial, OpenMP
and CUDA) to perform complete enumeration. This graphic is in logarithm
scale in order to provide better visualization.

In Figure 8, CUDA implementation had equivalent times for five to ten
cities. The search space for these instances is small, and there is considerable
overhead in CUDA implementation, such as initial Active Set population, call
GPU driver and serial reduction after kernel execution. For these instances,
the overhead time is greater than the time required to process few levels of
the solution space in parallel, and corresponds to the major part of the time
measured. This behavior is present in OpenMP implementation too, but in
five to nine cities, and in a smaller scale.

Figure 9 shows the speedup obtained by OpenMP and GPU implementa-
tions while solving complete enumeration.

When the solution space is huge (instances eleven to sixteen), CUDA im-
plementation faces the ideal scenario: lots of independent tasks with no com-
munication among them, no slow global memory access (the cost matrix was

1 More details about this processor can be found at: http://ark.intel.com/products/
52213/Intel-Core-i7-2600-Processor-(8M-Cache-3_40-GHz)

2 More details about GTX-580 can be found at: http://www.nvidia.com/object/

product-geforce-gtx-580-us.html

http://ark.intel.com/products/52213/Intel-Core-i7-2600-Processor-(8M-Cache-3_40-GHz)
http://ark.intel.com/products/52213/Intel-Core-i7-2600-Processor-(8M-Cache-3_40-GHz)
http://www.nvidia.com/object/product-geforce-gtx-580-us.html
http://www.nvidia.com/object/product-geforce-gtx-580-us.html
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Fig. 8 Time required, in logarithm scale, by each implementation to perform complete
enumeration.

placed into the blocks memory), leading to speedups of ten times in size twelve,
and speedups of more than twenty times in sizes thirteen to fifteen, reaching
the speedup of twenty-eight times in the instance of sixteen cities.

OpenMP implementation was pretty constant and for sizes twelve to six-
teen, and obtained speedup between four to five times, showing that enumerate
all possible solutions is heavy-duty even for a high-end multicore processor us-
ing four cores at high clock frequency and running two simultaneous threads.
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Fig. 9 Speedup obtained by the OpenMP and CUDA implementations performing complete
enumeration.
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5.2 Computational experiment: B&B search, hard ATSP instances

In this section, each implementation will prove the optimality of ATSP in-
stances performing implicit enumeration (B&B search). Eleven hard instances
were collected from the literature. This choice was made because merely ran-
dom asymmetrical instances are easy to solve [11,30] and have no relation to
real-world applications [17].

An instance can be considered hard when bounds obtained are not tight,
or there are so many solutions close to the optimal solution, which makes
the solution space to be evaluated to prove optimality huge, even for small
instances.

The selected instances are Coin (14 to 18 cities), Flow (14 to 17 cities),
Atex1 (16 cities) and BR17 (17 cities). Coin and Flow instances were made by
Cirasella et al. [6]. This generator generates instances using properties found
in real-world situations. The instances coin are those of collecting money from
payphones in a grid-like city, and the instances flow are those from no-wait
flow shop for processing of heated materials that must not be allowed to cool
down. More details about the selected classes of instances can be found at [6,
17]. Atex1 is a test instance from Cirasella’s generator, and BR17 is a hard
instance from the TSPLIB [37].

Figure 10 shows, on logarithmic scale, the time required by each imple-
mentation (serial, OpenMP and CUDA) to prove optimality of selected in-
stances by performing a B&B search. Figure 11 shows the speedup obtained
by OpenMP and CUDA implementations.
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Fig. 10 Time required, in logarithmic scale, by each implementation to perform B&B
search.

B&B search is a much more complex scenario than the previous section’s
scenario (complete enumeration). First, each generated node must be evalu-
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ated in order to verify if its lower bound is greater than the current block’s
upper bound. These prunes lead to divergent branches inside a warp3, a situa-
tion much less often observed for the complete enumeration as all threads are
performing the same operation. Second, in B&B there is the need for upper
bound synchronization among threads by using block and global memory and,
as the search is performed, lots of threads tend to die, once the whole subspace
the thread is about to evaluate is pruned or completely evaluated, making the
process inefficient. In this case, CUDA implementation can’t provide sufficient
work to the GPU. This is the main reason complete enumeration’s speedup is
much greater than B&B speedup.

Despite the adversity faced by CUDA implementation in this scenario, the
implementation was pretty constant on the experiments, always dominating
OpenMP implementation, and got speedups between four and five for the
great majority of selected instances. Coin instances are the hardest in the set,
once for all instances, the lower bound obtained by AP is always zero. Despite
the hardness of these instances, they got the highest speedups of the testbed.
Therefore, harder is the instance, more suitable to be processed by a GPU
it is, once the threads will take a longer time to die, there will be few upper
bound synchronizations, or these synchronizations will occur late on the B&B
process.
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Fig. 11 Speedup obtained by OpenMP and CUDA implementations while performing B&B
search.

In order to get higher speedups, CUDA implementation must be improved
by using a load balance schema. When the kernel is launched, there is no such
way to reorder the threads dynamically and balance the load among the alive
threads. So, this load schema could be a trigger that halts the kernel when

3 Threads are executed in groups of 32 threads called warps. Threads in a warp are
supposed to execute the same instruction at the same time. Divergent branches inside a
warp are executed separately. This situation can lead to loss of parallel efficiency [21,33].
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a certain percentage of the original amount of threads are dead, such as the
schema for load balance in SIMD present in [20]. Kernel’s alive nodes are given
back to the CPU, which recalculates a new number of threads and blocks, then
calls the B&B search again.

6 Conclusions and future remarks

This work presented a new GPGPU schema for B&B algorithms evaluated
to prove optimality for ATSP’s instances. The computational experiments re-
vealed that, for this first experience using GPUs, there is room for the investi-
gation of better search schemas for GPGPU B&B implementations. Surprising
results on time and speedups were obtained, where GPUs got much better re-
sults than a high-end multicore processor, mainly in the worst case. The high
rate of megaflop/dollar is the main attraction of designing GPGPU based
algorithms, even for very complex algorithms like B&B.

Results showed that harder is the instance, more suitable to be processed by
GPU the instance is; when the instance has loose bounds, the serial portion
will create the desired number of nodes quickly and the threads created to
process will take a longer time to die, keeping the GPU busy and the process
efficient. If the instance has tight bounds, the serial portion will generate fewer
nodes than necessary or take a long time to produce the desired number of
nodes. So, the inclusion of GPGPU elements into B&B algorithms can, due
to GPUs’ great throughput, make difficult unsolved combinatorial problems’
instances to be solved to optimality, or to solve instances in less time than
serially or in a shared memory environment.

According to Grama and Kumar [13], subtrees generated by DFS tend to
be irregular, and work statically allocated tends to result in load imbalance
among processors. Hence, during execution, lots of threads tend to be idle,
once the whole search space the thread is supposed to evaluate is pruned or
fully evaluated. To make effective use of available processors, workload balance
schema is a critical issue when planning a parallel B&B algorithm. The current
implementation has no trigger to determine when the process must be halted,
blocks recalculated, and the remaining search space should be redistributed.
Thus, at a certain time of the execution, warps may have few active threads.
Therefore, a critical future work is to implement such a mechanism, based
on Karypis and Kumar [20] triggering and redistributing schema for SIMD
systems, to provide more efficient use of GPU’s processors and, as a direct
consequence, better speedups.

Classical artificial intelligence problems, such as N+K Queens Problem,
are solved by finding a sequence of operations that can lead to a solution [42,
47], and are commonly solved by Backtracking. Another future direction is to
apply the proposed search schema to solve artificial intelligence problems.
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