
Towards a Lock-Free, Fixed Size and Persistent

Hash Map Design

Miguel Areias and Ricardo Rocha

CRACS & INESC TEC, Faculty of Sciences, University of Porto

Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

Email: {miguel-areias,ricroc}@dcc.fc.up.pt

Abstract—Hash tries are a trie-based data structure with
nearly ideal characteristics for the implementation of hash maps.
In this paper, we present a novel, simple and scalable hash trie
map design that fully supports the concurrent search, insert and
remove operations on hash maps. To the best of our knowledge,
our proposal is the first concurrent hash map design that puts
together the following characteristics: (i) be lock-free; (ii) use
fixed size data structures; and (iii) maintain the access to all
internal data structures as persistent memory references. Exper-
imental results show that our proposal is quite competitive when
compared against other state-of-the-art proposals implemented
in Java. Its design is modular enough to allow different types
of configurations aimed for different performances in memory
usage and execution time.

I. INTRODUCTION

Hash maps are a very common and efficient data structure

used to store and access data that can be organized as pairs

(K,C), where K is a unique key with an associated content

C. The mapping between K and C is given by a hash function,

and the most usual operations done in hash maps are the

search, insertion and removal of pairs. Hash tries (or hash

array mapped tries) are a trie-based data structure with nearly

ideal characteristics for the implementation of hash maps [1].

An essential property of the trie data structure is that common

prefixes are stored only once [2], which in the context of

hash maps leads to implementations using fixed size data

structures. This allows to efficiently solve the problems of

setting the size of the initial hash map and of dynamically

expanding/resizing it in order to deal with hash collisions.

This fixed size characteristic is also determinant for taking

advantage of memory allocators where data structures of the

same type/size are (pre-)allocated within a page [3].

Multithreading with hash maps is the ability to concurrently

execute multiple search, insert and remove operations in such

a way that each specific operation runs independently but

shares the underlying data structures that support the hash

map. In this context, lock-free data structures offer several

advantages over their lock-based counterparts, such as, being

immune to deadlocks, lock convoying and priority inversion,

and being preemption tolerant, which ensures similar perfor-

mance regardless of the thread scheduling policy. Another

important characteristic is the ability to maintain the access

to all internal data structures as persistent memory references,

i.e., avoid duplicating internal data structures by creating new

ones through copying/removing the older ones. The persistent

characteristic is very important in hash maps that are used

not standalone but as a component of a bigger module/library

which, for performance reasons, requires accessing directly the

internal data structures. In such scenario, it is mandatory to

avoid changing the external memory references to the internal

hash map data structures.

In this work, we propose a novel lock-free, fixed size and

persistent hash map design for shared memory architectures,

aimed to be as competitive as the existent alternative designs.

Our proposal is based on single-word CAS (compare-and-

swap) instructions to implement lock-freedom and on hash

tries to implement fixed size data structures with persistent

memory references. In previous work [4], [5], we have already

proposed different concurrent hash map designs but only for

the search and insert operations. The present works revives

such previous work and extends it to also include the remove

operation. To do so, we had to redesign the existent search,

insert and expand operations and add new and more powerful

invariants that could ensure the correctness of the new design.

An important contribution of the new hash map design is

the ability to support the concurrent expansion of hash levels

together with the removal of keys without violating the lock-

free property and the consistency of the design.

The remainder of the paper is organized as follows. First,

we introduce relevant background and related work. Next,

we present and discuss in detail the key algorithms required

to easily reproduce our implementation by others. Then, we

present a set of experiments comparing our design against

other state-of-the-art concurrent hash map proposals, namely,

C. Click Non Blocking Hash Maps [6], Prokopec et al.

Concurrent Tries [7], and the Concurrent Hash Maps and

Concurrent Skip Lists from the Java concurrency package. At

the end, we present conclusions and further work directions.

II. BACKGROUND & RELATED WORK

The CAS instruction is at the heart of many lock-free

data structures [8]. A lock-free data structure guarantees that,

whenever a thread executes some finite number of steps, at

least one operation on the data structure by some thread must

have made progress during the execution of these steps. In the

work [9], Herlihy and Shavit presented a grand unified expla-

nation for the progress properties, using linearizability which

is an important correctness condition for the implementation

of concurrent data structures [10].

The first correct CAS-based lock-free list-based set proposal

was introduced by Harris [11]. Later, Michael improved Harris

work by presenting a proposal that was compatible with all

lock-free memory management methods and Michael used this

proposal has the building block for lock-free hash maps [12].

Shalev and Shavit extended Michael’s work when they pre-

sented their lock-free algorithm for resizing hash maps [13].

The algorithm is based in split-ordered lists and allows the

number of hash buckets to vary dynamically according to the

number of nodes inserted or removed, preserving the read-

parallelism. Skip lists is an alternative and more efficient data

structure to plain linked lists that allows logarithmic time

searching, insertions and removals by maintaining multiple

hierarchical layers of linked lists where each higher layer

acts as an express lane for the layers below. Skip lists were

originally invented by Pugh [14]. Concurrent non-blocking

skip lists were later implemented by Herlihy et al. [15].

Regarding concurrent hash trie data structures, recently

Prokopec et al. presented the CTries [7], a non-blocking con-

current hash trie based on shared-memory single-word CAS

instructions. The CTries introduce a non-blocking, atomic

constant-time snapshot operation, which can be used to imple-

ment operations requiring a consistent view of a data structure

at a single point in time.

III. OUR PROPOSAL BY EXAMPLE

In a nutshell, our design has hash arrays of buckets and

leaf nodes. The leaf nodes store key/content pairs and the hash

arrays of buckets implement a hierarchy of hash levels of fixed

size 2w. To map a key/content pair (k, c) into this hierarchy,

we first compute the hash value h for k and then use chunks of

w bits from h to index the entry in the appropriate hash level,

i.e., for each hash level Hi, we use the w ∗ i least significant

bits of h to index the entry in the appropriate bucket array of

Hi. Hash collisions are solved by simply walking down the

tree as we consume successive chunks of w bits from the hash

value h, creating a unique path from the root level of the hash

to the level where (k, c) should be stored. In what follows, we

discuss the key aspects of our proposal. We begin with Fig. 1

showing a small example that illustrates how the concurrent

insertion of nodes is done in a hash level.

K1

(a) (b) (c)

.
.
.

Prev

K1 K2 K3BkBk

.
.
.

.
.
.

Prev

Bk

.
.
.

.
.
.

Prev

.
.
.

2

entries

w

Hi Hi Hi

V V V V

Fig. 1. Insert operation in a hash level

Figure 1(a) shows the initial configuration for a hash level.

Each hash level Hi is formed by a bucket array of 2w entries

and by a backward reference to the previous hash level (repre-

sented as Prev in the figures). For the root level, the backward

reference is Null. In Fig. 1(a), Bk represents a particular

bucket entry of the hash level. Bk and the remaining entries are

all initialized with a reference to the current level Hi. During

execution, each bucket entry stores either a reference to a hash

level or a reference to a separate chaining mechanism, using a

chain of internal nodes, that deals with the hash collisions for

that entry. Each internal node holds a key/content pair (for the

sake of simplicity of presentation, we only show the keys in

the figures) and a tuple that holds both a reference to a next-

on-chain internal node and the condition of the node, which

can be valid (V) or invalid (I). The initial condition of a node

is valid (V). Figure 1(b) shows the hash configuration after

the insertion of node K1 on the bucket entry Bk and Fig. 1(c)

shows the hash configuration after the insertion of nodes K2

and K3 also in Bk. Note that the insertion of new nodes is

done at the end of the chain and any new node being inserted

closes the chain by referencing back the current level.

During execution, the memory locations holding references

are considered to be in one of the following states: black, white

or gray. A black state, which we also name an Interest Point

(IP), represents a memory location that will be used to update

the state of a chain or a hash level in a concurrent fashion. To

guarantee the property of lock-freedom, all updates to black

states are done using CAS operations. A gray state represents

a memory location that is not an IP but which can become an

IP at any instant, once the execution leads to it. A white state

represents a memory location used only for reading purposes.

As the hash trie evolves during time, a memory location can

change between black and gray states until reaching the white

state, where it is no longer updated.

When the number of valid nodes in a chain exceeds a

threshold value MAX NODES, then the corresponding

bucket entry is expanded with a new hash level and the nodes

in the chain are remapped in the new level. Thus, instead of

growing a single monolithic hash table, the hash trie settles

for a hierarchy of small hash tables of fixed size 2w. In a

worst case scenario, one would have MAX NODES key

collisions up to the last hash level (where the keys must be

different, otherwise they would be the same). Assuming that

keys have b bits then, in a worst case scenario, the hash

trie maximum depth is b

w
and, for independent random n

keys, it is expected to converge to a perfect hash trie map

with a log n/ log 2w depth. Starting from the configuration in

Fig. 1(c), Fig. 2 illustrates the expansion mechanism with a

second level hash for the bucket entry Bk.

The expansion operation is activated whenever a thread T
meets the following two conditions: (i) the key at hand was

not found in the chain and (ii) the number of valid nodes in the

chain observed by T is equal to the threshold value (in what

follows, we consider a threshold value of three nodes). In such

case, T starts by pre-allocating a second level hash Hi+1, with

all entries referring the respective level (Fig. 2(a)). The new

hash level is then used to implement a synchronization point

with the current IP (node K3 in Fig. 2(a)) that will correspond

to a successful CAS operation trying to update Hi to Hi+1

(Fig. 2(b)). From this point on, the insertion of new nodes on

Bk will be done starting from the new hash level Hi+1.

If the CAS operation fails, that means that another thread

has gained access to the IP and, in such case, T aborts

(b)

K1 K2 K3

.
.
.

Hi+1

Bm

Bn

Bk

.
.
.

Hi

.
.
.

K1 K2 K3

.
.
.

Hi

.
.
.

.
.
.

Hi+1

(a)

(d)

.
.
.

Hi+1

K3

Bm

Bk

.
.
.

Hi

.
.
.

K1 K2

(e)

.
.
.

Hi+1

K3

Bm

Bk

.
.
.

Hi

.
.
.

K1

K4 K2

.
.
.

Hi+1

K3

Bk

.
.
.

Hi

.
.
. K5

K4 K2

K1

(f)

Prev Prev

Prev Prev Prev

Prev

Prev Prev Prev

Prev

V V V V V V

V

VV V

V V V

VV

V V V

Bk

Bn

Bm

Bn Bn Bn

Bm

(c)

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

Fig. 2. Expand operation from a bucket entry to a second level hash with concurrent insertion of nodes

its expansion operation. Otherwise, T starts the remapping

process of placing the internal valid nodes K1, K2 and K3

in the correct bucket entries in the new level. Figures 2(c)

to 2(f) show the remapping sequence in detail. For simplicity

of illustration, we will consider only the entries Bm and

Bn on level Hi+1 and assume that K1, K2 and K3 will

be remapped to Bm, Bn and Bn, respectively. In order to

ensure lock-free synchronization, we need to guarantee that,

at any time, all threads are able to read all the available

nodes and insert/remove new nodes without any delay from

the remapping process. To guarantee both properties, the

remapping process is thus done in reverse order, starting from

the last node on the chain, initially K3.

Figure 2(c) shows the hash trie configuration after the

successful CAS operation that adjusted node K3 to entry Bn.

After this step, Bn passes to the gray state and K3 becomes

the next IP for the insertion of new nodes on Bn. Note that the

initial chain for Bk has not been affected yet, since K2 still

refers to K3. Next, on Fig. 2(d), the chain is adjusted and K2

is updated to refer to the second level hash Hi+1. The process

then repeats for K2 (the new last node on the chain for Bk).

First, K2 is remapped to entry Bn and then it is removed

from the original chain, meaning that the previous node K1

is updated to refer to Hi+1 (Fig. 2(e)). Finally, the same idea

applies to node K1. In the continuation, K1 is also remapped

to a bucket entry on Hi+1 (Bm in the figure) and then removed

from the original chain, meaning in this case that the bucket

entry Bk itself becomes a reference to the second level hash

Hi+1 (Fig. 2(f)). From now on, BK is also a white memory

location since it will be no further updated. Concurrently with

the remapping process, other threads can be inserting nodes

in the same bucket entries for the new level. This is shown in

Fig. 2(e), where a node K4 is inserted before K2 in Bn and

in Fig. 2(f), where a node K5 is inserted before K1 in Bm.

We now move to the description of the remove operation.

In our proposal, a remove operation can be seen as a sequence

of two steps: (i) the invalidation step; and (ii) the invisibility

step. The invalidation step searches for the node N holding

the key to be removed and updates the node condition from

valid to invalid. The invisibility step then searches for the valid

data structures B and A, respectively before and after N in

the chain of nodes, in order to bypass node N by chaining B

to A. Starting again from the configuration in Fig. 1(c), where

the initial condition of all keys is valid, Fig. 3 illustrates how

the concurrent removal of nodes is done.

K1 K2 K3EkBk

.
.
.

Prev

.
.
.

Hi

V I V K1 K2 K3EkBk

.
.
.

Prev

.
.
.

Hi

V I VK1 V

K1 K2 K3EkBk

.
.
.

Prev

.
.
.

Hi

V I VK1 V K3 I

(a)

(c) (d)

K1 K2 K3EkBk

.
.
.

Prev

.
.
.

Hi

V I VK1 V K3 I

(b)

Fig. 3. Remove operation in a hash level

Assume now that a thread T wants to remove the key K2.

T begins the invalidation step by searching for node K2 and

by marking it as invalid, which in turn makes node K1 into

a second IP (Fig. 3(a)). In the continuation, T searches for

the previous/next valid data structure before/after K2, nodes

K1 and K3 in this case. The next step is shown in Fig. 3(b),

where node K1 is chained to node K3, thus bypassing node

K2 (invisibility step).

Figure 3(c) shows the remove operation for key K3. The

node for K3 is first marked as invalid, which in turn makes

again node K1 an IP (K1 is the previous valid data structure

before K3). Since K3 is the last node in the chain for bucket

Bk, the next valid structure after K3 is Hi. Thus, in the

invisibility step, K3 is bypassed by updating K1 to refer to Hi

(Fig. 3(d)). The reader can observe that, at this point, nodes K2

and K3 are not in the chain. However, their chaining references

are left in a consistent state, allowing all late threads reading

those nodes to be able to recover to a valid data structure,

which in Fig. 3(d) is the hash level Hi.

We conclude the presentation with Fig. 4 showing a last

situation where a thread T is executing the expand operation

(like in the example of Fig. 2) and another thread U is

removing a key from the nodes being adjusted. Figure 4(a)

shows the initial configuration where T already connected the

last node in the chain to the new hash level Hi+1 and prepares

itself to start the remapping process of placing the internal

(a)

K1 K2 K3

.
.
.

Bm

Bn

.
.
.

.
.
.

Prev Prev

V V I

(b)

.
.
.

Hi+1

K3

Bm

Bn

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

VBn K3 I

(c)
.
.
.

Hi+1

Bm

Bn

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

Bn K3 VK3 I

Hi+1Hi

Bk BkBk V VV

Fig. 4. Expand operation from a bucket entry to a second level hash with concurrent removal of nodes

nodes K3, K2 and K1 in the correct bucket entries of Hi+1.

Concurrently, thread U is removing key K3 and has already

marked as invalid the node K3 in the invalidation step. In

the invisibility step, thread U is led to the hash level Hi+1

by following the chain reference of K3 but, since K3 has

not yet been adjusted, thread U is not able to find K3 in

Hi+1. Thread U knows that this situation is only possible

because another thread is simultaneously executing an expand

operation. In such scenario, thread U delegates the completion

of the unfinished removal operations to the thread doing the

expansion and finishes the execution of its remove operation.

Since initially T saw K3 as valid, in the continuation, T
adjusts K3 to the bucket entry Bn (Fig. 4(b)). To overcome

the fact that K3 is marked as invalid, now T also needs to

check if a node remains valid after being adjusted and, if not, T
executes the invisibility step for the node (Fig. 4(c)). Node K3

is thus bypassed in the hash level Hi+1, but it is still chained

to K2. This is not a problem because, in the continuation of

the adjustment process, it will be also bypassed with node K2

being chained to Hi+1.

IV. ALGORITHMS

This section discusses in more detail the key algorithms

that implement our proposal. We begin with Alg. 1 which

shows the pseudo-code for the process of remapping a given

node N into a given hash level H . The algorithm begins by

updating the chain reference (field NextRef()) of N to H using

a ForceCAS() procedure, which repeats a CAS operation

until it succeeds. Next, since only valid nodes need to be

adjusted, it checks if N is a valid node (invalid nodes are left

unchanged) and applies the hash function that allows obtaining

the bucket entry B in H that fits the key on N (line 4).

In the continuation, if B is empty (lines 5–9), the algorithm

tries to insert N on the head of B by using a CAS operation

(line 6). If successful, then it checks if, in the meantime,

N turned invalid (this situation corresponds to the scenario

described in Fig. 4 where the thread invalidating N delegates

the unfinished removal operations to the thread doing the ex-

pansion), and if so, it calls the MakeNodeInvisible() procedure

(see Alg. 3 next) to remove the node from the chain (line 8).

If B is not empty, the algorithm then checks whether the

head reference R in B refers a second hash level, case in which

it calls itself (lines 10–12). Otherwise, it starts traversing the

chain of nodes searching for valid candidate nodes (lines 16–

22). For that, it uses three auxiliary variables: CV R holds

the candidate valid reference where new insertions/adjustments

should take place; CV RN holds the chain reference of CV R;

and C counts the number of valid nodes in the chain. Initially,

CV R is the bucket entry from where the chain starts, R and

CV RN are the head node in the chain and C is 0. At the end,

the algorithm checks if R ended in the same hash level H ,

which means that no other expansion operation is taking place

at the same time, and it proceeds trying to adjust N (lines 24–

47). Otherwise, R refers a deeper hash level, case in which the

algorithm is restarted in the hash level after H (lines 48–50).

If R ended in the same hash level then two situations might

occur: no valid chain nodes were found (lines 25–30) or, at

least, a valid node was found (lines 32–45).

If no valid nodes were found then the algorithm tries to

insert N in the head of the chain (line 25) and, if the CAS

succeeds, it checks if, in the meantime, N turned invalid and

must be removed (line 27). Otherwise, if the CAS fails, that

means that another thread has updated the head of the bucket

entry in the meantime. In such case, the algorithm reads the

new head reference R (line 30) and the process is restarted in

the same hash level H (lines 46–47) or in the hash level after

H (lines 48–50), case R references a deeper hash level.

If a valid node was found (lines 32–45) then the algorithm

tries to insert N after the CV R node (line 40). As before,

we follow the same steps case the CAS operation succeeds

(lines 41–43) or fails (line 45). Please note that here, for

the CAS operation, we use the Next() field as a way to

represent simultaneously the pair holding the chain reference

and the condition of the node1. This is necessary since we

need to guarantee that the node is valid when updating a chain

reference.

Before trying to insert N after the CV R node, the algorithm

needs to check if the chain is full (line 32), in which case

it starts a new expand operation (lines 33–39). Here, a new

hash level newH is first allocated and initialized (lines 33–

34) and then used to implement a synchronization point that

will correspond to a CAS operation trying to update the

chain reference in CV R from CV RN to newH (line 35).

If the CAS succeeds, the algorithm gains access to the expand

operation and starts the remapping process of placing the valid

nodes in the chain to the new hash level newH (line 36) and,

at the end, AdjustNodeOnHash() is called again, this time for

the new hash level (line 37). Otherwise, if the CAS fails,

that means that another thread gained access to the expand

operation and, in such case, the algorithm aborts the new

expand operation, frees newH and continues (line 39).

Next, we present the procedure that supports the re-

move operation. Algorithm 2 shows the pseudo-code for the

1At the implementation level, the chain reference and the condition of the
node are, in fact, treated as a single field.

Algorithm 1 AdjustNodeOnHash(node N, hash H)

1: ForceCAS(NextRef(N), H)

2: if IsInvalidNode(N) then // invalid nodes are left unchanged

3: return

4: B ← GetHashBucket(H,Hash(Level(H),Key(N)))

5: if EntryRef(B) = H then // B is an empty bucket

6: if CAS(EntryRef(B), H,N) then

7: if IsInvalidNode(N) then

8: MakeNodeInvisible(N,H)

9: return

10: R← EntryRef(B)

11: if IsHash(R) then // R references a second hash level

12: return AdjustNodeOnHash(N,R)

13: CV R← B

14: CV RN ← R

15: C ← 0

16: repeat // traverse the chain of nodes

17: if IsV alidNode(R) then // update CVR if node is valid

18: CV R← R

19: CV RN ← NextRef(CV R)

20: C ← C + 1

21: R← NextRef(R)

22: until IsHash(R)

23: if R = H then // chain ended in the same hash level

24: if C = 0 then // no valid chain nodes found

25: if CAS(EntryRef(B), CV RN,N) then

26: if IsInvalidNode(N) then

27: MakeNodeInvisible(N,H)

28: return

29: else // another thread made progress in the meantime

30: R← EntryRef(B)

31: else // a valid node was found

32: if C = MAX NODES then // chain is full

33: newH ← AllocInitHash(Level(H) + 1)

34: PrevHash(newH)← H

35: if CAS(Next(CV R), (CV RN, V alid), (newH, V alid)) then

36: ExpandToNewHash(newH,N,H)

37: return AdjustNodeOnHash(N,newH)

38: else // another thread gained access to the expand operation

39: FreeHash(newH)

40: if CAS(Next(CV R), (CV RN, V alid), (N,V alid)) then

41: if IsInvalidNode(N) then

42: MakeNodeInvisible(N,H)

43: return

44: else // another thread made progress in the meantime

45: R← NextRef(CV R)

46: if IsNode(R) then

47: return AdjustNodeOnHash(N,H)

48: while Level(R) > Level(H) + 1 do // move to hash level after H

49: R← PrevHash(R)

50: return AdjustNodeOnHash(N,R)

search/remove operation of a given key K in a given hash

level H . The algorithm begins by applying the hash function

that allows obtaining the bucket entry B of H that fits K (line

1). In the continuation, if B is empty then K was not found

and the algorithm finishes (lines 2–3). If B is not empty, it

checks whether the head reference R in B refers a second

hash level, case in which it calls itself (line 6).

Algorithm 2 SearchRemoveKeyOnHash(key K, hash H)

1: B ← GetHashBucket(H,Hash(Level(H),K))

2: if EntryRef(B) = H then // B is an empty bucket

3: return

4: R← EntryRef(B)

5: if IsHash(R) then // R references a second hash level

6: return SearchRemoveKeyOnHash(K,R)

7: CV R← B

8: CV RN ← R

9: repeat // traverse the chain of nodes

10: if IsV alidNode(R) then

11: if Key(R) = K then // found key in R

12: if MakeNodeInvalid(R) then

13: return MakeNodeInvisible(R,H)

14: else

15: CV R← R

16: CV RN ← NextRef(CV R)

17: R← NextRef(R)

18: until IsHash(R)

19: if R = H then // chain ended in the same hash level

20: if CV R = B then // no valid chain nodes found

21: R← EntryRef(B)

22: else // a valid node was found

23: R← NextRef(CV R)

24: if R = CV RN then // no progress in the meantime

25: return

26: if IsNode(R) then

27: return SearchRemoveKeyOnHash(K,H)

28: while Level(R) > Level(H) + 1 do // move to hash level after H

29: R← PrevHash(R)

30: return SearchRemoveKeyOnHash(K,R)

Otherwise, it starts traversing the chain of nodes searching

for a valid node R with K (lines 10–17). If K is found

(line 11) then it tries to mark R as invalid and, if successful

(i.e., R was valid and the call to MakeNodeInvalid() turned

R invalid), it proceeds to the invisibility step by calling

MakeNodeInvisible() and returns (lines 12–13). Otherwise, if

MakeNodeInvalid() fails (i.e., R was already marked as invalid

by another thread), the algorithm continues in search mode.

During search, the CV R and CV RN references are updated

as discussed in Alg. 1 until R reaches a hash level (line 18).

If R ends in the same hash level H , which means that

no expansion operation is taking place at the same time, the

algorithm needs to confirm that no other thread has changed

the chain (lines 20–27). Otherwise, R refers a deeper hash

level, case in which the algorithm is restarted in the hash level

after H (lines 28–30). To confirm that nothing has changed,

it updates R with the chain reference in CV R (lines 20–23)

and compares it against CV RN (line 24). If they are different,

that means that, in the meantime, some change occurred in R,

and the process is restarted in the same hash level H (line 27)

or in the hash level after H (lines 28–30), case R references

a deeper hash level.

Finally, Alg. 3 presents the pseudo-code for turning invisible

a given node N in a given hash level H . Remember that

in the invisibility step, we need to search for the valid data

Algorithm 3 MakeNodeInvisible(node N, hash H)

1: R← GetNextHashOrV alidNode(N)

2: AV R← R

3: if IsNode(R) then

4: R← GetNextHash(R)

5: if R = H then // chain ended in the same hash level

6: B ← GetHashBucket(H,Hash(Level(H),Key(N)))

7: R← B

8: repeat

9: BV R← R

10: BV RN ← NextRef(BV R)

11: R← GetNextHashOrV alidNode(R)

12: until R = N ∨ IsHash(R)

13: if R = N then // we are in condition to bypass N

14: if BV R = B then // no valid chain nodes found

15: if CAS(EntryRef(BV R), BV RN,AV R) then

16: return

17: else

18: if CAS(Next(BV R), (BV RN, V alid), (AV R, V alid)) then

19: return

20: return MakeNodeInvisible(N,H)

21: if R = H then // N is already invisible

22: return

23: while Level(R) > Level(H) + 1 do // move to hash level after H

24: R← PrevHash(R)

25: return MakeNodeInvisible(N,R)

structures BV R (before valid reference) and AV R (after valid

reference), respectively before and after N in the chain of

nodes, in order to bypass node N by chaining BV R to AV R.

The algorithm begins by setting R and AV R with the next

valid data structure starting from N (lines 1–2). If R is a chain

node, then it moves until the hash at the end of the chain

(line 4). Next, if R refers a deeper hash level, the process is

restarted in the hash level after H (lines 23–25). Otherwise,

the algorithm ended in the same hash level H (line 5) and

it proceeds to compute the valid data structure BV R before

N . For that, it starts from the bucket entry B in H that fits

the key on N and traverses the chain of nodes looking for

the following valid data structures until reaching N or a hash

level (lines 6–12). During the process, it saves in BV RN the

chain reference of BV R (line 10).

At the end of the traversal, if R reaches N then we are

in condition to bypass N by chaining BV R to AV R and

thus make N invisible (lines 14–20). For that, the algorithm

applies a CAS operation to BV R trying to update it from

the reference saved in BV RN to AV R and keeping the node

condition as valid if BV R is a node (line 18). Notice that if

the CAS operation fails, then it means that the BV R node has

changed somewhere between the instant where it was found

valid and the CAS execution. In such case, the process is

restarted (line 20), thus forcing the algorithm to converge to a

chain configuration where all invalid nodes are made invisible.

Otherwise, if R ends in a hash level at the end of the

traversal, that means that N is not on H . Therefore, if R is

H that means that N is already invisible, thus the algorithm

simply returns (lines 21–22). Otherwise, R refers a deeper

hash level and the process is restarted in the hash level after

H (lines 23–25).

V. PERFORMANCE ANALYSIS

This section presents experimental results comparing our

proposal with other state-of-the-art concurrent hash map de-

signs. The environment for our experiments was a machine

with 32-Core AMD Opteron (TM) Processor 6274 (2 sock-

ets with 16 cores each) with 32GB of main memory, each

processor with caches L1, L2 and L3 respectively with sizes

of 64KB, 2048KB and 6144KB, running the Linux kernel

3.18.6-100.fc20.x86 64 with Oracle’s Java Development Kit

1.8.0 66.

Although our proposal is platform independent, we have

chosen to make its first implementation in Java, mainly for

two reasons: (i) rely on Java’s garbage collector to reclaim

invisible/unreachable data structures; and (ii) easy comparison

against other hash map designs. Some of the best-known hash

map implementations currently available are already imple-

mented in the Java library, such as the Concurrent Hash Maps

(CHM) and the Concurrent Skip Lists (CSL) from the Java’s

concurrency package. Additionally, we will be comparing our

proposal against Click’s Non Blocking Hash Maps (NBHM) [6]

and Prokopec et al. Concurrent Tries (CT) [7]2. We have ran

our proposal with a MAX NODES threshold value of 6

chain nodes for the hash collisions and with two different

configurations for the number of buckets entries per hash

level, one with 8 and another with 32 buckets entries per hash

level. In what follows, we will name our proposal as Free

Fixed Persistent Hash Map (FFP) and those two configurations

as FFP8 and FFP32, respectively. To put the five proposals

in perspective, Table I shows how they support/implement

the features of (i) be lock-freedom; (ii) use fixed size data

structures; and (iii) maintain the access to all internal data

structures as persistent memory references.

TABLE I
FEATURES SUPPORTED BY THE PROPOSALS EVALUATED

Features / Proposals CHM CSL NBHM CT FFP

Lock-freedom ✗ ✗ ✓ ✓ ✓

Fixed size structures ✗ - ✗ ✓ ✓

Persistent references ✗ ✓ ✓ ✗ ✓

To test the proposals, we developed a testing environment3

containing different benchmark sets of 106 randomized items,

with each set divided in three operations: (i) insertion of new

items; (ii) search of items; and (iii) removal of items. To

spread threads among a set S, we divide the size of S by

the number of running threads and place each thread in a

position within S in such a way that all threads perform the

same number of different operations on S. For the search

and remove operations, the corresponding items are inserted

beforehand and without counting to the execution time. To

2Both downloaded on January 18, 2016 from https://github.com/boundary/
high-scale-lib and https://github.com/romix/java-concurrent-hash-trie-map/
tree/master/src/main/java/com/romix/scala/collection/concurrent, respectively.

3Available from https://github.com/miar/ffp

TABLE II
EXECUTION TIME, IN MILLISECONDS, FOR THE EXECUTION WITH 1, 8, 16, 24 AND 32 THREADS AND THE CORRESPONDING SPEEDUP RATIOS AGAINST 1

THREAD, FOR SIX BENCHMARK SETS USING DIFFERENT RATIOS FOR THE NUMBER OF CONCURRENT INSERT, SEARCH AND REMOVE OPERATIONS (FOR

EACH CONFIGURATION, THE BEST EXECUTION TIMES AND SPEEDUPS ARE IN BOLD)

Threads Execution Time (ETp
) Speedup Ratio (ET1

/ETp
)

(Tp) CHM CSL NBHM CT FFP8 FFP32 CHM CSL NBHM CT FFP8 FFP32

1st – Insert: 100% Search: 0% Remove: 0%
1 663 3,238 12,968 919 946 542
8 294 550 2,933 207 174 176 2.26 5.89 4.42 4.44 5.44 3.08
16 199 332 2,031 118 117 124 3.33 9.75 6.39 7.79 8.09 4.37
24 201 276 1,717 107 96 153 3.30 11.73 7.55 8.59 9.85 3.54
32 212 270 1,576 97 89 74 3.13 11.99 8.23 9.47 10.63 7.32

2nd – Insert: 0% Search: 100% Remove: 0%
1 155 3,753 225 773 720 379
8 38 535 34 120 118 76 4.08 7.01 6.62 6.44 6.10 4.99
16 27 327 25 78 76 53 5.74 11.48 9.00 9.91 9.47 7.15
24 30 309 22 70 64 53 5.17 12.15 10.23 11.04 11.25 7.15
32 32 315 26 78 69 54 4.84 11.91 8.65 9.91 10.43 7.02

3rd – Insert: 0% Search: 0% Remove: 100%
1 314 4,144 451 1,585 872 582
8 105 595 122 226 172 137 2.99 6.96 3.70 7.01 5.07 4.25
16 62 341 77 156 108 89 5.06 12.15 5.86 10.16 8.07 6.54
24 55 303 66 132 94 130 5.71 13.68 6.83 12.01 9.28 4.48
32 54 306 64 124 101 102 5.81 13.54 7.05 12.78 8.63 5.71

4th – Insert: 60% Search: 30% Remove: 10%
1 721 2,510 15,342 1,027 873 618
8 150 413 4,030 174 148 142 4.81 6.08 3.81 5.90 5.90 4.35
16 128 247 2,803 115 91 106 5.63 10.16 5.47 8.93 9.59 5.83
24 75 191 2,566 89 72 74 9.61 13.14 5.98 11.54 12.13 8.35
32 72 178 1,870 90 80 67 10.01 14.10 8.20 11.41 10.91 9.22

5th – Insert: 20% Search: 70% Remove: 10%
1 282 1,890 12,370 764 757 395
8 51 282 8,517 171 157 74 5.53 6.70 1.45 4.47 4.82 5.34
16 39 184 3,623 87 72 82 7.23 10.27 3.41 8.78 10.51 4.82
24 37 143 3,058 73 69 64 7.62 13.22 4.05 10.47 10.97 6.17
32 38 145 2,081 74 69 65 7.42 13.03 5.94 10.32 10.97 6.08

6th – Insert: 25% Search: 50% Remove: 25%
1 279 2,059 12,181 1,087 808 440
8 113 340 3,125 159 127 83 2.47 6.06 3.90 6.84 6.36 5.30
16 64 214 3,482 104 82 70 4.36 9.62 3.50 10.45 9.85 6.29
24 42 180 2,609 87 71 78 6.64 11.44 4.67 12.49 11.38 5.64
32 44 166 1,902 83 77 66 6.34 12.40 6.40 13.10 10.49 6.67

warm up the Java Virtual Machine, we ran each benchmark

5 times beforehand and then we took the average execution

time of the next 20 runs. Table II shows the results obtained for

the CHM, CSL, NBHM, CT, FFP8 and FFP32 proposals using

six benchmark sets that vary in the percentage of concurrent

operations to be executed. The 1st benchmark only performs

inserts, the 2nd only searches, and the 3rd only removes. The

remaining benchmarks perform mixed operations with differ-

ent percentages of inserts, searches and removes. For each

benchmark, Table II shows the execution time, in milliseconds,

and speedup ratio for 1, 8, 16, 24 and 32 threads.

Analyzing the general picture of the table, one can ob-

serve that, for these benchmarks, each proposal has it own

advantages and disadvantages, i.e., there is no single proposal

that overcomes all the remaining proposals. For the execution

times, the table shows a clear trade-off balance between

the concurrent insertion, search and removal of items. The

proposals with the best execution times in the concurrent

insertions are not so good in the concurrent searches and the

same happens with the concurrent removal of items.

When the weight of insertions is high, as in the 1st and 4th

benchmarks, our proposal outperforms the remaining propos-

als. Clearly, the FFP32 proposal has the best base times (one

thread) and, as we increase the number of threads, both FFP8

and FFP32 proposals are able to scale properly. In particular,

for 32 threads, FFP32 achieves the best execution times. We

explain the performance of our proposal with the trie design

and the hash function that spreads potential synchronization

points among the trie, minimizing this way false-sharing and

cache ping-pong effects. The FFP32 has better results than

FFP8 because it expands hash levels more aggressively, i.e.,

on each expansion it consumes 5 bits of the hash key, while

FFP8 only consumes 3 bits, thus reducing hash collisions of

keys in a hash level.

On the other hand, when the weight of search operations is

high, as in the 2nd and 5th benchmarks, our proposal is not

as efficient as the other proposals. In the 2nd benchmark, the

CHM proposal shows the best base times, while NBHM shows

the best results as we increase the number of threads. In the 5th

benchmark, CHM has the best execution times and our FFP32

proposal is the second best. In order to understand why our

proposal is not so good in the search operation, we measured

the time that threads spent just in the hash trie levels for the

FFP8 and FFP32 proposals and we noticed that, if we subtract

such time to the overall execution time, we got execution times

similar to those of CHM.

A further profiling study lead us to conclude that our

proposal is actually suffering from a cache miss penalty when

threads navigate through many hash levels. We took some

internal statistics about the depth of the hash levels used on

both FFP8 and FFP32 configurations. For example, for the

2nd benchmark, the FFP8 configuration has a minimum and

a maximum hash trie depth of 5 and 7, respectively, and an

average number of nodes in non-empty chains of 2.39. The

FFP32 configuration has a minimum and a maximum depth

of 4 and 6, respectively, and an average number of nodes in

non-empty chains of 1.48. Thus, the higher the number of

bucket entries per hash level, the lower the number of hash

levels and the number of nodes in non-empty chains, and,

in consequence, the lower the number of cache misses, on

average. This explains why the FFP32 has better execution

times than FFP8 in Table II and the difference between our

proposal and the best proposals on the search operation.

When the weight of removals is high, as in the 3rd bench-

mark, our FFP32 proposal is the third best proposal, behind

the CHM and NBHM proposals. Again, this difference is

explained by the number of hash levels that threads need

to traverse to reach the level holding the node with the key

being searched. For this particular benchmark, the FFP32 has

a minimum and a maximum depth of 3 and 4, respectively.

Regarding scalability, in general, the CSL and CT propos-

als show the best speedup ratios. This mostly happens because

they also show the worst base times, generally. Our FFP8

configuration consistently has better speedups than FFP32

which, again, can be explained by the worst base times of

FFP8. Anyway, both FFP8 and FFP32 configurations showed

quite competitive speedups which are clearly in line with all

the remaining proposals.

In summary, the results on Table II show that our proposal is

quite competitive, when compared against other state-of-the-

art proposals and, in particular, whenever the weight of the

insert operation is high compared to the search and remove

operations, our proposal shows the best execution times. For

mixed insert, search and remove operations, our proposal

stays in line with the remaining proposals but, if considering

only the other lock-free approaches, NBHM and CT, then our

FFP32 configuration showed the best execution times in almost

all benchmarks and thread configurations.

VI. CONCLUSIONS & FURTHER WORK

We have presented a novel, simple and scalable hash map

design that fully supports the concurrent search, insert and

remove operations. To the best of our knowledge, this is

the first concurrent hash map design that puts together being

lock-free and using fixed size data structures with persistent

memory references, which we consider to be characteristics

that have the best trade-off between performance, correctness

and computational environment independence. Our design can

be easily implemented in any type of language, library or

within other complex data structures.

Experimental results show that our proposal is quite com-

petitive when compared against other state-of-the-art proposals

implemented in Java. Its design is modular enough to allow

different types of configurations aimed for different perfor-

mances in memory usage and execution time.

In future work, we plan to implement our proposal as

an external library in order to be easily included in bigger

systems, such as the Yap Prolog system [16], where the charac-

teristics of being lock-free and using fixed size data structures

with persistent memory references are key restrictions for the

efficiency of the system.

ACKNOWLEDGMENTS

Work funded by ERDF through Project 9471-RIDTI and

the COMPETE 2020 Programme within project POCI-01-

0145-FEDER-006961, and by National Funds through the FCT

as part of project UID/EEA/50014/2013. Miguel Areias was

funded by the FCT grant SFRH/BPD/108018/2015.

REFERENCES

[1] P. Bagwell, “Ideal Hash Trees,” Es Grands Champs, vol. 1195, 2001.
[2] E. Fredkin, “Trie Memory,” Communications of the ACM, vol. 3, pp.

490–499, 1962.
[3] M. Areias and R. Rocha, “An Efficient and Scalable Memory Allocator

for Multithreaded Tabled Evaluation of Logic Programs,” in Interna-

tional Conference on Parallel and Distributed Systems. IEEE Computer
Society, 2012, pp. 636–643.

[4] ——, “On the Correctness and Efficiency of Lock-Free Expandable Tries
for Tabled Logic Programs,” in International Symposium on Practical

Aspects of Declarative Languages, ser. LNCS, no. 8324. Springer,
2014, pp. 168–183.

[5] ——, “A lock-free hash trie design for concurrent tabled logic pro-
grams,” International Journal of Parallel Programming, vol. 44, no. 3,
pp. 386–406, 2016.

[6] C. Click, “Towards a Scalable Non-Blocking Coding Style,” 2007.
[Online]. Available: http://www.azulsystems.com/events/javaone 2007/
2007 LockFreeHash.pdf

[7] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky, “Concurrent
Tries with Efficient Non-Blocking Snapshots,” in ACM Symposium on

Principles and Practice of Parallel Programming. ACM, 2012, pp.
151–160.

[8] M. Herlihy and J. M. Wing, “Axioms for Concurrent Objects,” in ACM

Symposium on Principles of Programming Languages. ACM, 1987,
pp. 13–26.

[9] M. Herlihy and N. Shavit, “On the Nature of Progress,” in Principles of

Distributed Systems, ser. LNCS. Springer, 2011, vol. 7109, pp. 313–
328.

[10] M. Herlihy and J. M. Wing, “Linearizability: a correctness condition
for concurrent objects,” ACM Transactions on Programming Languages

and Systems, vol. 12, no. 3, pp. 463–492, 1990.
[11] T. L. Harris, “A pragmatic implementation of non-blocking linked-lists,”

in International Conference on Distributed Computing, ser. DISC ’01.
Springer-Verlag, 2001, pp. 300–314.

[12] M. M. Michael, “High Performance Dynamic Lock-Free Hash Tables
and List-Based Sets,” in ACM Symposium on Parallel Algorithms and

Architectures. ACM, 2002, pp. 73–82.
[13] O. Shalev and N. Shavit, “Split-Ordered Lists: Lock-Free Extensible

Hash Tables,” Journal of the ACM, vol. 53, no. 3, pp. 379–405, 2006.
[14] W. Pugh, “Skip lists: A probabilistic alternative to balanced trees,”

Communications of the ACM, vol. 33, no. 6, pp. 668—-676, 1990.
[15] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit, “A Provably Correct

Scalable Concurrent Skip List,” in International Conference on Princi-

ples of Distributed Systems, Technical Report, Bordeaux, France, 2006.
[16] V. Santos Costa, R. Rocha, and L. Damas, “The YAP Prolog System,”

Journal of Theory and Practice of Logic Programming, vol. 12, no. 1
& 2, pp. 5–34, 2012.

