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Abstract—As the energy cost in today’s computing systems
keeps increasing, measuring the energy becomes crucial in many
scenarios. For instance, due to the fact that the operational cost
of datacenters largely depends on the energy consumed by the
applications executed, end users should be charged for the energy
consumed, which requires a fair and consistent energy measuring
approach. However, the use of multicore system complicates
per-task energy measurement as the increased Thread Level
Parallelism (TLP) allows several tasks to run simultaneously
sharing resources. Therefore, the energy usage of each task
is hard to determine due to interleaved activities and mutual
interferences. To this end, Per-Task Energy Metering (PTEM)
has been proposed to measure the actual energy of each task
based on their resource utilization in a workload. However,
the measured energy depends on the interferences from co-
running tasks sharing the resources, and thus fails to provide
the consistency across executions. Therefore, Sensible Energy
Accounting (SEA) has been proposed to deliver an abstraction
of the energy consumption based on a particular allocation of
resources to a task.

In this work we provide a realization of SEA for the DRAM
memory system, SEDEA, where we account a task for the DRAM
energy it would have consumed when running in isolation with
a fraction of the on-chip shared cache. SEDEA is a mechanism
to sensibly account for the DRAM energy of a task based on
predicting its memory behavior. Our results show that SEDEA
provides accurate estimates, yet with low-cost, beating existing
per-task energy models, which do not target accounting energy
in multicore system. We also provide a use case showing that
SEDEA can be used to guide shared cache and memory bank
partition schemes to save energy.

I. INTRODUCTION

As the energy price keeps rising, energy has already become
one of the most expensive resources in current computing
systems [6]. Therefore, in the case of a datacenter or su-
percomputer facility, it is fair charging users for the energy
consumed, since energy usage is proportional to the cost of
their operations, the same as for the time and computing
resources (CPU, Memory). However, as multi- and many-core
processors have already become the reference platform, several
tasks run at the same time, thus challenging per-task energy
measurement. Furthermore, the number and heterogeneity of
the tasks that coexist in a computing system significantly
increases over time. Amongst the main energy contributors
in a multi/many-core system, we find the memory subsystem,
whose energy share is almost as important as the processor

socket one [5], [25]. However, due to the fact that increased
TLP in multi/many-core systems leads to a large number
of tasks sharing the memory system simultaneously, and the
internal operations of the memory system are often opaque
to the operating system, particularly complicates the per-task
memory energy usage measurement.

Per-Task Energy Metering (PTEM) has been introduced to
meter the actual runtime energy of tasks based on their individ-
ual resource utilization when they are running in a multicore
system, including their incurred activities and interactions on-
chip and off-chip in the DRAM devices [14], [15]. However,
PTEM metered energy is affected by the behavior of other co-
running tasks in the same system, we regard it inappropriate
for energy accounting as the same program with the same
inputs would be assigned different energy costs based on
factors beyond the end user’s control. Therefore, if end users
were charged based on PTEM energy measurements, their
energy bill would vary drastically from run to run despite
executing exactly the same program with the same inputs,
which would be inconsistent and unfair from the end user
perspective.

Therefore, novel mechanisms are needed to account the
actual energy a task would consume when using a specific
fraction of the hardware resources, discounting the effects due
to interactions with other tasks running simultaneously in the
multicore. To this end, Sensible Energy Accounting (SEA)
delivers an abstraction of the energy consumption of tasks in
multicores discounting interferences, so that energy accounted
is fair and consistent [12]. A realization of such concept for
the on-chip resources has been shown by Liu et al. [13], in
which each task is accounted the energy it would consume
when it has been allocated a particular fraction of on-chip
resources. However, this work only takes into account the
energy cost of on-chip resources. The side effect on off-chip
resources, such as the memory system, has been ignored. As
the interactions between resources have significant impact on
the energy profile of tasks, accounting accurately the per-task
memory energy can enhance the fairness and consistency for
the energy to account to users. Moreover, accounting task-
level memory energy based on resource utilization can also
help optimizing the resource allocation for energy efficiency,
which in turn helps reducing the operation costs.
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In this paper, we introduce SEnsible DRAM Energy Ac-
counting (SEDEA), a mechanism to account DRAM energy
to tasks, thus predicting the energy they would have consumed
under a given (arbitrary) allocation of on-chip Last Level
Cache (LLC) ways. SEDEA predicts the energy a task would
consume when running with a specific resource partition
with no interferences from other tasks, based on the runtime
behavior of the target task when it runs within any workload
with a fully shared LLC. SEDEA accounts task energy by
predicting the LLC hit/miss behavior and the memory bank
activity when the task under study would run in isolation.
Overall, the contributions of this work are as follows:

• We propose an ideal model to sensibly account a task
the DRAM memory energy it would have consumed if
it had been allocated an arbitrary fraction of the LLC
exclusively. To the best of our knowledge, it is the
first reference model against which energy accounting
mechanisms for DRAM memories can be compared to.

• We propose SEDEA, a model extending current energy
accounting techniques by adding the off-chip memory
system. We account the DRAM energy to a task in
each case based on predicting its on-chip activities, its
execution time and its DRAM bank usage. We compare
the prediction accuracy of SEDEA with an Evenly Split
(ES), a Proportional To Access (PTA) and a PTEM
technique in DRAM memory, DReAM [14], to show that
SEDEA provides consistent and accurate estimates for the
energy to account.

• We provide a use case of SEDEA that co-partitions cache
and memory banks and optimizes the system energy
consumption. We show that such technique obtains higher
energy savings than state-of-the-art approaches.

The rest of this paper is organized as follows. Section II
introduces the background of this work and the related work.
Section III presents SEDEA, our approach to account DRAM
memory energy and its efficient hardware implementation.
The accuracy of SEDEA is evaluated in Section IV. Finally,
Section V draws the main conclusions of this paper.

II. BACKGROUND AND RELATED WORK

A. Energy Metering in Computing System

There are many approaches to meter the energy usage in
a computing system. Next, we classify those approaches into
two main categories as follows:

Firstly, Per-Component Energy Metering (PCEM) derives
the energy consumed by the main hardware components such
as CPU and memory [2], [3], [17], [20], [23]. These techniques
first estimate the overall system energy consumption, and
then break it down per component (e.g. CPU, memory), by
using performance monitoring counters (PMCs) or system
events such as system calls to carry out such measurements.
Power models rely on collecting data from a set of PMCs,
and voltage and temperature information, to estimate power
through correlation.

In contrast, PTEM [14], [15] has been proposed to break
down the system energy across tasks based on their actual re-
source utilization, when they run simultaneously in a workload
in a multicore system. The main challenge of PTEM is dealing
with shared hardware resources, as the energy consumption of
tasks significantly changes depending on the co-running tasks.

As a result, PTEM metered energy depends on the behavior
of other tasks. Such dependence is particularly problematic
in environments where users are charged for the usage of re-
sources, including energy. Users running the same applications
with the same inputs would observe different energy profiles
for their applications and hence, would be billed inconsistent
amounts across runs. Therefore, Liu et al. introduced Sensible
Energy Accounting (SEA) [12], [13]. For each task Ti, SEA
aims at dynamically accounting (i.e. while they run with other
tasks in a workload), the energy Ti would have consumed,
Efhr

Ti
, if Ti had been run in isolation with a certain fraction

of the hardware resources, fhr.
In this work, we aim at extending SEA to the memory

system. That is, to predict the DRAM energy that a task would
have consumed if it had been allocated a fraction of the on-
chip resources (the LLC in our case), fhr. When running in
isolation with fhr of resources, Ti may behave in DRAM
devices differently, compared to the case when it runs as
part of a workload. The causes of these differences are as
following: 1) Ti may suffer extra LLC misses, known as inter-
task misses, caused by co-running tasks; 2) Ti may experience
extra hits when running in a workload if it manages to use
more than its LLC fraction, fhr; 3) Memory requests from
Ti may be delayed since the memory controller schedules
additional memory requests belonging to co-running tasks.
In contrast, SEDEA predicts the in-isolation DRAM energy
consumption (with a fraction of the LLC) based on its behavior
when running in a workload. To the best of our knowledge,
SEDEA is the first model to do so.

B. DRAM Memory System

The DRAM memory system adopted in this work strictly
follows the JEDEC DDR standard [7]. Memory requests
sent from the chip are dispatched to the memory system
through the memory controller. In this paper, we inherit the
memory controller model from DRAMsim2 [22], which uses a
typical scheduling policy, known as first-ready first-come-first-
serve (FR-FCFS). Such policy prioritizes the ready and old
commands over the non-ready and newly arrived commands.
By applying such policy, the commands are not issued exactly
following their arriving order.

DRAM memory energy variation across workloads can be
large [4] and is likely to increase in the future as system
manufacturers pay increasing attention to energy efficiency.
The energy in DRAM memory can be modeled by current
profiles provided by the hardware vendor [18]. We build
upon such an approach to break down the energy into three
components: active, refresh and background energy. Active or
dynamic energy correspond to the energy spent to perform
those useful activities that circuits are intended to do triggered



by the running programs. For instance, the energy spent to
retrieve data from memory on a read operation. Refresh energy
corresponds to the energy consumed to refresh periodically all
memory contents in DRAM cells to avoid losing their con-
tents. Background energy includes maintenance and leakage
energy, which refers to all energy consumed except dynamic
and refresh energy. Maintenance energy corresponds to the
energy consumed due to useless activities not triggered by
the program(s) being run. Leakage energy corresponds to the
energy wasted due to imperfections of the technology used to
implement the circuit.

We use the current profiles listed in Section IV-A to compute
each component of energy consumed in the memory system.
Then, we make use of the methods proposed by Liu et al. [14]
to attribute those energy components to each running task by
correlating their running stats.

C. Memory Resource Partition

The memory hierarchy is the main shared resource in mul-
ticore architectures, and also the main source of interferences
between co-running tasks. To isolate the tasks performance,
cache and memory bank partitioning techniques have been
proposed and proved to improve the system throughput and
the individual task performance [19], [21], [27].

a) Cache partition: In most current multicore archi-
tecture, on-chip LLC is shared among cores. However, it
sometimes becomes the main cause of performance loss due
to the different application characteristics and increasing core
count. LLC partitioning has been used to reduce the conflicts
between co-running tasks, which allows a task to use its own
allocated cache space. Some authors proposed the Utility-
based Cache Partition (UCP) to increase the performance
contribution of cache based on the tasks needs, by devising
a monitoring hardware mechanism [21]. In contrast, Lin et
al. [10] propose to partition the cache through coloring the
page at operating system level.

b) Memory bank partition: Also, in the memory system,
some works have shown that increasing the memory bank-
level parallelism and row-buffer locality can improve system
performance. Kim et al. [9] propose to prioritize the thread that
imposes less interference to the others to increase the memory
bandwidth utilization. Another work proposes the Hetero-
geneous Multi-Channel (HMC), which divides the memory
system into sub-banks, and applies the FR-FCFS policy locally
in each sub-bank [27]. HMC reduces bank-level conflicts and
improves the throughput of the DRAM memory system.

Cache and memory bank partitioning can be combined [11],
where a task is allocated the same portion of cache and
memory space vertically through page coloring. However, the
cache and memory bandwidth requirements of a task are
complementary [26]. This claim builds on the observation that,
when a task has allocated a sufficiently large cache partition,
it needs less memory bandwidth. Hence, cache and memory
bandwidth partitioning methods can be improved by using
heterogeneous and independent policies.

In this work, we show the energy saving potential of
SEDEA, by improving the cache and memory bank co-
partition mechanism.

III. SENSIBLE DRAM ENERGY ACCOUNTING

In this section, we introduce our approach to account
DRAM energy to a task based on its number of allocated
LLC ways. When a task Ti is running in a workload in a
multicore system, we aim at accounting the energy it would
have consumed when run in isolation with a given fraction
of the LLC space. Thus, in a N -way set-associative LLC, Ti
could own n ≤ N ways, where n refers to the particular
number of ways in the LLC used by Ti to account its DRAM
memory energy.

A. Ideal Model

We begin with a theoretical model to discuss how the energy
should be accounted to a task. Then, we describe our approach,
SEDEA, which is implementable with affordable cost.

a) Active energy: In the DRAM memory system, some
useful activities are performed by each running task. For each
read/write memory request received in the memory controller,
a set of Activate (ACT), Precharge (PRE) and Read/Write
(R/W) commands will be dispatched to the off-chip memory
system. In particular, ACT command activates a row in the
memory bank and loads the data from DRAM cells into the
row-buffer (through sense amplifiers). Upon the completion of
the ACT command, any R/W command can be issued to read
or write the data in specific columns of the row-buffer. After
that, a PRE command is send to close the row-buffer while
the data being read (in case of read commands) is transferred
back to the on-chip memory controller, storing the data back
into the DRAM cells.

Therefore, to account the active energy, EAAct
n (Ti), to task

Ti, we need to account Ti the useful activities it would incur
when it has n ways of the LLC.

EAAct
n (Ti) =

∑
NComm

n (Ti)× EComm (1)

where ECM represents the energy consumed by each com-
mand type, and NCM

n (Ti) is the number of commands task
Ti incurs when allocated n LLC ways.

b) Background energy: Background energy includes
both, energy consumed due to leakage power and maintenance
power. Note that the background power of the memory system
has different levels corresponding to different states of the
DRAM device: power down (P), standby (S) and active (A).
The power in P state is incurred when the memory system
is clock-disabled. After enabling clocking, the DRAM device
enters S state, which largely rises the background power, but
can quickly respond to requests. When executing the ACT
command, the background power further rises to A state, but
the increment is relatively small. The A state also holds for
the duration of the corresponding R/W command and the PRE
command. After the PRE command precharges the open row
in the DRAM device, the background power returns to S state.



After the devices stay in idle state for a given time period, the
clock is disabled to save energy, thus returning the device to
P state.

As a result, the background energy we account to task Ti
when it uses n ways in LLC, is determined by the time DRAM
devices spend in each state. We can calculate the background
energy to account to task Ti when running alone with n-way
LLC as follows:

EABG
n (Ti) = TA

i,n×PA+(TS
i,n+T

A
i,n)×PS+TExe

i,n ×PP (2)

where PA, PS and PP represent the background power
increment under A, S and P states. Note that PP is consumed
across the whole execution of Ti, PS is consumed when the
bank state has been raised to S or A (additionally to PP ). In
contrast, PA will only be consumed when the bank is in A
state (additionally to PP and PS). We use TExe

i,n , TS
i,n and

TA
i,n to refer to the execution time of task Ti, and the time it

spends in S state and A state respectively.
c) Refresh energy: The DRAM memory system needs

to refresh periodically all memory contents. Such period is
set according to the JEDEC standard [7] so that refreshes
occur at the minimum frequency that guarantees that DRAM
contents will be preserved. For example, we use 40µs in our
configuration. Therefore, the refresh energy of Ti depends on
its execution time:

EAREF
n (Ti) = TExe

i,n × PREF (3)

where PREF stands for the refresh power in the specific
DRAM memory system.

B. Implementation

Next, we introduce SEDEA, an implementable, yet accurate,
model that follows the principles of the ideal model.

a) Active energy: Accounting the active energy for
Ti depends on accurately estimating the number of DRAM
internal commands with different LLC allocations, as shown
in Equation 1. This is a challenging task as we can only
record the memory request forwarded by the LLC due to
LLC misses when Ti runs in a workload. The number of
LLC misses reported with the Performance Monitoring Unit
(PMUs) does not match the activities to account, since it
also includes the inter-task misses that are produced due to
sharing the LLC with the co-running tasks in the workload,
and excludes capacity misses that would be incurred otherwise
by using only n LLC ways.

Therefore, we rely on the Auxiliary Tag Directory
(ATD) [21], which focuses on a least recently used (LRU)
replacement policy. While the LLC is shared among all tasks,
the ATD keeps a local (per-core) copy of the tag directory, that
is only updated with the accesses of the corresponding (owner)
task. Besides, if the LLC implements LRU, one can predict
whether an access would miss in the LLC for any number of
cache ways n lower or equal to the total number of LLC ways

(N ). This occurs because LRU keeps in each set the position
of each address in the LRU stack, and therefore, the order
in which they would be evicted if they were not reused, is
maintained. With the LRU stack one can determine whether a
given access would hit or miss with n ways (where n ≤ N )
by simply checking if it hits any of the n Most Recently Used
(MRU) entries of the ATD.

To keep hardware overheads low, we implement a Sampled
ATD (SATD), which only monitors a sampled number of sets
instead of the whole LLC [13], [21]. Moreover, the SATD can
also be used for pseudo-LRU caches with negligible impact on
accuracy [8]. Adapting the ATD to other replacement policies
is left as future work and beyond the scope of this paper.

The overall hit probability for the different number of ways,
h1, ..., hN , is computed for the sampled sets. Whenever a non-
sampled set is accessed, which will likely be the case of most
accesses, the access can be predicted to be a hit or a miss
by using a Monte Carlo approach, which offers a high degree
of accuracy and can be applied to each access at execution
time [13].

Given that the memory controller dispatches all LLC misses
as memory requests, we can rely on the miss estimates and
their type (either read or write) as predicted by the SATD to
account the active energy to task Ti as follows:

EAAct
n (Ti) = (EACT+PRE+R/W )×NR/W

n (Ti) (4)

where ACT, PRE,R/W refer to activate, precharge and
read/write commands respectively, and E represents the energy
cost of each command that is provided by the hardware
manufacturer [18]. NR/W

n (Ti) stands for the number of R/W
memory requests estimated with the SATD.

b) Background energy: To account the background
energy, we need to estimate the execution time that the task
would take in isolation as well as the time the DRAM banks
spend in high power states. Both parameters are determined
by the activities performed by the task.

We use the following metrics to infer these parameters:
• Given a memory request that experiences no contention

when it is served, its latency will be a fixed value that is
specified by the JEDEC standard [7] and hardware vendor
implementations, namely DL (Default Latency).

• The second metric we use corresponds to the count of all
cycles that a task spends with at least one memory request
in the memory system, which we name as IMC (In-flight
Memory Cycles). IMC represents the time a task induces
the memory system to a high power-consuming state.

• For each memory request, we also monitor its service
time, from the cycle it is issued to the memory controller,
till the cycle it completes. This metric represents the
whole miss penalty this particular LLC miss suffers,
denoted as MP. During the MP period, the execution of
the task in the processor pipeline may stall for a certain
time till the miss is served.

Note that for IMC and MP we need to setup a set of counters
for each task: one for IMC, and as many as pending requests



allowed plus one for MP. The additional MP register stores the
final latency of the last request served. The IMC counter and
the MP register are read and reset periodically (every 1,000
cycles in our setup). The size of the IMC and MP counters
relates to the duration of the period. In our case, given a
1,000 cycles period, 10-bit counters are guaranteed to suffice,
although 8 bits are enough in practice. Given that MP is the
actual latency of a LLC miss and IMC represents the aggregate
effect after overlapping, we calculate a Bank-level Parallelism
Factor (BPF) in a period as follows:

BPF =
MP ×NMR

IMC
(5)

where NMR represents the number of memory requests
monitored in that period.

Next, we extend the CPU accounting method proposed
by Luque et al. [16] to estimate the execution time of Ti,
since we use a detailed memory system instead of a memory
system with a constant latency. We also aim at accounting the
execution time when Ti uses n LLC ways exclusively instead
of the whole LLC shared with other tasks. The number of
memory requests Nn when Ti runs alone with n LLC ways
can be estimated using the SATD, as described before. In
particular, Nn is obtained as follows:

Nn = NWL −NITM +Nn
CM (6)

where NWL represents the actual memory requests of task
Ti during the monitored period (while running in a workload),
NITM stands for the number inter-task misses, and Nn

CM

is the number of capacity misses Ti would experience when
using n ways instead of the full LLC. Note that an inter-task
miss is detected when an LLC access hits in the SATD, but
misses in the LLC. In contrast, the capacity hit is detected on
an LLC hit and SATD miss.

Thus, as the basic idea behind the CPU accounting concept
is to eliminate the redundant CPU cycles caused by inter-
task misses and add those saved due to the use of additional
LLC space [16]. We extend such method as follows: 1. If
there is any capacity hit detected, we add the due cycles to
the CPU cycles accounted to Ti. 2. If there is any inter-task
miss detected, we decrease the due cycles in the CPU cycles
accounted to Ti. The particular number of cycles to add on a
capacity hit corresponds to the contention-free latency (MPn)
when running with n LLC ways, which we estimate as follows:

MPn =MPWL × NTi

NWL
(7)

where NWL and NTi
are the number of memory requests

of the whole workload in the multicore system and of Ti
respectively. MPWL stands for the monitored miss penalty
when Ti runs in the workload, since the memory latency that
Ti experiences in the workload is affected by the memory
requests from the co-running tasks.

In contrast, in the case of an inter-task miss, the number of
cycles to subtract from the accounted cycles corresponds to the
actual MPWL monitored when the task runs in the workload.

Next, the time Ti would impose the banks into high-
power consuming state depends on the activities performed.
In general, several memory requests may be served in parallel
to exploit memory bank level parallelism. Therefore, the time
Ti activates the memory system does not correspond to its
number of memory requests linearly since their miss penalties
overlap. Thus, estimating IMC for Ti when it runs alone with
n LLC ways precisely based on its behavior in the workload
is virtually impossible. However, we observe that BPF is a
relatively stable indicator to predict the variation between
workload and isolation conditions. Thus, we estimate the BPF
in isolation with n LLC ways (BPFn) as follows:

BPFn = BPFWL − (1− NMR
n

NMR
N

) (8)

where BPFWL stands for the bank level parallelism fac-
tor that have been calculated during Ti’s execution in the
workload, and NMR

n and NMR
N correspond to the estimated

number of memory requests when Ti has n LLC ways and
the measured memory requests in the workload respectively.
Then, we calculate the IMC of Ti as follows:

IMCn =
NMR

n

BPFn
×MPn (9)

Finally, we obtain the background energy accounted to Ti
with n LLC ways as follows:

EABG
n (Ti)=PP ×TExe

i,n +
PA×DL12+PS×DL3

DL123
×IMCn

(10)
here we use DL1,2,3 to represent the default latency of ACT,

R/W and PRE commands together. DL12 stands for the default
latency of ACT and R/W commands together. TExe

i,n stands
for the accounted execution time. Note that default latencies
of R/W are often similar, so using read latency, write latency
or any combination of both (e.g. average) does not bring any
noticeable difference. In our case, we use read latency, which
is marginally different to write latency.

c) Refresh energy: As the refresh energy is determined
by the execution time and refresh power, we calculate it using
Equation 3, but with the estimated execution time T exei

n for
task Ti.

C. Putting it All Together

SEDEA has some hardware overhead, since it requires
setting up a reduced set of additional counters and logic
apart from the existing PMUs in most current architectures.
However, most of those overheads are inherited from previous
works. Such as SATD [13], [16], [21], which has been reported
to introduce around 0.7% area overhead for the LLC. In
addition to that, few registers and little logic are needed by
DReAM [14] and ITCA [16], which need to be in place
anyway for on-chip energy accounting. Besides, PTEM in-
curs 0.1% energy and area overhead for metering energy in
LLC [15]. Thus, SEDEA reuses such hardware as it is.



TABLE I
SYSTEM CONFIGURATION

Main memory
Frequency and size 1000MHz, 8GB
Technology and supply voltage 65nm, 1.2V
Row-buffer management policy close-page
Address mapping scheme Shared Bank

Chip details
Core count 1, 4 and 8 cores, single-threaded
Instruction & Data L1 32KB, 4-way, 32B/line (2 cycles hit)
Instruction & Data TLB 256 entries fully-associative (1 cycle hit)
LLC Size 4MB, 16-way, 64B/line (3 cycles hit)

Specifically in this work, a 6-bit counter is needed for each
task to record its number of in-flight memory requests per
period, as well as MP and IMC registers to sample memory
state and latencies. The estimated energy is stored in a register
for each task, called Memory Energy Accounting Register
(MEAR). Thus, the incurred area and energy overheads of
SEDEA are negligible and do not affect performance.

Regarding the software interface, the OS is responsible for
keeping track of the DRAM energy accounted to each task in
the system. SEDEA exports its output through MEAR, which
acts as interface between SEDEA and the OS. The OS can
reset the MEAR (typically when a task is scheduled in) and
access that register for collecting the energy accounted by
SEDEA (typically when a task is scheduled out). In general,
these actions happen during context switches. On the event of
a context switch, the OS reads the MEAR using the hardware-
thread index (or CPU index) of the scheduled out task Tout.
Then, the OS aggregates the DRAM energy accounted value
received in the task struct of Tout.

Integrating SEDEA with the SEA [13] improves the com-
pleteness of the SEA concept. Both mechanisms rely on the
same input: the fraction of the resources that need to be
accounted. Also, both mechanisms provide energy accounting
estimates based on the same assumptions (the specific alloca-
tion of on-chip resources).

IV. EVALUATION

A. Experimental Setup

We use DRAMsim2 [22] to model off-chip main memory, a
cycle-accurate memory system simulator for DDR memories
including a memory controller and DRAM memory. For the
DRAM memory, we model an 8GB memory as it is large
enough to support the workloads used in this paper. DRAM
memory is single-rank with 8 devices per rank, 8 banks per
device and 8 arrays per bank. Many current DRAM memories
use low-power modes, in which the open banks under open-
page policy quickly transition to power down state when there
is no incoming request. Therefore, open-page policy performs
similarly to close-page, at least in our workloads. Thus, we
report results only for close-page row-buffer management
policy, but conclusions hold also for open-page.

The multicore processor is modeled with MPsim perfor-
mance simulator [1]. We consider three multicore processor
configurations with 1, 4 and 8 single-threaded cores. The

TABLE II
DRAM DEVICE CURRENT PARAMETERS USED IN DRAMSIM2 POWER

MODEL

Current Description Value (mA)
IDD2P Precharge power-down current 10
IDD2N Precharge standby current 70
IDD3N Active standby current 90
IDD4W Operating burst write current 255
IDD4R Operating burst read current 230
IDD5 Burst auto refresh current 305

LLC is 4MB and shared among all the cores. To generate the
reference set, we run each benchmark in isolation with each
fraction of LLC, for instance, with 1-way 256KB LLC, 4-way
1MB LLC, etc. DRAMsim2 has been integrated with MPsim
so that LLC misses are propagated to the memory controller,
which manages those memory requests.

A power model based on Micron current profiles [18] has
been integrated in the simulation framework, which calculates
the energy for all the activities and the power dissipated in
every cycle.

The details of the system configuration are listed in Table I,
and the main current profiles of the configuration we use in
the power model are listed in Table II. We have implemented
SEDEA on the described simulation infrastructure as it builds
on hardware support currently unavailable in commercial off-
the-shelf processors. Other works have followed an analogous
methodology [4], [5].

We use traces collected from the whole SPEC CPU 2006
benchmark suite with the reference input set, using the Sim-
Point methodology [24]. Running all N-task combinations
is infeasible since the number of combinations is too high.
Therefore, we classify benchmarks into two groups depending
on their memory access frequency. Benchmarks in the high-
frequency group (denoted H) are those presenting a memory
access frequency higher than 5 accesses per 1,000 cycles
when running in isolation, and the rest of them in the low-
frequency group (denoted L). From these two groups, we
generate 3 workload types denoted L, H and X (combination
of both), each consisting in 8 workloads generated randomly
with benchmarks from the appropriate groups.

To evaluate the prediction accuracy of SEDEA, we use as
reference the actual memory energy consumption of a bench-
mark when it runs alone with the corresponding LLC fraction.
Hence, in each experiment, we measure the prediction error of
each model with respect to the actual energy consumed when
one task runs with the specified n-way LLC alone.

B. SEDEA Evaluation in Multicore Systems

We evaluate SEDEA in a 4-core architecture, with 24
randomly composed workloads using benchmarks of different
LLC miss frequency level. We can observe in Figure 1 that
SEDEA delivers stable prediction across all 1-16 ways of
the LLC. The average prediction error across all benchmarks
is relatively low, 6.5% on average and standard deviation
under 13%, except for the case of 1-way. The reason that
the deviation for 1-way is higher than others is because many
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Fig. 1. Prediction error to account DRAM memory energy to benchmarks
for different LLC ways allocated running in 4-core multicore system.
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Fig. 2. Prediction error to account DRAM memory energy for workloads
running in a 4-core processor using models: ES, PTA, DReAM and SEDEA.

benchmarks experience a drastically different number of LLC
misses when only 1 LLC way is allocated. This huge variation
translates into a significantly different memory energy profile
that is, in turn, very hard to predict.

We evaluate and compare SEDEA in 4-core and 8-core
scenarios, with Evenly Split (ES), Proportional To Access
(PTA) and DReAM [14] in Figure 2. Note that in this figure,
the outcome of ES, PTA and DReAM are compared with the
cases where a task runs alone with a fair share of the LLC1,
and this is the only case they can be compared with. For
example, for K tasks running in an N -way LLC, each task is
given n LLC ways, where n = N/K. In contrast, SEDEA is
capable to account energy for any LLC way count, achieving
a much lower average error when predicting over 1−16 ways.

As can be observed in Figure 2, ES, PTA and DReAM
fail to sensibly account the memory energy to a task. This
is expected as they lack any hardware support to estimate
the behavior a task has in different scenarios. On average,
ES, PTA and DReAM have prediction error over 38% across
all setups. In contrast, SEDEA achieves an average 7.8%
prediction error. In general, the predictions for M workloads
and higher core-count scenarios are less accurate due to the
higher interferences from co-running tasks, and thus harder
discounting their effect. In general, SEDEA keeps inaccuracy
low enough to make it usable in practice.

C. A Use Case of SEDEA

Apart from the main goal to provide a consistent energy
metric, we also show a use case where some energy can

1We consider even allocation of LLC ways across tasks as the fair share.
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Fig. 3. The energy cost of 10 workloads for approaches HMC, UCP, VMM
and SEDEA normalized to the energy cost of sharing cache and memory.

be saved exploiting the synergy between cache partitioning
(by ways) and memory partitioning (by banks) building upon
SEDEA. We use a 4-core architecture, with a 4MB 16-
way associative LLC and 8GB 8-bank memory system. We
compose ten 4-task workloads for this experiment by using
SPEC CPU 2006 benchmarks. We use the case when the LLC
and memory are both shared as the reference to illustrate the
potential of partitioning in energy savings.

We compare our approach based on SEDEA against state-
of-the-art mechanisms such as HMC, which groups the mem-
ory banks to reduce the bank-level conflicts and thus im-
prove the throughput of the memory system when LLC is
shared [27]; UCP, which partitions the LLC ways among tasks
and lets tasks share the memory system [21]; Vertical Memory
Management (VMM), which partitions the LLC and memory
bank vertically, in which a task is given the same fraction
of LLC ways and memory banks, depending on its profiled
LLC behavior [11]. In the case of SEDEA, we have devised
an algorithm to partition the cache and memory separately.
We partition the LLC ways across tasks to minimize the
overall memory energy based on SEDEA energy predictions.
We also partition DRAM banks across tasks based on the BPF
estimated as part of SEDEA. In particular, when the overall
BPF is higher than the number of banks, we let tasks use a
number of banks proportional to their individual BPF. Thus,
the tasks with higher demand get larger bank counts whereas
the tasks with lower BPF may share some banks.

Since the execution time of tasks varies across different
partition methods, we meter the actual energy cost of each task
in the chip and memory using PTEM [15] and DREAM [14].
Then, we calculate the energy per instruction of each task, and
use their average value as the energy cost of the workload.
We show the normalized energy savings (including processor
and memory) of HMC, UCP, VMM and SEDEA in Figure 3
w.r.t. the case where cache and memory are fully shared.
We can observe that SEDEA achieves higher energy savings
than the other approaches in almost all workloads, reaching
8.7% energy savings on average. HMC, UCP and VMM save
0.6%, 3.2% and 5.2% energy, respectively. In our experiment,
HMC does not perform well as a large fraction of the energy
savings come from LLC miss reduction, and HMC only
manages memory banks. Besides, its method for memory bank



management, although avoids some conflicts, does not account
for the bank requirements of tasks. In the case of UCP, the
memory access conflicts from multiple tasks increase request
duration, thus saving less energy. VMM partitions cache and
memory vertically based on their needs. However, cache and
memory partitions are correlated. Thus, SEDEA improves
energy savings by exploiting independent partitions. More-
over, SEDEA also achieves higher performance improvement
against these approaches, which further decreases leakage/-
maintenance energy consumption.

V. CONCLUSION

Achieving a consistent energy accounting for tasks is of
prominent importance to charge users based on their resource
usage in datacenters. To the best of our knowledge, such
a mechanism only exists for on-chip resources, but not for
the memory system. In this paper, we pursue accounting a
task the memory energy it would have consumed when it
runs with a fraction of the LLC in isolation, but based only
on the measurements obtained while running in a workload
with shared resources. This requires discounting the effect of
interference from co-runners and of using a different amount
of hardware resources. We propose an ideal DRAM energy
accounting model, as well as SEDEA, a low-cost yet accurate
mechanism to account the memory energy to tasks based on
estimating the memory behavior a task would have when
running in isolation with a given fraction of the LLC. Our
results show that SEDEA provides accurate estimates for
memory energy under different cache allocations, beating
alternative mechanisms, and it can help to save energy by
optimizing cache and memory co-partitioning methods.
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