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Abstract—Function as a Service (FaaS) permits cloud cus-
tomers to deploy to cloud individual functions, in contrast to
complete virtual machines or Linux containers. All major cloud
providers offer FaaS products (Amazon Lambda, Google Cloud
Functions, Azure Serverless); there are also popular open-source
implementations (Apache OpenWhisk) with commercial offerings
(Adobe I/O Runtime, IBM Cloud Functions). A new feature
of FaaS is function composition: a function may (sequentially)
call another function, which, in turn, may call yet another
function – forming a chain of invocations. From the perspective
of the infrastructure, a composed FaaS is less opaque than a
virtual machine or a container. We show that this additional
information enables the infrastructure to reduce the response
latency. In particular, knowing the sequence of future invocations,
the infrastructure can schedule these invocations along with
environment preparation. We model resource management in
FaaS as a scheduling problem combining (1) sequencing of
invocations, (2) deploying execution environments on machines,
and (3) allocating invocations to deployed environments. For each
aspect, we propose heuristics. We explore their performance
by simulation on a range of synthetic workloads. Our results
show that if the setup times are long compared to invocation
times, algorithms that use information about the composition
of functions consistently outperform greedy, myopic algorithms,
leading to significant decrease in response latency.

Index Terms—scheduling, workflow, setup time, function-as-a-
service, serverless

I. INTRODUCTION

Serverless computing allows a cloud customer to run their
code in production without configuring and allocating the
software and the infrastructure stack [1]. A cloud customer
can thus focus on their application, rather than on manag-
ing the production environment. Major cloud providers offer
serverless products (Amazon Lambda, Google Cloud Func-
tions, Microsoft Azure Serverless). We focus on a variant of
serverless computing called Function as a Service (FaaS) [2].
In FaaS, a cloud customer uploads the source code of a
(stateless) function to the provider. When an end-user issues
a request, this code is executed on the infrastructure provided
and managed by the FaaS system. The FaaS system isolates
requests by providing a prepared execution environment (e.g.,
a Linux container) for each invocation.
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We focus on a relatively new element of FaaS, composition
of functions [3]. During an invocation of a composed FaaS
initiated by a single incoming event (e.g., an HTTP request),
a function calls another function, that, in turn, may call
yet another function and so on. If these invocations are
all synchronous, the call structure is a chain; if some are
asynchronous, it is a DAG. In this paper, we narrow our focus
to chains, as they are natively supported in OpenWhisk; and
chains are sufficient to show the benefits resulting from better
scheduling. However, our algorithms and our conclusions
generalize to DAGs (we refer to the Appendix).

The existing open-source FaaS systems (OpenWhisk, Fis-
sion Workflows) do not use the information about the structure
of the function compositions. Each invocation in a composition
chain is treated independently. However, once the first function
is invoked, the scheduler knows that the functions that follow
in a chain will be eventually called too — thus, the scheduler
can prepare their execution environments in advance.

The contributions of this paper are as follows:
• We model scheduling in FaaS as a combination of the

multiple knapsack problem, scheduling with dependen-
cies and with setup times (Section II).

• We propose a number of heuristics for each aspect (Sec-
tion III). These heuristics derive from classic approaches,
but we adjust them to the FaaS specificity.

• By simulations, we show that heuristics examining the
composition structure lead to lower response latencies
(Section IV).

II. MODELING FAAS RESOURCE MANAGEMENT

A. Resource Management in OpenWhisk

In this section, we describe from the resource management
perspective a representative implementation of a serverless
cloud platform, the open-source Apache OpenWhisk [4].
OpenWhisk is mature, actively-developed software also of-
fered commercially (IBM Cloud Functions, Adobe I/O Run-
time). OpenWhisk alternatives include OpenLambda [5] and
Fission [6]. OpenLambda uses containers to provide runtime
environment for functions. Fission is designed for Kuber-
netes [7]; it can be deployed on existing cluster among other
applications, which makes its adoption significantly easier.
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This section forms a background for our scheduling model
that follows in Section II-B.

OpenWhisk allows a cloud customer to upload functions
(essentially, code snippets). A function is executed when end-
users issue requests. A function executes in an environment
— an initialized Docker container. Different Docker images
are used for each of supported languages; a customer can
also provide a custom image (with, e.g., additional libraries).
Before the first execution of a function, the container must be
initialized (e.g., setting up the container or compiling a Go
function). This initialization can take a considerable amount
of time (called later the setup time) — [8] reports at least
500ms. An environment is specific to a function (it is not
reused between different functions). Subsequent invocations
may reuse the same environment (no further setup times are
necessary). By default, in OpenWhisk an environment executes
at most a single invocation at any given moment.

OpenWhisk also allows to compose several functions into a
chain (a sequence). After one function finishes, its result are
passed to the next function; the last function responds to the
end-user. While sequences are natively supported, in order to
spawn two or more functions in parallel (resulting in a DAG),
the developer may use an additional OpenWhisk Composer
module or call the OpenWhisk API from the function code.

Architecture of OpenWhisk is complex. However, from our
perspective the key components are the controller and the
invoker. The controller communicates with the invokers by
message passing (via Apache Kafka).

The invoker is an agent program running on a worker node.
The invoker is responsible for executing actions scheduled
on a particular node. Each invoker has a unique identifier;
it announces itself to the controller while starting.

The controller acts as a scheduler handling incoming events
and routing function invocations to invokers. The controller
monitors the status of workers and the currently executing
invocations.

The controller attempts to balance load across nodes. The
algorithm selects the initial worker node for each function
based on a hash of the workspace name and the function
name. Similarly, the algorithm picks for each function another
number, called the step size (a number co-prime with the
count of worker nodes). Each time a function is invoked, the
controller attempts to schedule the invocation on its initial
worker. If a worker doesn’t have sufficient resources immedi-
ately available, the controller tries to schedule the invocation
on the next node (increased by the step size). If the invocation
cannot be immediately scheduled on any node, it is queued
on a randomly chosen node.

B. A Scheduling Model for FaaS

In this section we define the optimization model for the
FaaS resource management problem. The aim of this model is
to have the simplest possible (yet still realistic) approximation
of a FaaS system that enables us to show that considering FaaS
compositions allow optimizations. We thus deliberately do not

take into account some factors that we argue are orthogonal
for this work.

We use the standard notation from [9]. A single end-user
request corresponds to a job Ji. A job is composed of one
or more tasks Oi,k, each corresponding to a single FaaS
invocation. The request is responded to (the job completes)
at time Ci when the last task completes, Ci = maxj Ci,j .
Tasks have dependencies resulting from, e.g., before-after
relationships in the code. While in general such dependencies
can be modeled by a DAG, in this work we concentrate on
chains of tasks, i.e., task Oi,k+1 starts (at time σi,k+1) only
after Oi,k completes, σi,k+1 ≥ Ci,k (we show additional
results for DAGs the Appendix).

We assume that individual functions are repeatedly executed
(modeling similar requests from many end-users but also
shared modules like authorization). We model such grouping
by mapping each task Oi,k to exactly one family f(Oi,k)
(obviously, two tasks Oi,k and Oi,l from a job Ji might belong
to different families). All tasks from a family f require the
same environment Ef , have the same execution time (duration)
pf and require the same amount of resources qf .

A task Oi,k from a family f(Oi,k) is executed on exactly
one machine in an environment (OpenWhisk container) Ef .
Ef requires set-up time sf (initialization of the environment)
before executing the first task (subsequent tasks do not require
set-up times). Typically, sf is non-negligible and longer than
the task’s duration, sf > pf (but we don’t assume this).

A machine commonly hosts many environments (thus sup-
porting parallel execution of tasks). Since the moment the
environment’s preparation starts – and until it is removed –
each environment ef uses qf of the machine’s resources (e.g.,
bytes of memory) whether a task executes or not. The number
of hosted environments is limited by the capacity of the ma-
chine Q (

∑
qf ≤ Q). We consider only a single dimension of

the resource requests as OpenWhisk assumes a linear relation
between memory and CPU limits of the underlying containers.
Similarly, Google Cloud Functions allow customers to specify
only a single dimension (memory requirement). However,
it should be relatively easy to extend our model to vector
packing [10].

We do not consider the additional latency caused by com-
munication between tasks because we assume that a high-
throughput, low-latency network of a modern datacenter is
less of a limit than the link between the datacenter and
the Internet. We assume that the machines are homogeneous
(machine resources Q and execution times pf are the same).
If a FaaS system is deployed on VMs rented from an IaaS
cloud, it is natural to use a Managed Instance Group (MIG)
that requires all VMs to have the same instance type. If FaaS is
deployed on a bare-metal data-center, the amount of machines
having the same hardware configuration should be higher that
other scalability limits (e.g. at a Google data-center, 98% of
machines from a 10,000-machine cluster belong to one of just
4 hardware configurations [11]).

We assume that jobs have no release times, i.e., the first
tasks of all the jobs are ready to be scheduled at time 0. This



Algorithm 1 Framework scheduling algorithm.
function SCHEDULINGSTEP(t, queue, wait, policy)

. policy ∈ {default, start}, wait ∈ {true, false}
for task ∈ FINISHEDTASKS(t) do

if policy == default then
QUEUEDEPENDENTTASKS(task, t)

for task ∈ ORDER(queue) do
e← FINDUNUSEDENVIRONMENT(task)
if e is nil and wait then

e← FINDENVIRONMENTTOWAIT(task)

if e is nil then
e← PLACENEWENVIRONMENT(task)

if e is nil then
e← REMOVEANDPLACEENVIRONMENT(task)

if e is not nil then
ASSIGNTASK(c, task, RELEASETIME(task))
REMOVEFROMQUEUE(task)
if policy == start then

p← DURATION(task)
QUEUEDEPENDENTTASKS(task, t+ p)

assumption approximates a system under peak load — there is
a queue of requests to be scheduled now. Note that in contrast
to jobs, individual tasks (in particular, the tasks that follow the
first task of a job) do have non-zero release times, resulting
from inter-task dependencies.

Our model is clairvoyant. A FaaS system repeatedly (thou-
sands of times) executes individual functions. Thus, once a
particular family is known for some time, qf , pf and the
function structure should be easy to estimate using standard
statistical methods — and before that, the system can use
conservative upper bounds (e.g., defaults used by OpenWhisk).
[12] shows that even simple methods estimate precisely mem-
ory and CPU for long-running containers (which, in principle,
is harder than estimating FaaS, as FaaS are shorter, thus
repeated much more frequently than a container).

The system optimizes the average response latency. As
all N jobs are ready at time 0, this metric corresponds to
1
N

∑N
i=1 Ci.

To summarize, the scheduling problem consists of finding
for each task Oi,k a machine and a start time σi,k so that:

1) at σi,k, there is a prepared environment for f(Oi,k) on
that machine that does not execute any other task during
[σi,k, σi,k + pf ] (a scheduling constraint);

2) dependencies are fulfilled: if k > 1, σi,k ≥ Ci,k−1 (a
dependency constraint);

3) at any time, for each machine, the sum of requirements
of the installed environments is smaller than the machine
capacity (a multiple knapsack constraint).

This problem is NP-hard, as generalizing several NP-hard
problems (knapsack [13], P2|chains|

∑
Ci [9]).

III. ALGORITHMS

In this section we describe heuristics to schedule FaaS invo-
cations. We decompose the FaaS scheduling problem into three
aspects: sequencing of invocations; deployment of execution
environments on machines; and allocation of invocations to
deployed environments. We start with a framework algorithm
(Algorithm 1) to show how these aspects are combined to
build a schedule; we then describe specific heuristics for
each of the aspects. Sequencing corresponds to the ordering
policy (Section III-A) and the awareness of task dependencies
(Section III-D). Deployment corresponds to the removal policy
(Section III-B). Allocation corresponds to the waiting/non-
waiting variants (Section III-C).

The framework algorithm is a standard scheduling loop
executing schedulingStep at time t when at least one task
completes. The algorithm maintains a queue of tasks [Oi,k]
to schedule.

1) Queue the successors Oi,k+1 of tasks completed at t
({Oi,k : σi,k + pf = t}) (queueDependentTasks).

2) Apply a scheduling policy to the queued tasks (Order).
3) Try to find an environment e for each queued task:

a) Try to claim an initialized environment of the re-
quired type (FindUnusedEnvironment, and – if wait
– FindEnvironmentToWait). In this step we iterate over
all machines and take the first matching environment.
(Section III-C describes the wait variant).

b) If (a) fails, try to create a new environment without
removing any existing one (PlaceNewEnvironment). As
above, we use the first fitting machine.

c) If (b) fails, try to find a machine with sufficient capacity
for e that is currently claimed by environments that do
not execute any task; remove these environments, and
install e (RemoveAndPlaceEnvironment).

d) If (c) fails, the task remains in the queue.
4) If an environment e is found, assign the task (AssignTask);

otherwise (3.a-c all fail) the task remains in the queue.
AssignTask starts a task on an environment as follows. Each
environment has a queue of assigned task. Immediately after
creating an environment, it is initialized (which takes time
sf ). Then, the environment starts to execute tasks sequentially
from its queue. If the head task is not ready (waiting for
dependencies), the environment waits (no backfilling). This
may happen in the start policy (see Section III-D).

In the following, we propose concrete variants for these
functions. We denote the full scheduling policy by a tuple
(A,B,C,D), e.g., , (FIFO,LRU,wait, start), where A
denotes the ordering policy, B denotes the removal policy,
C indicates if variant is waiting and D describes whether the
variant is dependency-aware.

A. Ordering policy (Order)

We compare the standard FIFO and SJF with three orderings
taking into account the dependencies:
• FIFO (First Come First Served) – use the order in which

the tasks were added.



• EF (Existing First) – partition the tasks into two groups:
(1) there is at least one idle, initialized environment
e of matching type Ef(Oi,k); (2) the rest. Schedule
the first group before the second group. The rela-
tive order of the tasks in both groups remains sta-
ble (FIFO). For example, if queue contains five tasks
[Oi1,k1

, Oi2,k2
, Oi3,k3

, Oi4,k4
, Oi5,k5

], there is only one
environment e that is idle and only tasks Oi1,k1 , Oi3,k3 ,
Oi4,k4 require environment with type matching e, the
resulting order is [Oi1,k1

, Oi3,k3
, Oi4,k4

, Oi2,k2
, Oi5,k5

].
• SJF (Shortest Jobs First) – order by increasing durations
pf ;

• SW (Smallest Work) – order by increasing remaining work
in a job, i.e. for a task Oi,k, order by

∑
k′≥k pf(Oi,k′ ).

• RT (Release Time) – ordered by the time the task’s
predecessors are completed.

B. Removal policy
RemoveAndPlaceEnvironment removes environments ac-

cording to either a standard LRU, or one of policies consid-
ering either initialization time sf or environment popularity:
• LRU – remove the LRU (Least Recently Used) envi-

ronment(s) from first fitting machine (i.e. having enough
space to be freed).

• min time removal – remove the environment(s) with the
smallest setup time sf (if more than one, select a single
machine having environments with the smallest total sf ).

• min family removal – remove the environment(s) from
the family with the highest number of currently initialized
environments. As it may be needed to remove more than
one environment, choose a machine to minimize resulting
number of families without any environment.

C. Greedy environment creation
If there is no unused environment of the required type Ef ,

a greedy algorithm (i.e. when wait is false) just attempts
to create a new one. However, when setup times sf are
longer than task’s duration pf , it might be faster just to wait
until one of currently initialized environments completes its
assigned task. We implement this policy by setting wait to
true in Algorithm 1. When no idle environment is available,
function FindEnvironmentToWait computes for each initialized
environment e of type Ef the time Ce the last task currently
assigned to this environment completes. If an environment e∗

is available sooner than the time needed to set up a new
environment (minCe ≤ t + sf ), the task is assigned to e∗.
This variant use the (limited) clairvoyance of the scheduler
by taking into account the knowledge of tasks’ durations and
setup times of their execution environments.

The waiting variant is analogous to scheduling tasks in
Heterogeneous Earliest Finish Time (HEFT [14], [15]) that
places a task on a processor that will finish the task as the
earliest.

D. Awareness of task dependencies
A myopic (default) scheduler queues just the tasks that

are currently ready to execute: Oi,0 (the first tasks in the

jobs), or the tasks for which the predecessors completed
{Oi,k : Ci,k−1 ≤ t}. However, when a task’s Oi,k pre-
decessors complete, it might happen that there is no idle
environment ef(Oi,k), and thus Oi,k must still wait sf until
a new environment is initialized.

We propose two policies, start and start with break (stbr),
that use the structure of the job to prepare environments in
advance. Both policies put the successor Oi,k+1 to the end of
the queue when scheduling Oi,k; the successor has the release
time t+pf(Oi,k) (the time when Oi,k completes). The notion of
the release time allows us to block Oi,k+1’s execution until it
is ready (as described in AssignTask). Note that start and stbr
may result in an environment that is (temporarily) blocked:
e.g., if an empty system schedules a chain of two tasks, the
second task from the chain is added to the queue immediately
after scheduling the first task; this second task will be assigned
to its environment, but cannot be started until the first task
is completed. In start variant, after schedulingStep completes
and new tasks were added to queue, scheduler tries placing
them following the same procedure. Compared with start, stbr
immediately after adding Oi,k+1 reorders tasks in the queue
according to the scheduling policy and restarts the placement
(for clarity, stbr is not presented in Algorithm 1).

IV. EVALUATION

We evaluate our algorithms with a calibrated simulator. We
use a simulator rather than modify the OpenWhisk scheduler
for the following reasons. First, a discrete-time simulator
enables us to execute much more test scenarios and on a con-
siderably larger scale (we perform tests on 1440 · 15 problem
instances). Second, as our results will show, to schedule tasks
more efficiently, the OpenWhisk controller (the central sched-
uler) should take over some of the decisions currently made by
the invokers (agents residing on machines). For example, min
family removal needs to know which family has the highest
number of installed environments in the whole cluster — thus,
the state of the whole cluster (note that this policy can be
implemented in a distributed way: the cluster state can be
broadcasted to the invokers). To ensure that our simulator’s
results can be generalized to an OpenWhisk installation, we
compare the performance of an actual OpenWhisk system with
its simulation; the Pearson correlation between these results is
very high (Section IV-B).

A. Method

To test the performance of our algorithms, we generated
synthetic instances with a wide range of parameter values. We
are not aware of any publicly-available workloads for FaaS
or related systems (having dependencies, function families
and setup times). Nevertheless, we also attempted to create
instances resembling real scenarios by using Google Cluster
Trace [16] and generating only missing data. We present
results of this approach in the Appendix.

Many parameters of instances have a relative, rather than
absolute, effect on the result. For example, multiplying by a
constant both Q, the machine capacity, and qf , the size of the



task, results in an instance that has very similar scheduling
properties. There is a similar relationship between setup times
sf and durations pf ; and between the total number of tasks
n and the number of tasks in a chain l. We thus fix one
parameter from each pair to a constant (or a small range); and
vary the other. We have n = 1000 tasks; pf is generated by
the uniform distribution over integers pf ∼ U [1, 10]; similarly
qf ∼ U [1, 10]. The remaining parameters have ranges:

• family count nf : 10, 20, 50, 100, 200, 500;
• setup times sf : [0, 0], [10, 20], [100, 200], [1000, 2000];
• chain lengths l: [2, 10], [10, 20], [50, 100];
• machine count m: 2, 5, 10, 20, 50;
• machine sizes Q: 10, 20, 50.

For each combination of the parameters (or ranges) nf ,
sf , l, we generate 20 random instances, resulting in 1440
instances. We evaluate each instance on each of the 15 machine
environments.

These ranges of parameters are wide. As we experiment
on synthetic data, one of our goals is to explore trends –
characterize instances for which our proposed method works
better (or worse) than the current baseline. In particular, chains
longer than 10 (l > 10) are longer than what we suspect is
the current FaaS usage. On the other hand, it is not a lot
compared with a call graph depth on any non-trivial software.
At this point of FaaS evolution it is difficult to foresee the
degree of compartmentalization future FaaS software will have
– and chains longer than 10 invocations represent fine-grained
decomposition (similar to modern non-FaaS software).

Given nf , [smin, smax], [lmin, lmax] we generate an instance
as follows. For each of nf , we set sf ∼ U [smin, smax] and
pf ∼ U [1, 10]. For each of n = 1000 tasks, we set its family
f to U [1, nf ]. We then chain tasks to jobs. Until all tasks are
assigned, we are creating jobs by, first, setting the number of
tasks in a job to l ∼ U [lmin, lmax] (the last created job could
be smaller, taking the remaining tasks); and then choosing l
unassigned tasks and putting them in a random sequence.

For each experiment, our simulator computes the average
response latency, (1/n)

∑
Ci. Due to space constraints, we

omit results on tail, 95%-ile latency – the 95%-ile results also
support our conclusions (unsurprisingly, the ranges are larger
than for the averages).

In addition to testing variants of Algorithm 1, we simulate
the current, round-robin behavior of the OpenWhisk scheduler
(Section II-A) with an algorithm OW. OW randomly selects
for each family f the initial machine mf and the step size kf ,
an integer co-prime with the number of machines m. When
scheduling a task Oi,k in family f , OW checks machines mf ,
mf + kf , mf +2kf , . . . (all additions modulo m), stopping at
the first machine that has either the environment Ef ready to
process, or qf free resources (including unused environments
that could be removed) to install a new environment Ef . If
there is no such machine, Oi,k is queued on a randomly-chosen
machine.

B. Validation of the simulator against OpenWhisk

To compare the results of our simulator with OpenWhisk,
we developed a customized OpenWhisk execution environ-
ment that emulates a function with a certain setup time
sf , execution time pf and resource requirement qf . This
environment emulates initialization by sleeping for sf ∗10ms;
and it emulates execution by sleeping for pf ∗ 10ms. While
sleeping does not use the requested memory (qf ∗ 128MB),
the memory is blocked (through Linux cgroup limits) and
therefore cannot be simultaneously used by other environ-
ments. We chose 10ms as the time unit to reduce impact
of possible fluctuations of VM or network parameters in the
datacenter (we performed some early experiments with 1ms
and this noise was significant; and with a longer time unit
tests take unreasonable time). We emulate a single instance
from our simulator by creating, for each job Ji, an equivalent
sequence of invocations in OpenWhisk. To avoid caching
of results in OpenWhisk, we ensure that each invocation is
executed with a distinct set of parameters. We deployed an
OpenWhisk cluster (1 controller and m = 10 invokers) on 11
VMs in GCE. All machines have 2 vCPU and 16GB RAM. We
further restrict the memory OpenWhisk can use on machines
to 1280MB (equivalent to Q = 10). In order to reduce impact
of cloud storage on system performance, we used a ramdisk
to store OpenWhisk accounting database. We also extended
limits (maximum duration and sequence length) and changed
the default log level to WARN. To reduce the impact of brief
performance changes, we executed each test instance thrice
and reported the median.

In Figure 1 we compare the average response latency
in OpenWhisk and in our simulator varying chain lengths,
the number of families and the ranges of setup times. For
consistency, OpenWhisk results are rescaled to the simulator
time unit (divided by 10) The Pearson correlation between
OpenWhisk and simulator is very high (between 0.86 when
varying family count, Fig. 1.b, and 0.999 when varying the
setup time, Fig. 1.c). There is, however, an additive factor
in OpenWhisk noticeable especially in smaller instances in
Fig., 1.(a) and Fig. 1.(b): the range of OpenWhisk results
in [5000, 9000], while the range of simulated results is in
[550, 1600]; on larger instances, as in Fig. 1.(c), this constant
factor is less noticeable. This additive factor is caused by an
additional system overhead added to every function execution:
each invocation stores data in a database and requires internal
communication. We conclude that the high correlation between
the simulator and the OpenWhisk results validates our simula-
tor – that the differences between algorithms observed in the
simulator are transferable to the results in OpenWhisk.

C. Relative Performance of Policies

We first analyze the impact of each policy by analyzing
their relative performance. For each variant (A, B, C, D), on
each instance, we compute the relative performance of the
policy we measure by finding the minimal average latency
across all variants of the measured policy while keeping the
rest of the variants the same. For example, when measuring
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Fig. 2: Comparison of resulting average latency under: different scheduling policies (a), removal policies (b) and variants of
dependency–awareness (c). In (a), for each instance (the same tasks, machine capacities and machine count), and having other
variants of the algorithm set (removal policy, waiting and dependency-awareness), we find the minimal average latency among
the 5 scheduling policies; we then normalize the results from all 5 scheduling policies by this minimal average latency. Each
box corresponds to a statistics over experiments with all the removal policies (both in waiting non-waiting variant) and all
dependency-awareness variants (def, start, stbr), performed on all instances and all possible machine environments (over 300k
individual data points). For (b) and (c) results are normalized as in a), but for different removal policies (b) and for different
dependency-aware variants (c), rather than scheduling policies. Here and in all following box plots, the box height indicates
the first and the third quartile, the line inside the box indicates the median, and the whiskers extend to the most extreme data
point within 1.5 × IQR.

the effect of the scheduling policy (A), on an instance, we
find the minimum average latency from the 5 variants of the
scheduling policy: (EF, b, c, d), (FIFO, b, c, d), (RT, b, c, d),
(SFJ, b, c, d), (SW, b, c, d) (keeping b, c, d the same); and
then we divide all 5 by this value. The goal of this analysis is
to narrow down our focus to the aspects of the problem that
are crucial for the performance. Using this method, we show
that, e.g., all removal policies result in very similar outcomes.
Figure 2 shows the results.

Ordering: EF policy dominates other ordering policies,
confirming that it is better to avoid environment setup by
reusing existing environments. Its median is similar to RT
(and lower than other algorithms), and the range of values
(including the third quartile) is the lowest. Removal: Unlike
scheduling policies, all the removal policies result in virtually
the same schedule length: the range of Y axis is 1.035; thus
outliers are only 3.5% worse than the minimal schedule found
in the alternative methods.

Dependency awareness: Both start and stbr result in similar
performance. We confirmed this result by looking at individual
instances: the performance of start and stbr were similar.

To improve the readability in the remainder, given that
the removal policies have little effect on the schedule length
(Figure 2), we show only the results for LRU. Similarly, we
skip results for SJF and RT orderings: RT is close to FIFO
and SJF is clearly dominated by other variants. Finally, as the
difference between start and stbr variants is small, we show
results only for start.

D. Impact of the length of the chain
In the rest of the experimental section, we analyze the

sensitivity of the policies to various parameters of the instance,
starting with the average length of the chain. In Figure 3, in
all instances nf = 50, sf ∈ [10, 20], m = 20, Q = 10 (results
for larger nf , sf m and Q are similar; we omit them due
to space constraints). All scheduling algorithms using EF as
the ordering policy significantly reduce latency compared to
the baseline OW (1.3-2.4x), with larger reductions for shorter
chains. The start dependency-aware variant further reduces
latency, especially for longer chains ([50− 100]), and also for
other scheduling methods (FIFO). Therefore, for deployments
with long (50 tasks and above) chains, at least 100 families,
setup times 100 (and larger) with at least 20 machines of size
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(E
F,

 L
RU

, w
ai

t, 
st

ar
t)

(E
F,

 L
RU

, w
ai

t, 
de

f)

(E
F,

 L
RU

, d
ef

, s
ta

rt)

(E
F,

 L
RU

, d
ef

, d
ef

)

(F
IF

O,
 L

RU
, w

ai
t, 

st
ar

t)

(F
IF

O,
 L

RU
, w

ai
t, 

de
f)

(F
IF

O,
 L

RU
, d

ef
, s

ta
rt)

(F
IF

O,
 L

RU
, d

ef
, d

ef
)

(S
W

, L
RU

, w
ai

t, 
st

ar
t)

(S
W

, L
RU

, w
ai

t, 
de

f)

(S
W

, L
RU

, d
ef

, s
ta

rt)

(S
W

, L
RU

, d
ef

, d
ef

)

OW

300

400

500

600

av
er

ag
e 

la
te

nc
y

(b) length 10-20
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(c) length 50-100

Fig. 3: Influence of the length of the chain. For all instances nf = 50, m = 20, Q = 10 with setup times 10-20.

10 (or more), implementing dependency-aware scheduler can
provide measurable benefits.

E. Impact of the number of families

Figure 4 compares results as a function of the number of
task families in the system. When the number of task families
is small (up to 20), variants without dependency awareness
(def ) and with wait can give better results than dependency-
aware variants. In such cases, variants using EF method are
slightly better than their equivalents using FIFO. The same
applies to the removal method: wait variants give better results
than their equivalents using plain LRU. The higher the number
of families, the higher the probability that the required type
of environment is missing. With at least nf = 100 families
(Fig. 4.c, similar results for sf ≥ 100, l ≥ 50, m ≥ 20,
Q ≥ 10 omitted due to space constraints), dependency aware-
ness plays a crucial role – variants using start outperforms
def regardless of the used scheduling algorithm and removal
policy. Thus, in case of high variability of functions (i.e.
requiring different environments), taking into account tasks’
dependencies can significantly reduce the serving latency.

F. Impact of the setup time

Figure 5 compares results as a function of different setup
time ranges. In the edge case with no setup times, sf = 0,
we see no difference between the waiting and the non-
waiting variants, as there is no additional penalty for inefficient
environment re-creation. Similarly, there are no differences
between EF and FIFO. For non-zero setup times, dependency
awareness (start) reduces the latency. However, with no setup
time, start latencies are longer. This behavior is caused
by adding tasks with future release time to the queue (see
Section III-D). Consider two jobs each of two tasks: 1) a long
job with task A (duration 10) followed by task B (duration 1);
2) a short job with task C (duration 1), followed by task B
(same as in ”long”). EF and FIFO using start variants may
assign the second task from the long job to the environment of
type B immediately after assigning the first task. This might
block the second task from the short job until t = 11; while
the optimal schedule starts this task at t = 1. For the same
reason, start has worse results when there are more jobs (i.e.
shorter chains) and the systems are smaller (less machines,
smaller capacities).

We further investigate for which instance parameters the
dependency-aware start dominates the myopic def, assuming
non-negligible setup times sf ≥ 100. We aggregate results
by all simulation parameters (count of families nf , machines
m, machine sizes Q, range of chain lengths l, range of setup
times sf and used algorithm variant) and compute the median
average latency among 20 instances. Then we analyze in
how many of resulting cases changing def to start improves
performance. For long chains (l ≥ 50), many task families
(nF > 100), and many machines (m ≥ 10), changing
the default (def ) variant to dependency-aware one improves
performance in all cases.

G. Impact of machine capacity

Figure 6 compares results as a function of the num-
ber of machines and their size. For all instances nf =
50, l ∈ [10, 20], sf ∈ [10, 20]. To show general
trend and ensure clarity, out of 15 considered machine
configurations we present results only for instances with
(m,Q) ∈ {(5, 20), (20, 20), (50, 10), (50, 50)}. For cases up
to (m,Q) = (5, 20), the only observable differences be-
tween the plain and dependency-aware variants are for SW
scheduling policy. Due to large number of jobs (chain lengths
are in range 10-20), when dependent tasks are added to the
queue earlier, environments may get blocked as described
in Section IV-F, therefore there is no additional benefit
of dependency-awareness. For capacities up to (m,Q) =
(50, 10), using wait variants outperform the default (def)
variants using the same scheduling algorithm and with the
same setting of dependency-awareness. In all presented cases,
for FIFO and EF scheduling policies, variants using wait with
start have one of the lowest average latency. The improvement
on overall system performance is most visible in the case of
highly-overloaded machines. Therefore, our methods could be
used to improve handling of situation when datacenter has to
handle rapid increase (peak) of requests.

V. RELATED WORK

Our model of FaaS resource management combines
scheduling (with setup times and dependencies) [17] with
multiple knapsack (when environments of different sizes must
fit into machines). Our simulation results show that all these
aspects have to be taken into account by the scheduler (the
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(a) 10 families

(E
F,

 L
RU

, w
ai

t, 
st

ar
t)

(E
F,

 L
RU

, w
ai

t, 
de

f)

(E
F,

 L
RU

, d
ef

, s
ta

rt)

(E
F,

 L
RU

, d
ef

, d
ef

)

(F
IF

O,
 L

RU
, w

ai
t, 

st
ar

t)

(F
IF

O,
 L

RU
, w

ai
t, 

de
f)

(F
IF

O,
 L

RU
, d

ef
, s

ta
rt)

(F
IF

O,
 L

RU
, d

ef
, d

ef
)

(S
W

, L
RU

, w
ai

t, 
st

ar
t)

(S
W

, L
RU

, w
ai

t, 
de

f)

(S
W

, L
RU

, d
ef

, s
ta

rt)

(S
W

, L
RU

, d
ef

, d
ef

)

OW

2000

4000

6000

8000

10000

av
er

ag
e 

la
te

nc
y

(b) 50 families
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(c) 200 families

Fig. 4: Influence of the different number of families. To show general trend, we present results for 10, 50 and 200 families.
For all instances m = 20, Q = 10, sf ∈ [100, 200], l ∈ [50, 100]
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(a) setup time 0
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(b) setup time 10-20
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(c) setup time 100-200
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(d) setup time 1000-2000

Fig. 5: Influence of the setup time. For all instances nf = 50, m = 10, Q = 10, l ∈ [50, 100].
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(a) 5 machines, size 20
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(b) 20 machines, size 20

(E
F,

 L
RU

, w
ai

t, 
st

ar
t)

(E
F,

 L
RU

, w
ai

t, 
de

f)

(E
F,

 L
RU

, d
ef

, s
ta

rt)

(E
F,

 L
RU

, d
ef

, d
ef

)

(F
IF

O,
 L

RU
, w

ai
t, 

st
ar

t)

(F
IF

O,
 L

RU
, w

ai
t, 

de
f)

(F
IF

O,
 L

RU
, d

ef
, s

ta
rt)

(F
IF

O,
 L

RU
, d

ef
, d

ef
)

(S
W

, L
RU

, w
ai

t, 
st

ar
t)

(S
W

, L
RU

, w
ai

t, 
de

f)

(S
W

, L
RU

, d
ef

, s
ta

rt)

(S
W

, L
RU

, d
ef

, d
ef

)

OW

150

200

250

300

av
er

ag
e 

la
te

nc
y

(c) 50 machines, size 10
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(d) 50 machines, size 50

Fig. 6: Influence of the machine environment. For all instances fn = 50, l ∈ [10, 20], sf ∈ [10, 20]

baseline OW is consistently dominated by our policies). In-
dividually, these are classic problems in combinatorial opti-
mization. Allahverdi [17] performs a comprehensive review of
about 500 papers on scheduling with setup times. Brucker [9]
reviews scheduling results. Below we describe only the appli-
cations in serverless and cloud computing.

Bin packing with setup times: With no dependencies, our
problem reduces to bin packing with sequence independent
setup times. Weng et al. [18] study similar problem of mini-
mizing mean weighted completion time in case of tasks with
sequence dependent setup times. [19] presents dynamic algo-
rithms addressing scheduling with setup times with objective
of minimal weighted flow time.

Quadratic programming: We proposed heuristics, rather
than using generic solvers or metaheuristics. Initially, we
considered encoding our problem as an (integer) quadratic
programming. Nevertheless, Gurobi [20] was unable to find
an optimal schedule in 15 minutes (on a reasonable desktop
machine) even for a small instance with N = 20 jobs each
of nl = 20 tasks. Schedulers in production systems need to
respond in seconds, thus an approach based on a generic solver

is probably not sufficient.
Workflow scheduling: With sf = 0 and task sizes equal

to machine capacities qf = Q, the problem reduces to
workflow scheduling. [21] measures how inaccurate runtime
estimates influence the schedules — which complements our
study (as we assumed that estimates are known). [22] ana-
lyzes possible performance benefits of resource interleaving
across the parallel stages. [23] proposes Balanced Minimum
Completion Time, an algorithm for scheduling tasks with
dependencies (and without setup times) on heterogeneous
systems. [24] schedules workflows with setup times using
branch-and-bound. While they considered small instances (up
to N ∗ nl = 100 task and m = 4 machines); their method
required 100s time limit for execution. Such long running
times makes this method unusable in data-center schedulers.
A comprehensive survey on workflow scheduling in the cloud
is presented in [25]. [26] analyzes scheduling tasks with
sequence-dependent setup times, precedence constraints, re-
lease dates on unrelated machines with resource constraints
and machine eligibility. The authors present two solutions:
based on genetic algorithm and based on an artificial immune



system. Their largest instances had 60 tasks and 8 machines
and needed 25 minutes (on the average) to solve, again
rendering these methods unusable for FaaS.

VI. CONCLUSIONS

Our experimental results clearly show that the performance
of FaaS can be improved by considering the composition of
functions and installing environments in advance. The EF
ordering prioritizes tasks that can be started using already
prepared environments. The waiting variant binds the task to
the existing, used environment if such environment will be
ready to process task earlier than a newly-created one. The
start variant adds successors of the task to the queue as soon
as their release times could be determined. For non-negligible
setup times (sf ≥ 100, or at least 20 times longer than the
average task duration), larger systems (m ≥ 10 machines with
Q ≥ 10, or hosting at least two average-sized environments)
for 80.7% of cases, the average response latencies are reduced
by the factor of two when the scheduler is dependency-
and startup-times aware (·, ·, wait, start), compared to the
baseline (OW).

Compared with the baseline, dependency- and startup-times
aware scheduling is more efficient when the load of the system
is high. Our methods can be used to mitigate the impact of the
increased demand in the short term. If the demand increase is
longer-term, the underlying infrastructure will be eventually
scaled out by, e.g., adding new VMs. However, such scale-out
takes considerably longer time (minutes); meanwhile, the load
has to be handled.

Although our experiments were offline, the waiting variant
and the start variant can be easily implemented in the existing
FaaS schedulers (controllers). Changing the invocation order
(as in SJF and EF variants) is less straightforward, as when
new jobs arrive on-line, existing jobs might be starved: these
policies would additionally need to consider fairness. Alter-
natively, as our results show, waiting and start variants are
beneficial even with the standard FIFO ordering.

Finally, while FaaS was the main motivation of this work,
these ideas can be applied also in other systems executing
workflows on shared machines (a machine executing multiple
tasks in parallel), such as Apache Beam.
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APPENDIX

VALIDATION OF ALGORITHMS PERFORMANCE ON DAGS

In this paper we focus on chains, as they are simplest
function compositions which allows us to analyze impact
of proposed optimizations. Moreover chains are particularly
interesting as they are directly supported by OpenWhisk,
therefor our research can be applied to the real system.

Nevertheless, a single function is able to spawn arbitrary
number of other functions by connecting directly to the
platform API. While spawning new function using API is
straightforward, defining function that has more than one
predecessor without direct platform support is more sophis-
ticated, as it requires e.g. to store information which of the
predecessors completed their execution. Therefore, we are
particularly interested in out-trees.

https://openwhisk.apache.org
https://kubernetes.io
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
http://www.gurobi.com


In general, executing DAGs by appending to each function
code invoking successors using platform’s API, hides structure
of the DAG from scheduler. In this section we assume that
scheduler has information about defined DAGs. We validate
if results obtained for chains are applicable to more generic
DAGs.

We generate out-trees using our existing dataset using
following procedure: for each task in job (chain), we select
randomly new parent from preceding tasks in the same chain.
Therefore a single task may have more than one successor,
while each of the tasks still have at most one predecessor.

We performed analogous analysis to presented in the Sec-
tions 4.E-4.G. We present how behavior of the algorithms
changes for different job sizes (Figure 7), setup times (Fig-
ure 8), machine count and sizes (Figure 10).

In Figure 7 we observe that increasing job size has lower
impact on observed average latency than in chains. This
behavior is connected with the fact that datasets have the same
number of tasks and datasets with longer chains have less tasks
executed in parallel which limits concurrency. Contrary, for
datasets with DAGs there could be more than one task within
a job that could be executed simultaneously. Similar to results
obtained for chains, EF scheduling policy along with LRU and
waiting outperforms OW in all cases.

If we compare behavior for different setup times (Figure 8),
we can observe that for non-zero setup times our algorithms
perform better than baseline (OW). However, contrary to re-
sults for chains, there is very little difference between variants
without (def) and with dependency awareness (start).

Similar behavior can be observed for datasets with different
family count (Figure 9). Moreover, the best improvement over
baseline can be observed for datasets with up to 50 families.
For datasets with more families, our algorithms still provide
more optimal schedules than OW, but difference between the
best schedule and the baseline is noticeably smaller.

Figure 10 compares behavior of the algorithms under dif-
ferent machine sizes and the number of machines. All task
durations are in range [1, 10] and tasks are grouped in jobs
containing [10, 20] tasks (apart from the last one which may
be smaller). In all presented cases we evaluate the same data
with 50 task families. Only for the largest processing capacity
(50 machines of size 50) there is observable fundamental
improvement of dependency-aware (start) variants over def.
For all machine configurations except the largest one (50
machines of size 50), wait variants performed better than
the default (non-waiting) variants using the same scheduling
method and with the same setting of dependency-awareness.
For large capacities (over 20 machines of size 50 or over 50
machines of size 20), for FIFO and EF scheduling policies,
variants using wait with start have one of the lowest average
latency.

As we can see in all analyzed cases with non-zero setup
times, proposed algorithms behave better than OW baseline.
Therefore our modifications should improve average latency
in more general scenarios.

EXPERIMENTS WITH CLUSTER WORKLOADS

To our best knowledge currently there is no publicly avail-
able cluster trace containing information about tasks with
dependencies, setup times and introducing tasks families.
However, we can generate dateset resembling the trace, mak-
ing some rational assumptions about missing data in existing
cluster trace. Thus we can verify how such dataset would
behave if executed in analyzed model.

Recently published Google Cluster Trace 2019 [16] contains
information about dependencies between executed computa-
tions. The trace defines jobs as a set of tasks (processes)
which may be executed simultaneously. Jobs and tasks belongs
to exactly one collection. The collections may form a DAG
– i.e. none of tasks in the collection can be started until
all computations in predecessors are completed. Moreover,
the collections specify information about collection purpose
in field collection logical name – e.g. if multiple collections
execute the same program, all of them should have the same
collection logical name. We create test workload preserving
the dependency structure and information about computation
type – thus, the cluster collection is equivalent of the func-
tion invocation in our model and collections with the same
collection logical name belong to the same family.

The full trace contains information from 8 datacenters from
different locations. Each of them is independent source of data
- in our analysis we use data obtained from New York cluster
(2019-05-a).

We generate input data as follows. We extract all DAGs
by using data in start after collection ids field of collec-
tion events table. Each DAG is given unique job id and we
use collection id as task index within a job We obtained 8740
different jobs in this procedures.

Next, we skip all DAGs which match any of following
criterion:

1) contain task without start time (i.e. started before trace
period),

2) contain task without end time (i.e. still running at end of
trace period),

3) are not chains,
4) have collection depending on collection not existing in

trace data
In such procedure we removed 3894 jobs.

We use collection logical name to indicate which tasks
belongs to the same family. Resulting collections belong to 424
different families. For each family we estimate size, duration
and setup time as follows.

Let F be set of collections belonging the same family and
C(j) be set of all tasks belonging to collection j. For each
task i ∈ C(j) we obtain maximum value of used memory
ctask(i) from field assigned memory in instance usage table.
Then we compute an average memory required to run any tasks
belonging collection j: cavg(j) = 1

|C(j|
∑

i∈C(j) ctask(i). We
set family size as cfamily(F ) = maxj∈F cavg(j).

By obtaining time of SCHEDULE, FAIL, FINISH, KILL,
LOST events, we compute start (first SCHEDULE event) and
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(c) 50-100 tasks

Fig. 7: Comparison of different job sizes in DAG. In each case dataset contains 50 families. Setup times 10-20, 20 machines
of size 10.
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Fig. 8: Comparison of impact of setup times. All datasets contains 50 families and 1000 tasks in jobs of 50-100 tasks.
Experiments were run on 10 machines of size 10
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(b) 20 families
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(d) 100 families
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Fig. 9: Comparison of different family count. In all cases setup times are in range 100-200. We present results for 20 machines
of size 10, jobs containing 50-100 tasks (note: except last generated one)

end (last all of rest events) time of all collections. We set
family duration time as average value of duration of collections
with the same collection logical name. We estimate family
setup time multiplying its duration by random factor obtained
from discrete uniform distribution over range [10, 100).

We generate 20 samples each containing 100 randomly
chosen (without repetition) jobs. Figure 11 presents difference
between behavior of the algorithms for 20 machines of size 10.
To preserve clarity, we omit results for other machine counts
and sizes as changing those parameters give no difference in
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Fig. 10: Comparison of impact of machines count and capacities. All experiments were run on the same data, containing 1000
tasks in 50 families. Tasks are grouped in jobs containing 10-20 tasks. Family setup times are in range 10-20.
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Fig. 11: Comparison of different scheduling policies for
dataset created from Google Cluster Trace. Each dataset con-
tains 100 different chains of tasks. Each task corresponds to
one collection in Google Trace. For presented figure m = 20,
Q = 10 - to preserve clarity, we omit results for other
machine counts and sizes as changing those parameters give
no difference in observed results.

observed results.
This result confirms our results for experiments with gen-

erated data – we observed similar behavior for datasets with
larger (200, 500) number of families. While we observe no
difference between different scheduling and eviction methods,
enabling dependency awareness reduces observed average
latency.
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