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Abstract

We investigate the execution of the Irregular Wavefront Propagation Pattern (IWPP), a 

fundamental computing structure used in several image analysis operations, on the Intel® Xeon 

Phi™ co-processor. An efficient implementation of IWPP on the Xeon Phi is a challenging 

problem because of IWPP’s irregularity and the use of atomic instructions in the original IWPP 

algorithm to resolve race conditions. On the Xeon Phi, the use of SIMD and vectorization 

instructions is critical to attain high performance. However, SIMD atomic instructions are not 

supported. Therefore, we propose a new IWPP algorithm that can take advantage of the supported 

SIMD instruction set. We also evaluate an alternate storage container (priority queue) to track 

active elements in the wavefront in an effort to improve the parallel algorithm efficiency. The new 

IWPP algorithm is evaluated with Morphological Reconstruction and Imfill operations as use 

cases. Our results show performance improvements of up to 5.63× on top of the original IWPP due 

to vectorization. Moreover, the new IWPP achieves speedups of 45.7× and 1.62×, respectively, as 

compared to efficient CPU and GPU implementations.

I. Introduction

This work investigates the efficient execution of a computation structure called Irregular 

Wavefront Propagation Pattern (IWPP) [1] on the Intel® Xeon Phi™. This research is 

motivated by the high computational requirements of whole slide tissue image processing in 

biomedical image analysis [2]. Analyses of whole slide tissue images (WSIs) can lead to a 
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better understanding of disease mechanisms at the sub-cellular levels and improvements in 

patient diagnosis and care. A modern microscopy scanner is able to capture images at 

100K×100K pixel resolutions and can scan many slides rapidly. This enables research 

groups and healthcare organizations to collect large volumes of image data. An analysis of a 

WSI using a single CPU core may take hours; as a consequence, WSIs are underutilized in 

research and clinical settings.

A typical WSI analysis pipeline consists of multiple computing stages such as 

normalization, object segmentation, feature computation, and image classification. The 

object segmentation stage is often the most costly stage. It is generally implemented as a 

pipeline of several finer-grain operations that include Morphological Reconstruction [3], 

Imfill (fill image regions and holes) [4], H-minima [4], H-maxima [4], Watershed [5], and 

distance transform [6]. Therefore, efficient implementations on multi-core and many-core 

systems of these operations are critical to reducing the overall execution time of an image 

analysis pipeline. The processing structures of these operations bear similarities and include 

the IWPP on a grid.

The IWPP is characterized by waves originating from one or more source grid points and by 

the irregular shape and expansion of wavefronts. The composition of the waves is dynamic, 

data dependent, and computed during execution as the waves are expanded. Elements in the 

front of the waves work as sources of wave propagations to neighbor elements. A wave 

propagation occurs when a given propagation condition, determined based on the value of a 

wavefront element and the values of its neighbors, is satisfied. Each element in the 

wavefront represents an independent wave propagation; interaction between waves may even 

change their direction. In the IWPP only elements in the wave front contribute to output 

results. Because of this property, an efficient implementation of the IWPP can be 

accomplished using an auxiliary container structure (e.g., a queue, set, or stack) to keep 

track of active elements forming the wavefront. The basic components of the IWPP are 

shown in Algorithm 1 (Section II).

The implementation of IWPP on the Intel Xeon Phi is a challenging problem. The parallel 

versions of the IWPP algorithm we developed in an earlier work [1], [7] requires the use of 

atomic updates to avoid races conditions during propagations between neighbor elements in 

a grid (Section II, Algorithm 1, line 10). However, the Intel Xeon Phi does not support 

atomic SIMD instructions, but their use is a key factor to attain high performance on this co-

processor. In this paper we address this problem with a new execution strategy. The 

contributions of our work can be summarized as follows:

• We propose a novel IWPP strategy that allows for the use of SIMD instructions 

supported by the Intel Xeon Phi.

• We develop efficient implementations of the Morphological Reconstruction and 

Imfill operations using this strategy. These are the first vectorized versions of these 

operations for the Intel Xeon Phi. Both operations significantly improve upon the 

performance of their non-vectorized counterparts.

• We extend IWPP to evaluate the use of different containers to store elements in an 

active wavefront.
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• We experimentally evaluate our propositions using two state-of-the-art Intel Xeon 

Phi co-processors and compare the performance of the new IWPP implementation 

to a fast GPU-based implementation. The new IWPP implementation attains 

speedups of up to 45.7 × and 1.62× as compared to the sequential CPU and GPU 

versions, respectively. These performance gains demonstrate the feasibility of using 

the Intel Xeon Phi to rapidly execute image analysis operations and be able to scale 

analysis pipelines to large image datasets.

The rest of this paper is organized as follows. Section II presents the use of the IWPP on 

image analysis, including the of use case operations: Morphological Reconstruction and 

Imfill. The novel IWPP parallelization strategy for the Intel Phi is detailed in Section III. 

The experimental evaluation is presented in Section IV. Sections V and VI, respectively, 

present the related work and conclude the paper.

II. Irregular Wavefront Propagation Pattern

The IWPP is characterized by one or multiple points in grid that act as sources for waves 

with irregular shape of the fronts. The waves are dynamically created during the execution 

as a result of the computation, which makes them data dependent. A set of elements forming 

the front of waves (active elements) act as sources of propagations to their neighbor 

elements. The propagation between elements is carried out when a propagation condition, 

computed using the value of a wavefront element and the values of its neighbors, is satisfied. 

Thus, each element of the propagation front represents an independent wave, which may 

merge with other waves or even change direction.

An important characteristic of this structure that allows for its fast execution is that only the 

computation of elements within the wavefront contribute for changes in the output results. 

As such, instead of sweeping over the entire data grid until the propagations converge, we 

are able to utilize an auxiliary container structure, e.g., queue, sets, to keep track of active 

elements (those in the front of the wave) and touch only parts of the grid that are relevant. 

The original IWPP [1] is presented in Algorithm 1.

Algorithm 1

Irregular Wavefront Propagation Pattern (IWPP)

Input: D: data elements in a multi-dimensional space

Output: D: stable set with all propagations reached

1: {Initialization Phase}

2: S ← subset active elements from D

3: {Wavefront Propagation Phase}

4: while S ≠ ∅ do

5:  Extract ei from S

6:  Q ← NG(ei)

7:  while Q ≠ ∅ do

8:   Extract ej from Q
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9:   if PropagationCondition(D(ei), D(ej)) = true then

10:    D(ej) ← max/min(D(ei), D(ej))

11:    Insert ej into S

In this algorithm, a set of elements in a multi-dimensional grid space (D) is selected to form 

the initial wavefront (S). These active elements act as wave propagation sources in the 

wavefront propagation phase. During the propagation phase, a single element (ei) is 

extracted from the wavefront and its neighbors (Q ← NG(ei)) are identified. The 

neighborhood of an element ei is defined by a discrete grid G, also referred to as the 

structuring element. The element ei tries to propagate the wavefront to each neighbor ej ∈Q. 

If the propagation condition (PropagationCondition), based on the values of ei and ej, is 

satisfied, the value of the element ej (D(ej)) is updated, and ej is inserted in the container S. 
The wave propagation operations are expected to be commutative and atomic. That is, the 

order in which the wavefront computations are carried out should not impact the algorithm 

results. The wavefront propagation process continues until stability is reached; i.e., until the 

wavefront container is empty.

We describe two morphological algorithms, Morphological Reconstruction and Imfill, from 

the image analysis domain to illustrate the IWPP. Input and output images are defined in a 

rectangular domain DI ∈ ℤn → ℤ. The value I(p) of each image pixel p assumes 0 or 1 for 

binary images. For gray scale images, the value of a pixel comes from a set {0, …, L − 1} of 

gray levels from a discrete or continuous domain.

A. Morphological Reconstruction

Morphological reconstruction is one of the elementary operations in image segmentation [3]. 

Figure 1 illustrates the process of gray scale morphological reconstruction in 1-dimension. 

The marker intensity profile is propagated spatially but is bounded by the mask image’s 

intensity profile.

The efficient algorithm for this operation [3] makes one pass using the raster and anti-raster 

orders. It then continues the computation using a First-In, First-Out (FIFO) queue. The 

queue is initialized with pixels satisfying the propagation condition, and the computation 

proceeds by removing a pixel from the queue, scanning the pixel’s neighborhood, and 

queuing the neighbor pixels whose values have been changed due the wavefront 

computation. The overall process continues until the queue is empty. A pseudo-code 

implementation is presented in Algorithm 2, where  and  denote the set of neighbors 

in NG(p) that are reached before and after touching pixel p during a raster scan. As 

presented, it computes raster and anti-raster scans during the initialization phase, before it 

proceeds to the IWPP phase.

B. Imfill

Imfill is a technique used to fill holes or areas in binary or gray scale images [4]. In binary, it 

changes values of connected background elements to foreground values with a flood-fill 

operation that stops when object boundaries are reached. In gray scale images, using the 
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same flood-fill scheme, it modifies the intensity value of dark areas surrounded by lighter 

areas to the same intensity level of the surrounding area. As such, it removes regional 

minima not connected to image borders.

Algorithm 2

Morphological Reconstruction Algorithm

Input: I:mask image, J: marker image

Output: J:reconstructed image

1: {Initialization Phase}

2: Scan I and J in raster order.

3:  Let p be the current pixel

4:

  

5: Scan I and J in anti-raster order.

6:  Let p be the current pixel

7:

  

8:

 if  and J(q) < I(q)

9:   queue.enqueue(p)

10: {Wavefront Propagation Phase}

11: while queue.empty() = false do

12:   p ← queue.dequeue()

13:   for all q ∈ NG(p) do

14:    if J(q) < J(p) and I(q) ≠ J(q) then

15:     J(q) ← min{J(p), I(q)}

16:     queue.enqueue(q)

Imfill is used in image processing to homogenizing images in order to avoid false 

segmentation, to remove lighting intensity differences or to facilitate other types of 

processing. The Figure 2 is an example of one of these applications where the objects or 

connected components have different shades inside and their content is homogenized with 

the use of Imfill. The Imfill algorithm is very similar to the of Morphological 

Reconstruction, except that in the initialization phase it inverts the input marker image to use 

it as a mask for the propagation.

III. Efficient parallel IWPP on an Intel Phi

This section presents our approach to efficiently execute the IWPP on the Intel Phi. We have 

redesigned the IWPP algorithm to create a new execution scheme (Section III-A) that does 

not require atomic instructions and, as such, can leverage SIMD instructions. Section III-B 

describes the SIMD version of this algorithm. Section III-C presents the version of the 

algorithm that exploits thread-level parallelism. Further, in Section III-D, we discuss the 

benefits of using a heap container to store wavefront elements in IWPP algorithms.
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A. Redesigned IWPP algorithm

The new IWPP is presented in Algorithm 3. The main difference from the new to the 

original algorithm (Algorithm 1) refers to the propagation scheme. In the original algorithm, 

the active elements forming the wavefront propagate information to neighbors elements 

immediately after the PropagationCondition between pixels is evaluated true. This creates a 

race condition when multiple active elements try to update a third element in parallel. This 

problem is addressed with a two stage propagation strategy in which elements receiving 

propagation are first identified and, in a second stage, they become active in the computation 

to find the correct information that should be received from the neighborhood.

Algorithm 3

New IWPP algorithm - sequential non-vectorized

Input: D: data elements in a multi-dimensional space

Output: D: stable set with all propagations reached

1: {Initialization Phase}

2: …

3: {Wavefront Propagation Phase}

4: while currWave.empty() = false do

5:  {Identification of elements receiving propagation}

6:  for all p ∈ currWave do

7:   for all q ∈ NG(p) do

8:    if PropagationCondition(D(q), D(p)) = true then

9:     nextWave.insert(q)

10:  {Propagation}

11:  for all p ∈ nextWave do

12:   for all q ∈ NG(p) do

13:    D(p) ← max/min(D(q), D(p))

14:  currWave ← nextWave

15:  nextWave ← ∅

The first stage of the propagation in the new IWPP is presented in lines 6 to 9 of Algorithm 

3. It computes the propagation condition for each active element in the current wavefront set 

(currWave) and their respective neighbors. However, instead of directly performing the 

propagation, it inserts elements receiving propagation into another set nextWave. This 

container coincides with the elements actively propagating information in the next iteration 

of the algorithm, since they are receiving propagation in the current step. The second stage 

of the algorithm computes the actual information propagation (lines 11 to 13). In this stage, 

each element receiving a propagation searches its neighborhood for the element from which 

the information should be received, and performs the propagation from the correct neighbor.

B. Vectorized IWPP

The vectorized version of the redesigned IWPP is presented in Algorithm 4. The first for 

loop in the wavefront propagation phase (lines 9 to 15) refers to the identification of 
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elements receiving propagation, whereas the second loop performs the propagations. These 

phases are detailed below.

1) Identification of elements receiving propagation—This phase is implemented 

using 3 operations that are vectorized in our code: element neighborhood reading (lines 10 

to 12), computation of the propagation condition (line 13), and insertion of elements that 

receive propagation in nextWave (lines 14 and 15).

The neighborhood reading is designed based on the observation that neighbor elements are 

stored within constant shifts from an active element. Theses shifts are precomputed based on 

the size of the grid and are stored into a vector register (vecshift — line 1 of Algorithm 4). 

The address of active elements are loaded into |NG(p)| consecutive positions of vecp (line 

10). The constant shifts are then added to vecp to compute the addresses of the neighbor 

elements (line 11), which are read using a gather instruction in line 12. The neighborhood 

reading process is illustrated in Figure 3. To fully exploit the SIMD instructions, we may 

process multiple active elements p into a single iteration of the algorithm. For 4-connected 

and 8-connected neighborhoods typically used in our algorithms, respectively, 4 and 2 

elements are processed per loop iteration in the Intel Phi using 32-bit integer data.

Algorithm 4

Vectorized IWPP algorithm

Input: D:data elements in a multi-dimensional space

Output: D:stable set with all propagations reached

1: vecshift ← Constant address distance from neighborhood

2: {Initialization Phase}

3: …

4: {Scan Phase}

5: …

6: {Wavefront Propagation Phase}

7: while currWave.empty() == false do

8:  {Identification of elements receiving propagation}

9:  for all p ∈ currWave do

10:   vecp ← Extract active elements

11:   vecaddr ← VecAdd(vecp, vecshift)

12:   vecneigh ← Gather(D, vecaddr)

13:   maskcond ← VectorPropagationCondition(vecp, vecneigh)

14:   vecprefixSum ← PrefixSum(maskcond)

15:   nextWave.Insert(vecaddr, maskcond, vecprefixSum)

16:  {Propagation}

17:  for all q ∈ nextWave do

18:   vecq ←Extract elements

19:   vecaddr ← VecAdd(vecq, vecshift)

20:   vecneigh ← Gather(D, vecaddr)

21:   D(q) ← Max/MinReduce(vecq, vecneigh)
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22:  currWave ← nextWave

23:  nextWave ← ∅

The computation of the propagation condition is usually a comparison of values stored in the 

active element and its neighbors. This operation is performed for all pixels in the 

neighborhood, resulting into another vector register (maskcond) that stores the value 1 in 

positions in which the propagation is evaluated true, and 0 otherwise.

The insertion of elements receiving propagations in the nextWave container is the next 

operation (lines 14 and 15), which is implemented in the vectorized form here for a regular 

FIFO queue. This operation computes the number of elements to be inserted and their 

relative position to the end of the nextWave queue (line 14). This is performed using an 

inclusive prefix-sum of the values in maskcond, which stores 1 in the positions of neighbor 

elements that need to be stored. The result of this operation is a vector register vecprefixSum 

with the relative position to the end of the queue in which each element receiving 

propagation should stored. The prefix-sum consists of a series of elements shifting in the 

vector registers followed by addition operations. It is worth noticing that our prefix-sum is 

performed inside a vector register and, for this setting in which the width of the vector 

instruction is sufficient large to store all the data, this prefix-sum version is efficient. Finally, 

we perform the actual insertion of elements receiving propagation (line 15) using a scatter in 

which only elements with the veccond marked with 1 are inserted into the queue with the 

relative positions from the last element in the queue as calculated in the prefix-sum. The 

insertion is illustrated in Figure 4.

2) Propagation—This phase performs the actual propagation of information. The elements 

identified for receiving propagation search into their neighborhood for the element from 

which it should receive the information. Thus, elements receiving propagation are extracted 

from nextWave (line 18), their neighborhood addresses are calculated (line 19), and neighbor 

elements are read (line 20). Finally, we computed the actual element from which the 

propagation should be received in line 21. In the reduce operation, the neighbor elements are 

compared to the active elements, and the max/min resulting value is retrieved to update 

D(q).

It is important to highlight that it may happen that the same element q is inserted multiple 

times into the nextWave container. As a consequence, it is also possible that q be processed 

multiple times into a single step of the propagation loop, which would lead to a data race in 

the update of D(q). However, in this case, the computation of the q replicas would lead to the 

same result, because the value of the neighborhood for the copies of q is the same as they are 

read by the same instruction (gather in line 20). Thus, this causes a benign data race [8] and 

does not affect the application results.

C. Thread level parallelism in IWPP

The thread level parallelization strategy is employed on top of the vectorized IWPP 

presented in Algorithm 4. This algorithm is modified to have multiple threads that work 

independently in subsets of the active elements to perform propagations in parallel. In this 
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scheme, the elements identified in the “Initialization Phase” as the seed set of active 

elements are stored into multiple container copies (one per thread), so that threads can 

process propagations starting in different seeds independently. The initialization of thread 

queues or containers is presented in Figure 5. The partitioning of seeds to multiple threads 

eliminates the need of communication and synchronization among threads, and it is only 

possible because IWPP operations are commutative. This reduction or elimination of 

synchronization is attained with the cost of a potential load imbalance among threads, which 

happens if propagations starting from seed elements of different threads do not have the 

same cost. This problem can be lessened with a good initial partitioning of seeds and we 

have not observed significant load imbalance in our experiments.

The “Wavefront Propagation Phase” is a slightly modified version of the vectorized IWPP 

(Algorithm 4) to execute in parallel. The modifications include the execution of the entire 

while loop in parallel, having each thread manipulating its own copy of the currWave and 

nextWave storage containers independently. Additionally, a barrier is inserted between 

identification of elements and propagation phases (after the first inner for loop), to guarantee 

that propagations from multiple steps do not overlap.

Propagations starting in seed elements from initial disjoint partitions (Figure 5) may cross 

partitions during their execution. As a consequence, it is possible that distinct threads 

happen to insert the same active element to their independent wavefront sets. In this case, a 

data race may exist in the update of element D(q) by multiple threads. The consequences of 

this data race are exemplified in Figure 6 for the Morphological Reconstruction algorithm. 

Thread 1 has element ex−1 in its currWave container in iteration i, while thread 2 has ex+2 

and ex+1. The element in threads’ currWaves that satisfy the propagation condition to a 

common neighbor element is ex. As such, ex is inserted in the nextWave of both threads 

during the identification of elements receiving propagation. Further, if the neighborhood of 

ex is not modified in the interval from which it is read by both threads, they will read the 

same neighborhood of ex, select the same value to be stored in ex, and write it twice to D(q).

However, if the neighborhood of ex is modified by propagations carried out by another 

element ex+2, there is a chance of threads reading different neighborhood data versions and 

the update in D(q) could result in different intermediate results (O.1 or O.2) in iteration i. If 
during the propagation phase thread 1 reads the neighborhood of ex to registers, thread 2 

processes propagations ex+1 and ex, and after that thread 1 selects the value among those in 

its registers (value 7) to be store in ex, the output will be O.1. In this case, however, the 

nextWave i of thread 2 would still contain ex+1 and ex that are used in the next iteration (i+1) 

as currWave i+1 of the algorithm to identify elements receiving propagation. As such, the 

computation of ex+1 in iteration i + 1 would insert ex to nextWave i + 1, and the execution of 

ex in the propagation phase of iteration i + 1 would set ex to 8 (Marker O.2).

The second execution order is the simplest one in which thread 2 processes propagations of 

ex+1 before thread 1 reads the neighborhood of ex. In this case, the output O.2 would be 

reached in iteration i, as such iteration i + 1 would not change the results. As such, the same 

final results are reached independently of the execution order. Therefore, the data race 
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observed in the thread-level parallel version is also benign, which is classified as a double 

check [8].

D. Improving the parallel efficiency with an alternate propagation order

In the parallel multi-threaded version of IWPP, threads are dispatched simultaneously to 

compute propagations that start in the partitions assigned to each one. As discussed, these 

propagations may cross partitions and threads could process intersecting areas in parallel 

during the execution. Despite the potential data races that are resolved in our approach with 

a 2-phase algorithm, the computation of the intersecting areas in parallel may lead to an 

increasing in the number of elements queued for computation during the execution. This 

occurs because the elements queued for computation in the parallel version are typically 

processed using a less updated version of the domain as compared to the sequential 

execution. As a consequence, an element may be inserted to the queue in the parallel 

version, but not in the sequential. The recomputation levels tend to increase with the level of 

parallelism exploited or number of computing threads used. Thus, the increasing in the 

throughput of the algorithm (elements processed per unit of time) due to parallelism may not 

reflect with the same intensity in execution times because of the intrinsic recomputation.

We approach this here problem by computing elements in the wavefront using an alternate 

order, which is less likely to result in the recomputation of an element due to multiple 

propagations. The main principle is to process elements with higher/smaller values first for 

max/min operations because they contain values that once propagated are unlikely to be 

overwritten by another propagation wave. Actually, in the sequential version, if a priority 

queue is used and we first process elements with higher values (for Morphological 

Reconstruction), every propagation is final, and no element in the domain will receive a 

propagation twice [9]. In order to employ this principle targeting to reduce the 

recomputation that is inherent of the parallel version, we have implemented the vectorized 

IWPP using an heap to maintain elements of the wavefront sorted according to their values. 

In this version (called heap), element propagations are still carried out using the 

vectorization, but container insertions are scalar as we employ a C++ Standard Template 

Library (STL) [10] to implement the priority queue.

IV. Experimental results

The IWPP was evaluated using Morphological Reconstruction and Imfill [11] algorithms. 

We used a machine with 2 Intel® Xeon™ 8-Core E5-processor, one coprocessor Intel® Xeon 

Phi™ SE10P, and 32GB of RAM, another compute node with the Intel® Xeon Phi™ 7120P, 

and K20 NVIDIA GPU for comparison purposes. The devices have been profiled for 

bandwidth performance, which is used to explain comparative performance of operations. 

The regular data access bandwidth used the STREAM benchmark [12], whereas random 

data access used a micro-benchmark we developed. It consists of 10 million data element 

accesses in parallel from random locations in a 4K × 4K image. The results of the 

benchmark and other information about the processors are reported in Table I). Experiments 

were repeated at least 3 times and the coefficient of variation among experiments was not 

higher than 0.5%.
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The input data used in our experimental evaluation have been collected in our brain tumor 

research studies [13]. The input images used vary both in terms of size (from 4K × 4K to 

16K × 16K pixels) and tissue coverage, which refers to the approximate percentage of the 

image area that is covered with tissue. The CPU [3] and GPU [1], [14] versions used as 

baselines are to the best of our knowledge the most efficient implementations available.

A. Speedup

This section evaluates the speedups of the operations in a Intel Phi as the number of threads 

is varied. As presented in Figure 7, both operations attained good speedups and maximum 

performance was achieved when about 120 threads are used. The improvements over 60 

threads are due to the hyperthreading. We reserved one core of the processor for the offload 

daemon in all experiments.

B. Effect of vectorization

This section evaluates the performance improvements attained with the vectorized IWPP 

proposed in this work as compared to the original non-vectorized version. The experimental 

evaluation was executed on the Intel Phi SE10P using the Morphological Reconstruction and 

Imfill with regular FIFO queue for 4K×4K input images with varying amount of tissue 

coverage.

The experimental results (Figure 8) show that the algorithms attained significant gains for all 

input data configurations and Imfill improvements with vectorization are slightly higher than 

those observed for Morphological Reconstruction. Although the performance gains for both 

algorithms is high (ranges from 4.29 to 5.63), the performances of the algorithms are still 

below more optimized performance that could result from the use of SIMD instructions. We 

used 32-bit integers to manipulate our data and, as such, 16 data elements may be processed 

per SIMD instruction. The main reason performance gains were smaller than 16 is the fact 

that IWPP is an irregular algorithm and the vectorized implementation of IWPP is not a 

direct translation of non-vector instructions to respective vector instructions. Thus, the 

number of instructions to perform the same operation in the vectorized code is higher than 

that in the non-vectorized code for some phases of the algorithm. For instance, the insertion 

of elements to a queue requires a prefix-sum that is performed in multiple instructions in the 

vectorized code, but it is only an increment in the non-vectorized code.

C. Impact of tissue coverage

In this section we evaluate the performance effects of tissue coverage (percentage of the 

image area that is covered with tissue). These experiments used 4K×4K tissue images with 

the SE10P. The speedups attained by the algorithms with regular FIFO queue as compared to 

the single CPU core versions are presented in Figure 9.

Both algorithms achieved significant performance improvements as compared to the 

sequential execution on a CPU. Higher tissue coverage resulted in better acceleration, 

because of increased computation cost that amortizes startup overheads and better exploits 

the co-processor. Additionally, Morphological Reconstruction achieved higher speedups 

than Imfill. The better gains of Morphological Reconstruction are due to the characteristics 
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of the input used. Imfill computes an inverse of the input to use as a mask and, as such, it 

performs a larger number of propagations. This requires more passes on the data in the 

initialization phase. As such, performance gains in the vectorized wavefront propagation 

phase with respect to the entire execution of the algorithm are reduced.

D. Varying data size

This section evaluates the performance impact of increasing input data size. The experiments 

were carried out using the Intel Phi SE10P and Morphological Reconstruction with FIFO 

queue only, because its performance is similar to that of Imfill as data sizes are varied.

The experimental results, presented in Figure 10, show an increase in speedups on the co-

processor as the input data size grows. The average gain is 1.45×, when the sizes of images 

increase from 4K×4K to 16K×16K pixels. The most significant performance gain occurs 

when the image size is increased from 4K×4K to 8K×8K pixels. The performance 

improvements with large images is a result of the higher amount of parallelism, which leads 

to better use of the coprocessor and amortizes the cost of launching computations and 

transferring data between the CPU and the co-processor.

E. Performance of different coprocessors and storage types

This section compares the performance of IWPP on the Intel Phi SE10P, 7120P, and the 

NVIDIA K20 GPU. The Intel Phis are equipped with the same number of computing cores 

(61), but differ in the clock rate: 1.1GHz and 1.33GHz, respectively, for the SE10P and 

7120P. The GPU implementation of IWPP was developed in an early work [1]. We also 

evaluated the impact of using a heap/priority queue to store wavefront elements on the Intel 

Phi. In the heap version wavefront elements are maintained in sorted order according to their 

values (i.e., their intensity levels).

The comparative performance of the coprocessors and storage types is presented in Figure 

11, using the single core CPU version as a reference. As shown, all versions attained 

significant improvements on the coprocessors. The multicore CPU version attained speedups 

of up to 7.12× as compared to the single core version. The execution using the Intel Phi 

7120P resulted in a speedup of 1.14× on top of the SE10P coprocessor, which is explained 

by their clock rate difference. The GPU version slightly improved on top of the best Intel Phi 

using regular FIFO queues, attaining speedups of up to 28.29 on top of the CPU sequential 

version. This may be explained by the different bandwidth attained by the processors. These 

operations are data intensive and they have regular data accesses in the initialization phase 

and irregular or random in the IWPP phase. While the Intel Phi devices are more efficient 

than the GPU for the regular data accesses, the GPU attains a bandwidth about 2.04× higher 

than the fastest Phi for irregular data accesses. Finally, the use of a heap to store wavefront 

elements (ordered by their intensity levels) resulted in significant performance improvement. 

The execution on 7120P with the heap and input images of 16K×16K pixels achieved a 

speedup of 1.62× on top of the GPU-based version. The strong gains with the use of a heap 

are a result of processing about 20× fewer elements during the wavefront propagation phase 

as compared to when a queue is used. In the queue, as we increase the number of threads 

used for the same input, more elements are processed in the wavefront propagation phase 
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because of propagations that are computed multiple times due to propagations carried out in 

parallel. In the heap version, however, the sorting of elements by their values asserts that 

propagations carried by a thread are more likely to be final and, as a consequence, increases 

parallel efficiency. In an earlier effort, we implemented the IWPP using a state-of-the-art 

priority queue proposed by He et al. [15], but it was not able to improve the regular queue 

based GPU implementation because of the data management costs.

V. Related Work

The IWPP may be modeled as a graph scan algorithm with multiple sources. As such, recent 

efforts on efficient implementations of Breadth-First Search (BFS) [16] [17] are interesting 

for the sake of comparison with IWPP execution schemes and optimizations. The work of 

Hong et al. [16], for instance, provides techniques and optimizations to deal with load 

imbalance from irregular number of edges in vertices from real-world graphs for their GPU-

based BFS algorithms. Although these techniques have shown to be effective to their work, 

it would have no impact in IWPP that has a regular and constant number of edges per vertex, 

represented by the fixed neighborhood. Tao et al. [17] is a closer related work that describes 

approaches to accelerate BFS using the Intel Phi. It develops reading and expansion 

operations using SIMD instructions, but it still uses atomic (non-vectorized) instructions to 

perform expansion of vertices. Also, Tao et al. use a bitmap to mark elements that should be 

processed in the next step of the algorithm and, as a consequence, it requires passing through 

all elements of the domain (represented by the bitmap) in each iteration to check for active 

elements. It makes their algorithm inefficient for IWPP, which touches only parts of the 

domain that contribute to the output in each step. Still, it served as an inspiration for our 

propositions.

The Morphological Reconstruction and Imfill algorithms have been used by several 

applications. Vincent [18] formally defined these operations and showed that their efficient 

execution was reached using a First-In, First-Out (FIFO) queue. A parallel CPU cluster-

based version of Morphological Reconstruction was proposed by Laurent and Roman[19]. 

Karas [20] and Jivet et. al [21], respectively, focused on Field-Programmable Gate Arrays 

(FPGAs) and GPU based implementations of the Morphological Reconstruction. However, 

in both of the cases, an inefficient version of the algorithm that does not use queues to store 

the wavefront is employed in the parallelization. As such, the performance improvements as 

compared to the efficient queue based version are reduced. This work focuses on the 

implementation of the optimized version of the algorithm.

VI. Conclusion

This paper has proposed and implemented an efficient vectorized algorithm for the Irregular 

Wavefront Propagation pattern on the Intel® Xeon Phi™. The thread level parallel version of 

the algorithm and the use of a priority queue container have also been introduced to further 

improve performance. The experimental results using two types of operations 

(Morphological Reconstruction and Imfill), which are common in image analysis pipelines, 

show that the new IWPP algorithm improves the original non-vectorized IWPP up to 5.63×. 

Both operations attain significant performance gains on top of a state-of-the-art CPU 
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implementations. The Morphological Reconstruction with vectorization can get speedups of 

up to 45.7× and 1.62× on top of the 1-CPU core [3] and GPU-based [1] versions. As a future 

work, we intend to extend the IWPP to execute on multiple Intel Phi co-processors.
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Fig. 1. 
Gray scale morphological reconstruction in 1-dimension. The marker image intensity profile 

is represented as the brown line, and the mask image intensity profile is represented as the 

red line. The final image intensity profile is represented as the green line. The arrows show 

the direction of propagation from the marker intensity profile to the mask intensity profile. 

The green region shows the changes introduced by the morphological reconstruction.
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Fig. 2. 
Imfill in a gray scale image. Connected components (those with surrounding border) are 

filled and noise is reduced.
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Fig. 3. 
Loading an 8-connected neighborhood for two elements p and p′. vecshift contains shifts to 

neighbors of each element. Addresses of p and p′ are replicated in 8 consecutive positions of 

vecp, and vecshift is added to vecp to calculate addresses of p and p′ neighbors. A gather with 

vecaddr is used to read the neighbors (only p’s neighborhood is shown in vecneigh).
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Fig. 4. 
The maskcond marks the elements in vecaddr to be inserted in queue and vecprefixSum contains 

their position relative to the queue end.
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Fig. 5. 
Input grid divided into subregions and seed elements from partitions are assigned to multiple 

thread.
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Fig. 6. 
Data race exemplified using Morphological Reconstruction algorithm.
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Fig. 7. 
Scalability analysis for both algorithms varying the number of threads.
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Fig. 8. 
Performance improvement of vectorization for both algorithms using images with varying 

amount of tissue coverage.
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Fig. 9. 
Acceleration attained in the SE10P Intel Phi as compared to 1-CPU core for input data with 

varying tissue coverage.
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Fig. 10. 
Performance improvements of the Morphological Reconstruction on Phi as the input data 

size is varied.
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Fig. 11. 
Evaluation of multiple coprocessors and wavefront storage containers with Morphological 

Reconstruction for 100% coverage input data.
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TABLE I

PROCESSORS CHARACTERISTICS.

K20 GPU SE10P 7120P

Number of cores 2496 61 61

Processor core clock (MHz) 706 1100 1238

Bandwidth - Regular access (GB/s) 148 160 177

Bandwidth - Random access (MB/s) 895 399 438
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