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Abstract—Large-scale simulations of plasmas are essential for
advancing our understanding of fusion devices, space, and astro-
physical systems. Particle-in-Cell (PIC) codes have demonstrated
their success in simulating numerous plasma phenomena on HPC
systems. Today, flagship supercomputers feature multiple GPUs
per compute node to achieve unprecedented computing power at
high power efficiency. PIC codes require new algorithm design
and implementation for exploiting such accelerated platforms. In
this work, we design and optimize a three-dimensional implicit
PIC code, called sputniPIC, to run on a general multi-GPU
compute node. We introduce a particle decomposition data
layout, in contrast to domain decomposition on CPU-based
implementations, to use particle batches for overlapping com-
munication and computation on GPUs. sputniPIC also natively
supports different precision representations to achieve speed
up on hardware that supports reduced precision. We validate
sputniPIC through the well-known GEM challenge and provide
performance analysis. We test sputniPIC on three multi-GPU
platforms and report a 200-800x performance improvement with
respect to the sputniPIC CPU OpenMP version performance. We
show that reduced precision could further improve performance
by 45% to 80% on the three platforms. Because of these
performance improvements, on a single node with multiple GPUs,
sputniPIC enables large-scale three-dimensional PIC simulations
that were only possible using clusters.

Keywords-Nvidia GPU, implicit Particle-in-Cell, multi-GPU,
CUDA

I. INTRODUCTION

Large-scale supercomputers and parallel codes have enabled
unprecedented high-resolution and highly accurate plasma
simulations of fusion devices [1], space and astrophysical
systems [2], [3], [4], [5]. Traditionally, codes for plasma
simulations rely on MPI combined with OpenMP together with
a data layout that can take advantage of the cache hierarchies.
An example of such codes is iPIC3D [6], a Particle-in-Cell
(PIC) code for plasma simulations on supercomputers using
an implicit discretization of governing equations, hence an
implicit PIC code. iPIC3D targets large-scale parallel systems
and has achieved a parallel efficiency of 80% when running
weak scaling tests up to million cores on the IBM Blue Gene/Q
Mira at Argonne National Laboratory [7]. Today, the largest
supercomputers, such as Summit, Sierra, and Piz Daint, are
all equipped with multiple GPUs per compute node. With the
advent of GPUs on supercomputers, parallel PIC codes need
to be re-designed to exploit these accelerators’ computational
power.

In this paper, we introduce sputniPIC, a new implicit
three-dimensional PIC code that is designed and optimized
to exploit the computational power of multi-GPU systems.
The software takes its name from the fact that we mainly
run sputniPIC for space plasma simulations. We use the
same general algorithm of sputniPIC CPU-based counterpart
iPIC3D, which provides massive parallelism in hybrid MPI
and OpenMP [6]. While iPIC3D uses only double precision
for floating-point operations, sputniPIC supports native use
of single- and mixed-precision, to exploit the single-precision
floating-point units on GPUs. We use a hybrid approach when
designing the workflow, by executing solvers on the CPU,
while computationally intensive workloads such as particle
mover and interpolation are offloaded to available GPUs.
One significant design difference with iPIC3D is that we
perform Particle Decomposition for GPU threads instead of
Domain Decomposition. Furthermore, we exploit device-level
parallelism by implementing asynchronous data movement
using pinned memory and CUDA streams. To achieve this, we
introduce a novel particle processing scheme, called Particle
Batching, taking inspiration from data sample batching used
during the training of Deep Learning neural networks. Particle
batching does not only enable overlapping between communi-
cation and computation but also enables calculations on data
exceeding the size of available GPU memory. We summarize
our contributions as the following:

• We design and implement an implicit PIC code: sputni-
PIC, to exploit the computation power of a multi-GPU
system.

• We detail the design strategy and optimization technique:
Particle Batching to achieve high-performance execution.

• We introduce native support of multiple-precision rep-
resentations and achieved 45-80% when using single
precision, relative to using double precision on GPUs.

• We show that by running sputniPIC on a multi-GPU node,
it is possible to achieve a comparable performance of its
CPU counterpart iPIC3D when running on 4-8 nodes of
a Cray XC40 supercomputer.

The paper is organized as follows. We first introduce the
governing algorithms in implicit PIC codes in Section II.
Section III presents the design principles and optimization
techniques of sputniPIC. We describe the experimental set-
up and the simulation and performance results in Sections IV
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and V. We discuss previous work on implicit PIC and PIC
porting to GPUs in Section VII. Finally, we conclude the paper
by discussing some limitations and future work on the topic.

II. THE IMPLICIT PARTICLE-IN-CELL METHOD

The PIC method simulates plasma particles, such as elec-
trons and protons, as computational particles by computing
their trajectories. The forces between particles, e.g., Coulomb
and Lorentz forces, are calculated using a mean-field defined
on the nodes of a grid to avoid the direct calculation entailing
O(N2

p ) operations, where Np is the number of particles. We
calculate the fields on the grid points by solving Maxwell’s
equations given charge and current density on the grid. Details
of different formulation of PIC methods are presented in the
computational plasma physics textbooks [8], [9].

In the PIC method, after the initialization of particle posi-
tions, velocities, and electric and magnetic fields, three distinct
stages are repeated at each simulation time step: 1. Particle
Mover (also Particle Pusher), 2. Particle to Grid Interpolation
(or Moment Calculation), 3. Field Solver.

1. Particle Mover. The particle mover phase solves the
equation of motion for each computational particle with posi-
tion xp and a velocity vp. sputniPIC, exactly like iPIC3D,
uses an implicit in-time discretization scheme for the par-
ticle equations of motion. To solve the implicit discretized
particle equations of motion (here in CGS units), we use a
predictor-corrector scheme for calculating the average velocity
v̄p = (vn

p +vn+1
p )/2 during the time step ∆t with n indicating

the time level:

ṽp = vn
p +

q∆t

2m
Ēp (1)

v̄p =
ṽp + q∆t

2mc

(
ṽp × B̄p + q∆t

2mc (ṽp · B̄p)B̄p

)
(1 + q2∆t2

4m2c2 B̄
2
p)

, (2)

where p is the particle index, q,m are the particle charge and
mass, and c is the speed of light in vacuum. The number of
iterations to determine v̄p is either set by a prescribed error
tolerance or fixed to a small number of iterations. In this work,
we use three iterations for both electron and proton particles.
The v̄p calculation requires the electric and magnetic field at
the particle position, Ep and Bp. However, the values of the
electric and magnetic field values, Eg and Bg are only defined
at the grid points in the PIC method. To calculate these values,
the PIC method uses the interpolation (or weight) functions
W (xg − xp) defined as follows:

W (xg − xp) =

{
1− |xg − xp|/∆x if |xg − xp| < ∆x
0 otherwise.

(3)
In this case, we use linear interpolation function but higher
order interpolation functions can be used. With the usage
of interpolation functions, we can calculate the electric and
magnetic field at the particle position from these values on
the grid point g:

Ep =

Ng∑
g

EgW (xg−xp) Bp =

Ng∑
g

BgW (xg−xp). (4)

Once the particle average velocity is calculated, each particle
position and velocity is updated as follows:{

vn+1
p = 2v̄p − vn

p

xn+1
p = xn

p + v̄p∆t.
(5)

Detailed descriptions of mathematical derivation of sputniPIC
discretized equations can be found in [10], [11].

An important point for this work is that the mover takes
most of the computational time in PIC. While the actual
percentage of time taken for the particle from the mover
depends on the problem under study (the number of particles
and given CPU and memory systems), the particle mover
percentage generally varies between 68% and 73% [12] in
typical space simulations. GPU computing and particle decom-
position strategy, instead of traditional domain decomposition,
are effective approaches to speed up the particle mover step.

2. Particle to Grid Interpolation. In this stage, we calcu-
late the quantities that are input or sources for the field solver.
In the implicit PIC method, these quantities are charge density,
ρg , current density, Jg, and the pressure tensor density, Pg .
These quantities are all defined on the grid points and are
calculated from the particle positions and velocities. Similarly
to the calculation of electric and magnetic fields at the particle
position in the particle mover phase, we use the interpolation
functions W (xg−xp) to determine ρg,Jg, Pg at the grid point
g:

{ρ,J, P}g =

Np∑
p

q{1,vp,vp ⊗ vp}W (xg − xp). (6)

The particle to grid interpolation is the second most compu-
tationally intensive part of the PIC method. In simulations of
magnetic reconnection (an explosive phenomenon in Earth’s
magnetosphere), it typically takes approximately 25% of the
whole computational cycle [12]. Therefore, to use GPUs also
for this step improves the performance of the entire code.

3. Field Solver. The third and final step of the implicit PIC
method is the solution of discretized Maxwell’s equations on
the grid. This step takes ρg,Jg, Pg as input and computes Eg

and Bg . The implicit PIC solves a linear system arising from
the discretization of Maxwell’s equations implicitly in time
with a Generalized Minimal Residual (GMRes) linear solver.
In addition to GMRes, we solve a discretized Poisson equation
with the Conjugate Gradient (CG) at each computational
cycle to ensure the continuity equation is satisfied [11]. This
additional step is also called divergence cleaning. In typical
implicit PIC simulations, the linear systems solved with the
GMRes takes 5-10 × the time to solve the Poisson equation.
However, in implicit PIC simulations, the solver takes typically
only 6%. For this reason, in this work, the field solver is still
executed on the CPU, and we do not take advantage of multi-
GPU systems.

III. DESIGN AND IMPLEMENTATION

We design sputniPIC specifically for HPC systems acceler-
ated with multiple GPUs per node. sputniPIC leverages GPU
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Fig. 1. An overview of the sputniPIC workflow. Ns particles species
(Ns = 4 in the example) are split into M particle batches. Particle batches
are distributed over the available GPUs. GPUs compute moments ρs,Js,Ps

for species s from each particle batch and then stream to the host. The host
updates the fields (E, B). Updated fields are then used by GPUs to update
particle positions.

for the compute-intensive particle mover and interpolation
while solving fields on CPU. Figure 1 illustrates the main
workflow. Particles are separated into species, e.g., species 0-
3. For each species, sputniPIC launches an independent stream
on GPU for particle mover and moments interpolation. These
streams are distributed over all the available GPUs. At each
time step, GPUs interpolate moments from all species, and
then the host uses the moments, i.e., ρ, J, and P , for solving
electric and magnetic fields. Once these fields are updated, i.e.,
E and B in Fig. 1, they are transferred to the GPUs to update
particle positions and velocities.

A. Particle Decomposition

We design a particle decomposition scheme in sputniPIC.
Typical PIC simulations use billions of particles that dominate
the computation time and memory footprint. The distribution
of these particles in a simulation box can be highly skewed
depending on the physics phenomena. Therefore, domain
decomposition, a common design of HPC applications on
distributed systems, can result in a significant load imbalance
on GPUs. Also, if the simulation box is decomposed into mul-
tiple subdomains, when a particle moves from one subdomain
to another, particle communication becomes necessary. This
communication is dynamic and irregular as the number of
particles moving out of a subdomain is only known at runtime.

Our design decomposes particles to multiple GPUs. Each
GPU is assigned species in a round-robin fashion. As species
typically have similar particle count, this results in a fair share
of particles per GPU. Each GPU also keeps a private copy of
fields of the whole simulation box, including moments and
electric and magnetic fields. Note that even fields of the entire
simulation box require a much lower memory footprint than
that of particles. During the particle interpolation, each GPU
deposits the moments from their particles to their local copy of

fields. These fields of moments, i.e., ρ, J, and P, from all GPUs,
are then consolidated on the host for updating the electric and
magnetic fields.

One challenge in the particle decomposition is the reduced
data locality of the field data structure when particles start
moving in the simulation box as the simulation evolves. At the
beginning of the simulation, particles assigned to each GPU
mostly reside in proximity in the simulation box. Therefore,
interpolating their moments to the field will likely access the
same subdomain of the field, exhibiting a good cache locality
on the field data structure. As the simulation evolves, particles
start moving in the simulation box so that interpolation will
likely update to different subdomains of the fields, resulting in
low data locality. We address this challenge by particle sorting
and re-decomposition. sputniPIC triggers particle sorting to
order particles by their position in the simulation and then
re-assigns particles in proximity in the simulation box to
GPU. This procedure is typically infrequent and improves data
locality in particle interpolation and mover.

B. Particle Batching and Pipelining

We design a particle batching scheme to improve com-
munication and computation overlapping and enable large
simulations beyond the GPU memory capacity. Each PIC
simulation may use multiple particle species, such as electron
and protons, with different charges and mass ratios. These
species could have different particle populations, e.g., elec-
trons in the background with no drift velocity or electrons
with a drift velocity forming a current. sputniPIC separates
different particle species into separate streams of operations
to maximize throughput. Each stream performs interpolation
and mover independently on different particle species without
data dependency.

Each particle species may have a large number of particles
that exceed the GPU memory capacity. sputniPIC further
divides each particle species into a finer granularity, called
particle batches. Particle batching improves the pipelining of
communication and computation within one particle species.
Also, particle batches from different particle species could
overlap with each other. Data transfer for one particle batch
can be effectively overlapped with the computation of another
batch. If not all particles can fit in the GPU memory, sputniPIC
inserts a swapping operation to swap out particle batches
before bringing new batches for computation on the GPU. The
batch size is a configurable parameter in sputniPIC because
its optimal value depends on the underlying hardware and
simulation setup.

sputniPIC fuses particle interpolation and mover into one
pass to improve data reuse in the cache and reduce kernel
launching overhead. As we discussed before, PIC codes consist
of major steps of particle interpolation, field solver, and then
particle mover, where the output from a step is used as input
for the next one. In the particle interpolation, all particles are
iterated to deposit their charges and moments to the field. In
the particle mover, all particles are iterated to update their
positions by the field forces. By fusing these two steps, each



particle only needs to be fetched into the cache once, and data
reuse can be improved. Therefore, sputniPIC merges the two
steps into one kernel such that once the position of a particle
is updated, the new position is used for interpolating particle
charges and moments to the field immediately. This single-pass
particle computation significantly reduces the data movement
on GPU and kernel launching overhead.

C. Multi-precision Support

sputniPIC adopts normalized units in simulations and lever-
ages the statistical nature of PIC codes to tolerate low-
precision calculations. PIC simulations are inherently noisy
since they rely on a statistical description of the plasma
by using particle distribution functions. Massive amounts of
particles are used in a simulation to reconstruct statistically
representative distribution. However, this also causes the par-
ticle data structure to dominate the memory footprint. Modern
GPU hardware supports fast and power-efficient low-precision
arithmetics. For instance, Nvidia Volta V100 GPUs have
64 single-precision ALU but only 32 double-precision FPUs
per Streaming Multiprocessor [13]. Naturally, changing the
particle data structure from double to single precision could
directly halve the memory footprint and data movement on
GPU and speed up the computation.

sputniPIC features a particle data structure to support dif-
ferent precision requirements. The users are provided with
the flexibility to select the precision format based on the
simulation setup. One challenge of directly replacing double-
precision floating-point format with lower precision formats
is the possibility of leading to large rounding errors. To
address this problem, a user can choose to employ a mixed-
precision approach: double-precision for field data structure
and field computation, while keeping single-precision on the
GPU for the particle mover and interpolation quantities. In
other words, sputniPIC achieves mixed-precision compute by
using different precision in different parts of the PIC cycle,
where incoming data are cast as appropriate.

D. Implementation

We implement sputniPIC as a C++/CUDA code with
OpenMP parallelization on the host. sputniPIC features the
Structure of Array (SoA) data layout to simplify data transfer
to GPU. Unlike the Array of Structure (AoS) data layout, no
temporary copies or staging are required before transferring
data between GPU and CPU. The particle data structures can
be implemented in either single or double precision. Similarly,
the field data structures can be in single or double precision
floating operations, with a private copy on each GPU and the
host.

sputniPIC uses pinned host memory to avoid extra data
copy from the host pageable memory to the pinned host array.
CUDA performs Direct Memory Access (DMA) through PCI-
E or NVLink to transfer data between the device and host.
However, DMA cannot directly access the host pageable mem-
ory region so that data in this address space must be copied
to a staging area before DMA transfers. sputniPIC allocates

data structures that need to be communicated between host
and GPU in the pinned host memory directly to avoid this
extra data copy.

sputniPIC takes advantage of multiple CUDA streams
to implement the particle batching and pipelining strategy.
These streams are distributed over all the available GPUs
to exploit multi-GPU systems. The performance of parti-
cle computation scales up almost linearly with the number
of used GPUs. Asynchronous memory communication with
cudaMemcpyAsync() is used for data transfer in the
CUDA streams.

IV. EXPERIMENTAL ENVIRONMENT

We compiled sputniPIC using CUDA 10.1 and evaluated
its performance on three platforms. The architecture of each
system is summarized as follows:

• 2xP100 + Intel is a GPU node on Flash cluster at
Livermore Computing. The node consists of an Intel
Xeon E5-2670 processor with 256 GB DRAM and two
Nvidia Tesla P100 GPUs with 16 GB HBM each. CPU
and GPU are interconnected by PCIe links. The node runs
RHEL 7.7 and the host compiler is GCC 8.1.

• 2xV100 + Intel is a GPU node on Kebnekaise at HPC2N
in Umeȧ. It has two Intel Xeon Gold 6132 processor
(2 × 14 cores) with 192 GB RAM. The node has two
Volta V100 GPUs with 16 GB memory and the GPU is
connected through PCIe. The operating system is Ubuntu
16.04 and the host compiler is GCC 8.3.

• 4xV100 + Power9 is a node on the unclassified Sierra
system, Lassen cluster. Each node has an IBM Power9
processor with 256 GB DRAM and four Volta V100
GPUs. Each GPU has 16 GB HBM2 device memory. The
GPUs are interconnected through NVLINK2 to CPU. The
system runs REHL 7.6 and GCC 8.3.

We choose a well-known simulation challenge in space
physics – the GEM challenge [14] – for simulating the
magnetic reconnection phenomenon. The simulation used pa-
rameters that are derived from observations of the Earth
magnetotail. Our simulation uses a three-dimensional domain
box that is more realistic than the simplified two-dimensional
configuration in the original GEM challenge. Furthermore, our
simulation features a higher charge-to-mass ratio, 64, instead
of 25, to mimic a realistic ion-to-electron mass ratio. The grid
consists of 128 × 64 × 64 cells and four particle species are
in use. Each particle species is initialized with 125 particles
per cell. The total number of particles is approximately 2.6E8.
For the performance evaluation, we advance the simulation for
100 time steps, with each step equal to ωpi∆t = 0.25, where
ωpi is the ion plasma frequency. We also perform a complete
simulation of the GEM challenge in 3,000 computational
cycles and present the results of this simulation in Section V.

We compare the performance of sputniPIC in single-
precision and double-precision on GPUs and also on CPU-
only baseline that is parallelized with OpenMP. When using
OpenMP, we set the number of threads to be equal to the
number of cores on a compute node. To have a comparison



Fig. 2. Iso-surfaces of ion charge density with superimposed magnetic
field lines after 3,000 computational cycles in a three-dimensional sputniPIC
simulation of the GEM challenge test.

with iPIC3D, we perform the same performance tests running
iPIC3D on a Cray XC40 supercomputer (called Beskow)
that has not GPU. Each Beskow node features two 16-cores
Xeon E5-2698v3 Haswell processors. We compare sputniPIC
performance with that of iPIC3D running on one, two, four,
and eight Beskow nodes. In this work, we choose the optimal
configuration (Section V-C) on the 2xV100 + Intel system for
all the tests on the three different platforms: 256 Threads per
Block (TPB) are used, together with 16 particle batches per
species.

The performance comparison uses Millions of Particles
Advanced and interpolated per second (MPA/s) as the figure
of merit reported in the result section. We calculate MPA/s
from dividing the total number of particles in the simulation
by the time spent in the particle mover and interpolation
per computational cycle. We use MPA/s as the performance
indicator because the particle mover and interpolation phases
dominate the execution time. We report the average over
100 cycles together with the standard deviation to show the
performance variability.

V. EVALUATION

In this section, we first present the simulation results of the
GEM challenge, and then we show the sputniPIC performance
results.

A. Simulation Results

Our first test is to verify that sputniPIC produces the
correct simulation results with a physical meaning. We run the
GEM challenge test for 3,000 cycles and verify that magnetic
reconnection occurs correctly with the generation of plasma
jets and the reorganization of the magnetic field topology.
Visually, Fig. 2 shows the correct and expected behavior: we
can observe the expected formation of plasma jets represented
by iso-surface of ion charge density, ρi. We can also observe
the formation of a magnetic field island represented by the
magnetic field lines (white lines).

CPU OMP (Single) GPU (Double) GPU (Single)
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iPIC3D 32 cores

iPIC3D 64 cores

iPIC3D 128 cores

iPIC3D 256 cores

2xP100 + Intel

2xV100 + Intel

4xV100 + Power9

Fig. 3. Performance of sputniPIC particle mover and interpolation on
our multi-GPU platforms. The corresponding performance of iPIC3D on
Beskow supercomputer is plotted as lines for comparison. The relatively
low performance of sputniPIC CPU OMP to iPIC3D is because of the
interpolation step that cannot be completely parallelized. On the GPU this
step is implemented with CUDA atomics.

B. Overall Performance

In this section, we compare the performance that we empir-
ically measured on our three systems running the sputniPIC
particle movers and interpolation, and position that perfor-
mance to the original iPIC3D code in order to reason around
the gains of specializing our particle-in-cell method towards
modern GPUs. Fig. 3 shows the performance for our different
systems.

We start by observing that the CPU-only version of sputni-
PIC parallelized with OpenMP experience significantly lower
performance (less than 30 MPA/s) than those that involve
GPUs; we can observe nearly a magnitude of performance
difference between sputniPIC on CPUs compared to sputniPIC
on GPUs. We also note that the performance is fairly uniform
across the different CPU architectures, leading to similar
performance profiles for sputniPIC running on both Intel and
IBM Power9 processors.

The GPU-accelerated versions running on NVIDIA P100
and V100 are significantly faster than the OpenMP versions,
and experience between 180 MPA/s and 800 MPA/s, depend-
ing on the type, the number of accelerators, and the numer-
ical representation. We observe that both the NVIDIA P100
and V100 GPU both experience a significant speedup (up-to
approximately 90% increase) when going to single-precision.
Overall, we note that for sputniPIC, relaxing the numerical
representation is a viable way of increasing GPU performance.
We also note that the performance increase experienced by
sputniPIC when moving across two generations of NVIDIA
GPUs (P100 and V100) is 35% and 46% for single-precision
and double-precision respectively.

When we position sputniPIC to its parent, the iPIC3D
code running on the Beskow supercomputer, we note several
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Fig. 4. Impact of performance using a different number of particle batches
per species and threads per block on the 2xV100 + Intel system. We do not
report the error bars as the standard deviation is less than 5%.

advantages of using GPUs. The performance reached on the
dual NVIDIA P100 systems is slightly higher than that of
two nodes of Beskow (64 cores), both reaching 180 MPA/s
(186 MPA/s for 2xP100 and 178 MPA/s for two Beskow
nodes). A similar performance increase can be seen for the
two and four NVIDIA V100 systems, which can deliver
performance equivalent to three Beskow nodes (2xV100) and
four Beskow nodes (4xV100) of performance. If allowed to
run using single-precision arithmetics, our largest GPU-node
(4xV100) would reach an impressive 0.8 GPA/s, which would
be faster than eight Beskow nodes of iPIC3D (which runs
double-precision).

Overall, we can conclude that the addition of GPUs for
PIC codes, such as sputniPIC, and the specialization of PIC
methods to leverage GPUs can significantly boost single node
performance and provide comparable performance to that of
multiple nodes of existing supercomputers.

C. Impact of Particle Batch and Thread Block

The optimal number of particle batches and TPB depends
on the platform. By investigating Fig. 4 (performance on the
2xV100 + Intel system), it is clear that performance varies
slightly with the number of TPB. The CUDA block size does
not have a significant impact on the results, varying by just
a few percent, which is within the margin of error for the
measurement. On the other hand, the number of batches had
a larger impact: an increased number of batches, e.g., fewer
particles per batch, improves the performance up to 16 particle
batches per species, where the performance gain leveled off.
Updating the particles in 16 batches instead of one batch
provides a performance increase between 20-25%.

D. Multi-precision Compute

One important feature of sputniPIC is the native support
of single precision. Furthermore, it is possible to use mixed-

Fig. 5. Absolute error by data point-wise comparison in rhoe, against the
same sputniPIC simulation in double-precision. Using mixed-precision (left)
gives improved accuracy over single-precision (right).

precision, where the GPU workloads are computed in single-
precision with CPU workloads in double-precision. By switch-
ing the entire simulation from double to single precision, we
observe an increase in error on all products. For instance, rhoe
and rhoi give an error norm of 2.8506 and 2.9637 respectively.
However, once mixed-precision is used, they reduced to 2.5379
(-10.97%) 2.6451 (-10.75%). At the same time, there is little
to no impact on the error on the fields, since their input data
are computed in single-precision. The error data point-wise
error of rhoe is visualized in Fig. 5 where the product from
single-precision runs gives a larger area with redness (higher
in error). We note that mixed-precision has very little impact
on the GPU kernel’s performance, where the overhead of value
casting is introduced.

E. Computation and Communication Overlapping

The performance of particle mover and interpolation relies
on efficient overlapping between the communication and com-
putation in time when the particles are batched onto GPU.
Fig. 6 shows the profiling information from sputniPIC during
one iteration of the particle mover and interpolation using
the Nvidia Visual Profiler. We use four particle species and,
therefore four streams. 16 particle batches per species are used
in this test.

VI. DISCUSSION

In this work, we designed and implemented an implicit
PIC code specifically for compute nodes with multiple GPUs.
The new sputniPIC code uses the same numerical algorithm
and basic building blocks of the iPIC3D code [6]. One main
contribution in sputniPIC is the novel particle decomposition
design, instead of the domain decomposition in iPIC3D,
to effectively utilize the massive parallelism on multi-GPU
accelerated platforms. Another contribution in sputniPIC is the
native support for different precision representation that could
take advantage of modern GPU single-precision compute to
further accelerate physics simulation. Finally, sputniPIC also
proposes a convenient data layout of particle information
for multiple GPUs. For the implementation, we achieve ef-
ficient overlapping between computation and communication
by using CUDA pinned memory, streams, and asynchronous
memory transfers. The particle mover and interpolation phases
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Fig. 7. An experimental simulation for 500 cycles with and without particle
sorting. The run with sorting is able to maintain high computation rate.

show a considerable performance improvement on all three
platforms.

After the improvement of 200-800x in the particle mover
and interpolation with respect to the performance without
GPU, the field solver is now the performance bottleneck in
all the three platforms. On the platform, the field solver is
now 6x slower than the fused mover and interpolation. Our
current task is to port the field solver or part of it (the residual
calculation at each iteration) to GPU.

During a long simulation of 3,000 cycles, we noticed the
performance of the GPU execution decreases over time. We
investigate this on a local development platform through the
CUDA Visual Profiler. We observe a sharp decrease in L2
cache hits together with a reduction in performance over time.
While the benchmark runs in our performance results are
relatively short and are not impacted heavily, this can seriously
hamper long-running simulations. For this reason, we experi-
mented with particle sorting in Fig. 7 on our local development
platform with a 500 cycles simulation, with a tunable sorting
period of 10 cycles, versus when no sorting is applied. It can
be clearly observed that by invoking particle sorting, we are
able to maintain a high and consistent performance of over
200 MPA/s over time, while the simulation without sorting

quickly drops to 50 MPA/s at cycle 500.
A limitation of this work is that the current sputniPIC im-

plementation does not support simulations on multiple nodes
with GPUs. We are currently investigating the possibility
of combining particle and domain decompositions to extend
sputniPIC to use multi-node systems with MPI.

One of the most important results of this paper is that
this work shows that an application specifically designed for
modern multi-GPU systems could achieve performance that
is comparable to the performance of highly tuned MPI code
running on 4-8 nodes of a supercomputer without GPUs. This
allows us to perform large-scale simulations, previously only
possible on supercomputers, on a single node with multiple
GPUs.

VII. RELATED WORK

The PIC method is one of the main computational tools for
the simulation of space, astrophysical, and fusion plasmas [8].
The PIC method was initially developed in the late Fifties
and early Sixties and then further improved by using more
sophisticated numerical schemes, such as semi-implicit and
fully-implicit schemes [11], and combining fluid and kinetic
equations for plasmas [10]. In this work, we use the iPIC3D
code algorithm that was initially developed at Los Alamos
National Laboratory in 2005. During the last decades, the code
has been improved by using advanced algorithmic paralleliza-
tion strategies and optimized I/O [7], [15].

The PIC method is conveniently suited to exploit GPUs
because of the particle mover can be easily expressed as vector
operations. Several studies have focused on developing PIC
codes specifically for GPU systems. The first seminal work
on PIC porting to GPU systems is by Stantchev et al. [16]: in
particular, the paper presents introduces an optimized particle-
to-grid interpolation. Optimization of the data layout in Fortran
PIC codes for GPUs is presented in Refs. [17], [18]. Widely-
used code, such as WarpX [19], Osiris [20] and VPIC [21].
However, all these previous works and PIC codes use an
explicit in-time discretization of the PIC algorithm, and porting
of implicit PIC method does not exist in the literature.



VIII. CONCLUSIONS AND FUTURE WORK

Current state-of-the-art supercomputers feature multiple
GPUs on each compute node to achieve high-performance
computation with low power consumption. In order to exploit
their computational power, existing software needs to be
redesigned to adapt to the new programming and execution
model. To enable fast PIC simulations on multiple GPUs, we
introduced sputniPIC, an implicit PIC code that uses GPU
friendly data layout and provides native support of multiple-
precision in computation. The code takes a hybrid approach
where the solvers are executed on the CPU and particle
data computation is offloaded to the GPUs. Furthermore,
we implemented a Particle Batching scheme for batched
particle computation, similar to the use of batched training
of Deep Learning networks. Particle batching not only allows
the computation of particle data that does not fit into GPU
memory but also exploits asynchronous data movement to
overlap with computation. We evaluated the correctness of
the output products through a well-know GEM challenge and
provided an in-depth analysis of the performance impact of
particle batching, thread block sizes, and precision. Through
performance testing, we showed that sputniPIC running with
single precision on multi-GPU nodes can achieve a comparable
performance of its CPU counterpart, iPIC3D when running on
four to eight nodes of a Cray XC40 supercomputer.

One performance issue in sputniPIC is the reduction in
particle mover and interpolation performance when the com-
putation cycle increases. A reason, according to the profiler,
is due to a reduction in the L2 cache hit rate. To improve
cache efficiency, we implemented a particle sorting scheme
that improves cache efficiency by periodically sorting particles
according to their cell location.

Currently, sputniPIC supports execution on a multi-GPU
node and a major limitation is that it does not support multi-
node execution. While being able to provide a comparable
performance of multi-node execution on CPU, this limits the
scalability when very large simulations are performed. For this
reason, we are currently extending our particle decomposi-
tion scheme to support Hierarchical Particle Batching, where
particles are first batched across computing nodes through
MPI and further batched for GPUs within the nodes. We aim
to introduce more advanced features and novel techniques
in sputniPIC, such as multi-node support with hierarchical
particle decomposition through MPI, as future work.
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