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Abstract—One of the main challenges in data center
systems is operating under certain Quality of Service (QoS)
while minimizing power consumption. Increasingly, data
centers are adopting heterogeneous server architectures with
different power-performance trade-offs. This requires careful
understanding of the application behavior across multiple
architectures at runtime so as to enable meeting specified
power and performance requirements. In this work, we present
and evaluate REPP-H (Runtime Estimation of Performance
and Power on Heterogeneous data centers). REPP-H leverages
hardware performance counters available on all major server
architectures to ensure a highly responsive power capping
mechanism and delivering a minimum performance in a single
step. We experimentally show that REPP-H can successfully
estimate power and performance of several single-threaded and
multiprogrammed workloads. The average errors on ARM,
AMD and Intel architectures are, respectively, 7.1%, 9.0%,
7.1% when predicting performance, and 6.0%, 6.5%, 8.1%
when predicting power on those heterogeneous servers.

I. INTRODUCTION

Modern data centers increasingly demand improved perfor-
mance with minimal power consumption. Managing the power
and performance requirements of the applications is challeng-
ing because these data centers, incidentally or intentionally,
have to deal with server architecture heterogeneity [19], [22].
One critical challenge that data centers have to face is how
to manage system power and performance given the different
application behavior across multiple different architectures.

Dynamic voltage and frequency scaling (DVFS) is a widely
used technique to optimize constraints such as performance
and power trade-offs [27], power capping [13], [23] and
minimum performance [21]. To satisfy these constraints,
iterative algorithms periodically monitor system behavior and
change the frequency and voltage of cores.

Iterative algorithms are P-State based (i.e, DVFS): they
monitor the application behavior history [11] and set the DVFS
configuration for the next quantum. However, these approaches
require multiple iterations before power-performance criteria
are satisfied and can lead to massive violations in power-
performance budgets for data centers [19], [27].

Fast and reactive prediction based algorithms provide the
benefit of quick response and reaction for a small fraction
of computation costs. The broad spectrum of computation
and memory behavior can be understood by monitoring the
hardware performance monitoring counters (PMCs), available
on most commercial processors. For instance, applications that
are memory bounded, do not take benefit of higher P-State as

they stall for memory, thus using a lower P-State might be
sufficient to satisfy the performance constraint while saving
power. At the same time, the converse is true for compute
bounded workloads. Using PMCs, we demonstrate that our
prediction algorithm can determine if the application is scal-
able with DVFS at runtime and can select the most appropriate
configuration given a constraint. Such techniques are also
important to enable energy-efficient cluster management in
data centers (which thread is assigned to each core and what
frequency to set each core when).

Most prior works have focused on building specialized
performance and power models for individual server archi-
tectures [21], [23], [24], [30]. In this paper, we extend prior
works to scale power and performance prediction techniques
for a variety of server architectures. We specifically designed a
Runtime Estimation of Performance and Power across Hetero-
geneous architectures (REPP-H) that uses two hardware knobs,
namely: processor performance states (P-States) and idle
cycles (Cl-States), to estimate and control power-performance
on server architectures running multiple workloads using
statistics gathered on real processors. Cl-States introduce
synchronized idle injections across CPU threads to provide
forced and controllable C-State residency. The changes in
Cl-States are governed using Intel powerclamp driver [5].

We show that REPP-H scales well (requiring under 100 cy-
cles per prediction) and is effective on multicore architectures
that require meeting service level agreements. REPP-H uses
P-States, Cl-States to understand the complicated mapping
between the low-level power management features and con-
straints like minimum performance (Millions of Instructions
per Second (MIPS)) and power (in Watt).

Our major contributions are below:
• We extend the models built in [23] from single-threaded

workloads to multiprogrammed workloads to predict per-
formance and power on three different architectures.

• We evaluated REPP-H on each architecture for single-
threaded and multiprogrammed applications with mulit-
ple constraints and show that power capping and mini-
mum performance requirements are met.

• We show that the power capping mechanism built with
REPP-H can perform much faster (3.6X) than a com-
monly used iterative approach.

After extensive experiments on real systems to understand
the architectural influence on prediction techniques, our results
show that REPP-H performs well across architectures with
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TABLE I: Events and perf raw event numbers used on AMD, ARM and Intel machines

Component AMD AMD (perf ARM ARM (perf Intel Intel (perf
raw event) raw event) raw event)

FE retired uops r5000c1:u - - uops retired:any r1c2
INT dispatch stall for int sched queue full r0d6 inst spec exec simd r074 (uops dispatched port:(port 0 r1a1 + r2a1 +

+ port 1 + port 5) - fp comp r80a1 - r110
ops exe:x87 - br inst retired) - r0c4

FP retired mmx and fp instructions:x87 r5001cb:u inst spec exec vfp r075 fp comp ops exe:x87 r110
BPU branch retired r5000c3:u inst spec exec soft pc branches br inst executed rff88
L1 perf count hw cache l1d - l1d cache r04 perf count hw cache l1d -
L2 requests to l2 r037d l2d cache r16 l2 rqsts:0xc0 rc024
L3 perf count hw cache references r080 no L3 no L3 last level cache references r4f2e
MEM perf count hw bus cycles r0062 perf count hw bus cycles bus-cycles perf count hw bus cycles bus-cycles

TABLE II: Machines used in this study.

Processor Linux Kernel Power Meter gcc DFS (in GHz) L2 (size in KB) L3 (size in MB)

Intel Core i7-2760QM (4 cores) 3.14.5, perf events RAPL 4.8.1 0.8-2.4 256 6
AMD Phenom II X4 B97 (4 cores) 3.13.0, perf events WattsUp Pro 4.9.2 0.8-3.2 512 6
ARM Juno 64bit 4.3.0, perf events Native energy meter 4.9.2 0.6-1.15 2048 (Cortex A57) no L3
(ARMv8 – 2 Cortex A57 and 4 Cortex A53)

average power prediction errors of 6.0% on ARM, 6.5% on
AMD, and 8.1% on Intel, and, similarly, an average error
of 7.1% on ARM, 9.0% on AMD and 7.1% on Intel when
predicting performance.

II. REPP-H

Our previous work, REPP [23], is a modeling and predic-
tion technique on server multicores that run single-threaded
workloads. REPP predicts performance and power for single-
threaded workloads for all combinations of P-States and Cl-
States, with high accuracy on an Intel architecture.

REPP is divided into two phases: offline and online. In
the offline phase, single core models are built by extensive
profiling of three floating point benchmarks and three
integer benchmarks at random [23] (training dataset) from
representative benchmark suites such as SPECcpu2006 [17],
PARSEC [10], etc., at various P-States and Cl-States, to build
multilinear regression models; one multilinear regression
model per P-State for each architecture.

In the offline phase, we profile the activity in the microar-
chitectural components, namely: Front End (FE); Integer units
(INT); Floating Point units (FP); branch predictor unit (BPU);
L1 (L1 cache); L2 (L2 cache); LLC (L3 cache); and memory
subsystem (MEM). Since these components do not have PMCs
to directly record their activity, the activity ratio (AR) of these
individual components is computed using PMCs activity for-
mulas. The activity ratio is defined as the component’s average
number of uops per cycle (uops/cycle). Table I summarizes the
microarchitectural components, activity formulas for AMD,
ARM and Intel, and the raw perf event registers [1]–[3]. To
compute the activity ratio, the activity in each component,
for each architecture, is divided by cpu_clk_unhalted
(r076), cpu_cycles (cycles) and cpu_clk_
unhalted:0x01 (r13c), respectively.

The offline design phase is attractive because a it
eliminates the overhead of learning and tuning the performance
and power model at numerous P-States and Cl-States; b it
does not rely on using power sensors/meters to estimate power
and performance at runtime; and c it is a one-time effort.

In the online phase, we showed the prediction accuracy of
REPP by evaluating the power and performance models for
all combinations of P-States and Cl-States.

REPP-H: Dealing with Multiple Architectures — REPP-
H, in contrast to REPP, is a modeling and prediction technique
for both single-threaded and multiprogrammed workloads in
data centers. The single-core models for the prediction tech-
nique are built such that the co-efficients are not dependent
on the number of applications. Instead they are based on
the activity in each of the microarchitectural components.
Therefore, it can scale across multi-node, multi-core data
centers and is aimed to ensure power capping or minimum
performance requirements. In contrast to prior work [34],
REPP-H is not based on application signature or similari-
ties between application. Instead, REPP-H leverages online
monitoring of basic PMCs that provide application behavior
at runtime, which require a one-time, offline profiling effort
per architecture,and not per application. Such data is then fed
into statistical tools to predict performance and power, making
REPP-H fast, accurate, and architecture-agnostic.

The offline phase in REPP-H is imported from REPP.
We build multilinear regression models for each architecture
at each P-State and Cl-State. In building the multilinear
regression models, we specifically profile the activity in the
aforementioned microarchitectural components because our re-
sults using microbenchmarks on each architecture have shown
that these microarchitectural components have a high dynamic
power. We define dynamic power as the difference between
the current power consumption and power consumption when
idle. The activity formulas were built using carefully selected
PMCs that are highly correlated with the dynamic power and
performance. For instance, on the Intel platforms’ pipeline
functionality, the scheduler which is a part of the out-of-order
engine has six issue ports, out of which ports 0, 1 and 5
are shared for integer, branch instructions and floating point
instructions. However, there are counters for each port, branch
instructions and floating point instructions. Therefore, we
subtract the instructions issued using ports 0, 1 and 5 and the
branch instructions and number of floating point instructions



to get the total number of integer instructions. By contrast,
on AMD and ARM, the microarchitectural components have
unique counters for total number of integer instructions.

The online phase is divided into two stages: 1 Similar to
REPP, we first validate the models that predict performance
and power for each architecture, across a combination of P-
States and Cl-States. 2 In REPP-H, the results from each
of the single cores models are aggregated to estimate
the system performance and power consumption in multi-
core architectures. Then, we evaluate REPP-H across a wide
range of performance and power constraints. Contrary to prior
works [13], [21], [27], [28], [30], which predict power and
performance at a system level, our work actually predicts at a
system level on a per core basis.

Workload Measurement — We perform workload char-
acterization by executing a combination of compute-bound
and memory-bound applications. We ran the workloads on
three 64-bit architectures, Intel, AMD and ARM, as shown
in Table II. We note that the ARM Juno architecture does not
allow PMCs to be read for Cortex A53, the in-order processor,
as the CPTR_EL3 (Architectural Feature Trap Register) is not
implemented in the Juno chip. Table II shows the architecture,
processor, Linux kernel version, the power meters, the com-
piler (gcc) version used for compiling the benchmarks, the
range of core frequencies (min-max) when using DVFS, the
L2 and L3 cache sizes (ARM does not have L3). We ran the
experiments in multiple institutions, and had no control over
the kernel and gcc versions; regardless, the results for each
architecture are consistent within that set of experiments.

We use perf [6], a performance monitoring tool, on all
architectures to collect the perf_events. We initialize one
session of perf per thread to characterize the thread behavior
and collect PMCs every 250ms (control/mapping interval).
We have explored mapping intervals of 50ms, 100ms, and
upto 950ms, and 1000ms, but 250ms was chosen empirically
as most SPEC benchmarks have less than 1% change in
performance or power at a particular P-State and allowed
us to predict in the same phase [23]. In practice, since the
performance and power of the applications varies with time,
larger periods of prediction may violate the power or perfor-
mance target, whereas frequent predictions may increase the
overhead, while delivering minor improvements in predictions.
The number of Cl-States are 50, and they can be controlled
independently for each core on Intel. ARM and AMD do
not have Cl-States. We do not enable any other internal
thermal/power management algorithms. Because there is no
hyper-threading on AMD and Intel, we disable it only on Intel.

Power Measurement — To gather the power measure-
ments, REPP-H uses the machine’s power sensor (in case of
Intel and ARM) or an external power meter (in case of AMD
power sensors are not available) periodically during execution.
To minimize interference, the process collects power data
every 250ms. For building the models offline, we measure
the power of the system in idle state, where no user initiated
tasks are running. This allows us to model the power of
the application and in turn the total dynamic system power
(subtracting the idle power) for a given frequency.

The power meters used are as follows. First, the RAPL

(running average power limit) register in the Intel architecture
records power of core, uncore, and DRAM controller [24]. We
collect idle power only at 2.4GHz because it implements C-
States, which allow for sleep/deep-sleep state of the processor
to save power when idle, thereby having the same power
consumption at all the P-States when idle. Second, WattsUP
pro for AMD: external device that records power of the entire
system [4]. We collect idle power at each frequency available
since AMD does not implement C-States. Third, four native
energy meters for ARM [2]: records the power of the GPU,
the Cortex A57, Cortex A53, and the DRAM. We collect idle
power at 1.15GHz because ARM implements CPUidleness
(comparable to C-States on Intel) [26].

REPP-H configuration selector — Modern data centers
have power constraints (e.g., power capping) and run multiple
application instances with different performance constraints.
This requires an algorithm to select a configuration per core
such that the performance and power constraints are met per
core and/or per application. To ensure that these constraints
are met, REPP-H dynamically selects a configuration per core
every 250ms by performing a linear search for the P-State that
is the nearest to the given constraint; next, REPP-H selects the
Cl-State for the given P-State that satisfies the constraint. This
selected configuration, P-State, Cl-State, is used to ensure that
the constraint is met for each interval. This process is repeated
across all cores at the same time.

In our study, the performance and power constraints are
given at a system level. These constraints are distributed
homogeneously across all cores. For example, if an AMD
server can only consume 600W, that power constraint is
distributed 25% per core, allowing each core to consume
150W (it would be 50% on ARM). At runtime, for the
spawned applications, REPP-H samples application behaviour
periodically and uses the models built to predict performance
and power at all configurations. REPP-H then selects the
configuration for each interval to satisfy the local constraint.

This ability to satisfy constraints per core makes REPP-H
better than previous works [13], [21], [27], [28], [30],
allowing for multi-node, multi-core data centers running
numerous application to satisfy a wide-range of performance
and power requirements.

III. EVALUATION

We evaluate REPP-H by considering a wide range of
single threaded and multiprogrammed workloads. For single-
threaded workloads, we ran 22 SPECcpu2006 [17], 9 PARSEC
3.0 [10], 11 SPLASH2x [31] and 6 NAS benchmarks [7]. The
number of benchmarks in a multiprogrammed workload is
equal to the number of cores: 35 workloads of 4 benchmarks
on AMD and Intel, and 10 workloads of 2 benchmarks on
ARM, based on the methodology described by Sanchez and
Kozyrakis [25]. We could not compile SPECcpu2006 on
ARM. For all workloads, we select the native input set size
to make it realistic.

The benchmarks are divided in four categories [25]:
Insensitive (N), Cache-friendly (F), Cache-fitting (T),
and Thrashing/Streaming (S). Since each architecture has
different cache sizes and frequency ranges, benchmarks in



TABLE III: Categorization of workloads.

Label Description Intel-Benchmarks AMD-Benchmarks ARM-Benchmarks

N Insensitive bzip2, blackscholes, bodytrack, calculix blackscholes, bzip2, calculix, ep.C, facesim blackscholes, ep.C, fft
dedup, ep.C, freqmine, gobmk freqmine, gobmk, gromacs, h264ref fluidanimate, freqmine
gromacs, h264ref, hmmer, is.C hmmer, is.C, lu cb, namd, omnetpp is.C, lu cb, lu ncb
lu cb, namd, omnetpp, povray povray, radiosity, raytrace, raytrace, sjeng
raytrace, tonto, vips tonto, volrend, water nsquared, water spatial

F Cache Friendly cactusADM, cg.C, lbm, libquantum bodytrack, cactusADM, canneal, cg.C facesim, radiosity
lu ncb, ocean cp, sjeng fmm, lu ncb, ocean cp, streamcluster streamcluster, volrend
water spatial, x264, zeusmp vips, wrf, x264, zeusmp water nsquared

T Cache Fitting astar, bwaves, canneal, gemsFDTD astar, bwaves, dedup, radix canneal, radix, raytrace, vips
radix, soplex soplex water spatial

S Thrashing lu.C, mcf, milc, mg.C, sp.C gemsFDTD, lbm, libquantum, lu.C bodytrack, cg.C, dedup, fmm
streamcluster, xalancbmk mcf, mg.C, milc, sp.C, xalancbmk lu.C, mg.C, ocrean cp, sp.C
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Fig. 1: Average PAAE when predicting performance and power on a single core for across
a combination of P-, Cl-States and architectures. The error bars represent the STDEV
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Fig. 2: Average PAAE when predicting perfor-
mance and power per suite across architectures.
The error bars represent the STDEV.

each category are different for each architecture. Table III
shows the categorization of the workloads. This method of
categorizing multiprogrammed workloads provides significant
variability in the size of the shared memory footprint, working
set sizes and number of stall cycles.

A. Experiments

We perform two types of experiments: one for validating
the power capping mechanism and the other for delivering
a minimum performance. We define two input parameters:
(a) frequency of change, and (b) x, which represents load or
power. The average load offered by the applications is constant
between two load changes, which can occur every load change
interval (1, 6, or 9 seconds), based on a change factor, as
follows. Load starts at a minimum, and varies by multiplying
load by change factor P until it reaches a maximum load
xmax; thereafter, the load is multiplied by the negative value of
change factor until it reaches the minimum xmin. The values
of change factor tested were 20% (Low), 35% (Mid), and
50% (High). The minimum load is defined as the sum of
smallest IPS (instructions per second) for all 4 applications
running at minimum frequency; similarly, maximum load is
the sum of highest IPS for all 4 applications at maximum
frequency. In another set of experiments, we change the power
consumed by the workload similar to the load offered by
the workload. Mathematically, the experiment conducted for
a load change interval 1 can be represented as follows: In
Equation 1, ρ represents the number of datapoints before the
maximum load/power (xmax) and in Equation 2, x(n) shows
the datapoint n in the sequence.

ρ =
⌊ log(xmax/xmin)

log(1 + P )

⌋
Eq(1)

x(n) =

{
xmin × (1 + P )n 0 ≤ n ≤ ρ
xmin × (1 + P )2ρ−n ρ<n ≤ 2ρ

Eq(2)

The error occurs when REPP-H selects a configuration that
makes the application fall short of the minimum required
performance (or exceed the maximum power requirement) in
a given mapping interval.

We ran ten experiments for power and ten for performance.
Nine of them come from the combinations of the 2 parameters
(frequency of change and load/power) described above; the
tenth comes from a Random setting within fixed boundaries
of either power or performance. Selecting a broad spectrum of
load (or power) and frequency of change allowed us to validate
REPP-H across multiple combination of configurations at
runtime. Each experiment was run three times for each power
and performance constraint. The deviation over multiple runs
for each workload was low (<2%).

B. Quantifying error in meeting constraints using REPP-H

We present the results of REPP-H when predicting
performance and power on single and multicore processors.
The prediction error is computed over a period of 400
seconds for all P-States, and Cl-States in terms of percentage
absolute average error (PAAE) and the standard deviation
(STDEV) [9], [30]. The STDEV over PAAE determines how
far the prediction is from the constraint (optimal point). The
error metric indicates that the constraint was violated by that
amount, which occurs when REPP-H selects a configuration
that makes the application fall short of the minimum required
performance (or exceed the maximum power requirement) in
a given mapping interval.

Single Core Evaluation — To evaluate the results on
a single core model, we separate the benchmarks used in
validation into four clusters, to present the results for
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Fig. 3: Average PAAE when predicting power (3a) and performance (3b) for all workloads under Low, Mid, High and Randomized
change factors in multicore architectures. The error bars represent STDEV across change factors. The x-axis shows multiprogrammed
workloads generated based on methodology described in Section III.

over 150 applications, using K-Means [33] with parameters
FE, INT, FP, MEM, BPU, L1, L2, L3. The number of
clusters (four) was chosen empirically based on the silhouette
coefficient. We narrow the number of parameters to two using
principal component analysis for keeping the most singular
vectors to project the data in a lower dimensional space.
Clusters are named with the architecture and cluster number,
such as ARM-0, Intel-3, etc. Each cluster has results from all
four categories. The PAAE on a single core is computed using
the error between value measured from PMCs performance
(and power meters for power) and predicted performance or
power (using REPP-H).

Figure 1 shows the average PAAE over all applications
in a cluster on a single core when predicting power and
performance across combinations of P-States and Cl-States
at runtime, and the error bars represent the STDEV. We
analyze the data points with the higher error and also pointed
out the sources of error below. a Average PAAE when
predicting performance for Intel-2 for thrashing benchmarks is
15.8% because Mcf has 22.5% error as it is a pointer-chasing
benchmark [17] and generates more than 41000 LLC misses
per million instructions retired and the models are not trained
for that range. On the other hand, applications like Lbm –
memory intensive – floating point benchmark generate 3000
LLC misses per million instruction retired has an error 11.2%;

b The average PAAE for performance for Cache-Friendly on
AMD-0 and AMD-1 are 12.4% and 12.3%, respectively; this is
because both clusters contain applications such as Canneal and
dedup. The possible sources of error are: (1) Both applications
have a high dynamic variability in application phases [12],
which leads to erroneous counters due to PMCs multiplexing.

(2) In contrast to the other applications across suites, these
benchmarks have a shorter execution time. (3) Observe that
Canneal is a cache fitting benchmark on Intel, by contrast it is
a cache-friendly benchmark on AMD. This is because of the
aggressive hardware prefetcher on Intel causing a higher miss
rate [16], thereby leading to fewer dynamic phase changes and
relatively smaller error of 6.5%.

We also observe that application radix is a cache-fitting,
integer radix sorting algorithm, has very high activity in
FE, across three different architectures, even though other
benchmarks across four suites do not show this behavior.

Figure 2 shows average PAAE over all applications in
each benchmark suite across architectures, with error bars
representing STDEV. Across architectures, we observe
performance PAAE is higher for SPEC benchmarks, which
have high variability at runtime, and low for NAS benchmarks,
which have less variability after the initialization phase. We
conclude that the models to predict performance and power
are accurate enough to capture the real behavior, and since
the computational complexity at runtime is low, they can
be used for fine-grain power/performance management. The
models to predict power can be built using standardized
power meters and the models are built using PMCs that are
available across architectures.

Multicore Evaluation — We show the effectiveness of
REPP-H on multicore architectures by selecting a config-
uration in a single step to meet power and performance
requirements (see Section III-A) for 35 multiprogrammed
workloads across 20 experiments (ten for power and ten
for performance). The PAAE is computed using the error
between the performance (or power) requirement and the value
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Fig. 4: PAAE when predicting performance and power for workloads SSTN, FFFN and STFN on Intel with change factor High.
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Fig. 5: Average PAAE when predicting power and performance on
ARM for all workloads under different load change intervals
for change factors Low, Mid and High. The x-axis shows multipro-
grammed workloads generated based on methodology described in
Section III.

measured from PMCs for performance (or power consumption
as read from power meters).

Figure 3 shows the average PAAE for each workload when
meeting the performance (ARM 7.1%, AMD 9.02%, and Intel
7.1%) and power (ARM 6.0%, AMD 6.6%, and Intel 8.1%)
requirements in ten experiments across architectures. The error
bars represent the STDEV across ten experiments for power
and performance, which is less than 5.3% for each workload.
We focus on analyzing those workloads with an error greater
than 10% in both architectures. When predicting power, we
observe an error of 13.8% (654.86 uJ) on AMD for workload
FNNN that contains ep.C, which has very high activity ratio
in BPU (4.2542) and FE (13.752). Similarly for workload
TTFN, Intel has a higher error 11.8% (11.34uJ) than AMD,
because on Intel we run two instances of radix, whereas on
AMD we run a single one. Recall that the multiprogrammed
are generated based on the methodology described in Section
III, therefore we can not control the number of instances in a
given workload. When predicting performance, we observe an
error of 26.0% for SFNN on Intel because we run lu_ncb,
which has non contiguous blocks of memory and the activity
ratio in LLC is higher relative to other benchmarks. Similarly,
workloads TTTF on AMD and TTFN on Intel have a power
prediction error of 11.3% and 18.0%, respectively, because
radix is part of the multiprogrammed workloads. The max.
performance error on AMD, ARM and Intel are 19.4% (769
MIPS for SSST), 11.7% (5389 MIPS for ST) and 28.4%
(13611 MIPS for TFFF). Similarly the max. power error

AMD, ARM and Intel are 17.0% (101.72uJ for TTFN), 13.3%
(10uJ for SS) and 16.6% (37.24uJ for SSTF), respectively.

Figure 4 represents the performance on y-axis and power on
x-axis for multiprogrammed workloads SSTN, FFFN, STFN
on Intel architecture with change factor High. The radius of
each circle is the maximum prediction error, either power or
performance (i.e, radius = max(PAAEpower, PAAEperf)). There
exists multiple grayscale grading from low PAAE (black) to
high PAAE (white). Although the maximum PAAE shown
is at the 50% mark (the grayscale in Figure 4a is up to
50%), the number of error predictions with PAAE greater
than 30% is less than ten. For SSTN, FFFN and STFN, the
average error when predicting power (and performance) of
9.7% (3.3%), 8.7% (9.4%) and 8.4 (6.7%). This behaviour
is observed across all workloads. However, due to space
restrictions we only show selected workloads.

Figures 6 and 5 show the average PAAE for each workload
under different load change intervals on ARM and In-
tel/AMD when predicting performance (Figure 6a) and power
(Figure 6b). Figures 5 and 6 are separated because ARM has
different number of cores. Across the three architectures, faster
(interval=1) load changes have 3.5% higher error compared
to slower (interval=9) load changes because of aggressive
changes in load in short burst cause numerous changes in
configuration, thus leading to a higher error. On the other hand,
slower load changes lead to fewer changes in configuration,
and have stable phases in application behaviour. Fortunately,
such rapid changes in load seldom occur in data centers [24],
[30]. Table IV summarizes the result obtained when predicting
power and performance for load change interval 1, 6 and 9.

TABLE IV: Average PAAE for power and performance for
load change intervals 1, 6 and 9.

Power Performance

Interval 1s 6s 9s 1s 6s 9s

Intel 11.1% 7.3% 5.6% 11.4% 10.6% 8.7%
AMD 7.2% 6.9% 6.7% 8.5% 6.5% 6.5%
ARM 4.2% 3.8% 2.9% 5.1% 4.6% 2.4%

Enabling Power/Performance Capping — Determining
a configuration to meet the minimum performance (or not
exceeding power consumption threshold) is usually done in
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Fig. 6: Average PAAE when predicting power and performance on Intel and AMD architecture for all workloads under different change
intervals for change factors Low, Mid and High. The x-axis shows multiprogrammed workloads generated based on methodology
described in Section III.
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Fig. 7: Responsiveness to power capping for workload SSTT with
constraint Random on Intel.

an iterative fashion (as in the RAPL driver on Intel proces-
sors [3]). A feedback control loop is often used to determine
the configuration. If the power usage is above a certain
threshold, the configuration is lowered. On the other hand, if
the power usage is below a certain threshold, the configuration
is increased to improve performance. In contrast, we provide
a single-step mechanism to select configurations.

Figure 7 shows the responsiveness to (dynamic) power
capping for workload SSTT, where the power capping limit
is Random (see Section III-A) on Intel platform in the first
40 seconds. SSTT is composed of applications streamcluster,
lu.C, bwaves and soplex. REPP-H changes P-States and meets
the power target in 0.37 seconds on average, which is 3.6x
faster than the iterative algorithm (used by Intel RAPL).

This time includes sampling interval, latency to predict at all
P-State and Cl-State and time to change P-State. Moreover
REPP-H, provides 6% higher prediction accuracy.

IV. RELATED WORK

Prior research works have focused on mapping applications
to resources (mainly to CPUs/cores) to improve performance
while saving power. In particular, Bellosa [8] used PMCs at
run time to build a power-aware policy at OS level. Isci first
showed that using PMCs it is possible to detect fine-grained
application phases [14] and then show breakdown of power per
component using multilinear models [15]. B. Rountree et al.
[24] estimate performance (IPC, Instructions Per Cycle) across
P-States by monitoring the number of leading load cycles.
In [21] they predict performance on simulated architectures
based on prefetch and variable memory access latencies.

In contrast to Mccullough et al. [20], who propose that
linear regression of power tends only to work in restricted
scenarios and will tend to over-fit based on application types.
By contrast, our results have shown (Figure 1) that linear
regression models built using a small training dataset do
predict power and performance at runtime for a broad range
of benchmarks, which are not a part of the training dataset,
with high accuracy. Moreover, previous works [9], [15], [18],
[27] show that linear regression techniques can be used to
predict power with high accuracy.



Power control can also be done by mapping threads-to-cores
more efficiently [13], [32]. For example, Pack & Cap [13]
predicts performance with an offline analysis trained using
multi-nomial logistic regression classifier. When a change
in configuration is required at runtime, this classifier returns
the best candidate operating configuration. S. Srinivasan
et al. [28] predict the performance of threads running on
heterogeneous cores, that is from one core type to another,
using closed expressions. These expressions, however, do not
suffice for a generic approach. In contrast, REPP-H builds
power and performance models using PMCs, giving a more
generic approach with low complexity. Since, REPP-H can
predict performance-power for a distinct combination of
P-States and Cl-States simultaneously. This makes REPP-H a
good black-box for a single step fine grained per-core power
or performance online optimization problem solver without
external power meters or using application signatures [34].

The recent work on PEPP [30] (Performance, Energy and
Power Predictor) proposes a system-level performance [29]
and power model by taking advantage of the hardware PMCs
available in AMD processors to estimate the total number of
leading loads, and in turn, predicts performance and power
across DVFS states. In contrast to PEPP, REPP-H improves
in three distinct ways: a REPP-H builds performance
and power models based on basic PMCs available across
all architectures (Intel, AMD and ARM). However, the
leading loads counter used in PEPP is exclusive to AMD
processors [21]. b In addition to providing system level
performance and power management techniques, REPP-H
also facilitates thread level power and performance control.
This is especially useful in multi-node, multi-core data
centers consisting of numerous applications having different
performance and power requirements. c Finally, REPP-H
provides fine grained, in terms of time and precision, power
and performance control because it also consider Cl-State.

V. CONCLUSION

We presented REPP-H, a scalable power and performance
modeling and prediction technique to meet power caps and
minimum performance requirements in a single step across
heterogeneous architectures with processors’ voltage and fre-
quency controllers. REPP-H is built on statistical models and
works by profiling a small set of applications on modern
multicore systems leveraging hardware performance counters.
We validate REPP-H using several single threaded and mul-
tiprogrammed workloads with average errors, respectively, on
ARM, AMD and Intel architectures of 7.1%, 9.0%, 7.1%
when predicting performance, and 6.0%, 6.5%, 8.1% when
predicting power consumption. We argue that REPP-H can
enable operators to better control power and performance in
modern data centers that include server architectures with
heterogeneous processing capabilities.
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[32] R. Nishtala, D. Mossé, et al. Energy-aware thread co-location in
heterogeneous multicore processors In Proc. of EMSOFT 2013

[33] Kanungo. T, Mount. D, et al An Efficient k-Means Clustering Algorithm:
Analysis and Implementation. IEEE Transactions on Pattern Analysis
and Machine Intelligence

[34] S. Zhuravlev, J. C. Saez, et al Survey of Scheduling Techniques for
Addressing Shared Resources in Multicore Processors. ACM Comput.
Surv., 45(1):4:1–4:28, Dec. 2012.


	ADPC3F4.tmp
	UPCommons
	Portal del coneixement obert de la UPC
	7TUhttp://upcommons.upc.edu/e-prints
	Aquesta és una còpia de la versió author’s final draft d'un article publicat a la revista IEEE journal of selected topics in applied earth observations and remote sensing.
	URL d'aquest document a UPCommons E-prints:
	7TUhttp://hdl.handle.net/2117/100954U7T
	Article publicat / Published paper:


