
Improved Computation of Database Operators via
Vector Processing Near-Data
Sairo Raoní dos Santos ( sairo.santos@ufersa.edu.br)

Federal University of Paraná
Tiago Rodrigo Kepe

Federal University of Paraná
Marco Antonio Zanata Alves

Federal University of Paraná

Research Article

Keywords: database query operators, near-data processing, smart memories

Posted Date: July 7th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1809559/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1809559/v1
mailto:sairo.santos@ufersa.edu.br
https://doi.org/10.21203/rs.3.rs-1809559/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 LATEX template

Improved Computation of Database

Operators via Vector Processing Near-Data

Sairo R. dos Santos1,2*, Tiago R. Kepe2† and Marco A. Z.

Alves2†

1*Department of Exact Sciences and Information Technology,
Federal Rural University of the Semi-arid, Gamaliel Martins

Bezerra Street, Angicos, 59515-000, RN, Brazil.
2Department of Informatics, Federal University of Paraná, Cel.
Francisco H. dos Santos Av., Curitiba, 81531-970, PR, Brazil.

*Corresponding author(s). E-mail(s): sairo.santos@ufersa.edu.br;
Contributing authors: tiago.kepe@ifpr.edu.br;

mazalves@inf.ufpr.br;
†These authors contributed equally to this work.

Abstract

Data-centric applications are increasingly more common, causing issues
brought on by the discrepancy between processor and memory tech-
nologies to be increasingly more apparent. Near-Data Processing (NDP)
is an approach to mitigate this issue. It proposes moving some of the
computation close to the memory, thus allowing for reduced data move-
ment and aiding data-intensive workloads. Analytical database queries
are very commonly used in NDP research due to their intrinsics usage of
very large volumes of data. In this paper, we investigate the migration of
most time-consuming database operators to VIMA, a novel 3D-stacked
memory-based NDP architecture. We consider the selection, projection,
and bloom join database query operators, commonly used by data ana-
lytics applications, comparing Vector-In-Memory Architecture (VIMA)
to a high-performance x86 baseline. We pitch VIMA against both a
single-thread baseline and a modern 16-thread x86 system to evaluate
its performance. Against a single-thread baseline, our experiments show
that VIMA is able to speed up execution by up to 5× for selection,
2.5× for projection, and 16× for join while consuming up to 99% less
energy. When considering a multi-thread baseline, VIMA matches the

1

Springer Nature 2021 LATEX template

2 Improved Computation of Database Operators via Vector Processing Near-Data

execution time performance even at the largest dataset sizes consid-
ered. In comparison to existing state-of-the-art NDP platforms, we find
that our approach achieves superior performance for these operators.

Keywords: database query operators, near-data processing, smart memories

1 Introduction

After several decades of precipituous advancements in processor speed, main
memory technology, Dynamic Random Access Memory (DRAM), has lagged
behing significantly, failing to progress at the same rate. The latency in access
of data stored in DRAMs was only reduced by 30% between 1997 and 2017 [1].
Meanwhile, processors continue to advance in speed at an average rate of 20%
per year [2]. This disparity poses an issue to all modern computers: they must
move all data from the memory to the processor for processing, as required
by the von Neumann architecture design. The discrepancy between processor
and memory speed causes a myriad issues largely referred to as the memory
wall [3].

The memory wall is even more relevant currently, as interest in big-data
applications is ever increasing. Such applications deal with enormous volumes
of data, thus requiring a lot of data movement for processing, which is onerous
in both time and energy consumption [3–5].

Cache hierarchies placed next to the processing cores, which are now ubiq-
uitous in all modern computer systems, are the main mitigation strategy for
the problems caused by data movement. Cache memories are used to store
data that gets fetched from the memory, assuming it might be requested by
the application again soon, at which point they can be provided much faster.
Whenever the data access patterns of an applications involve reusing the same
data in close succession, this assumption greatly benefits the system, as the
data is now available close to the processor and does not require fetching from
the main memory again. However, it is increasingly common for applications
to not present such locality of reference, accessing data in a streaming-like pat-
tern [6–9]. For this class of applications, current modern computer systems are
unable to mitigate the penalty of accessing the main memory to fetch required
data. They will then provide poor execution time and energy consumption
performance when running such applications.

The era of Big Data is mainly characterized by the increasingly relevancy of
applications that fit this description as they primarily analyze large datasets.
In fact, according to some authors [10], the ’big data’ term itself carries the
implication that such applications are ill-equipped to handle such volumes
of data. Such behaviors regarding data access cause researchers to consider
unorthodox methods. One such method consists in implementing processing
near the data, e.g. close to the main memory, to avoid systems being forced
to move data all the way to the processor whenever beneficial. Such approach

Springer Nature 2021 LATEX template

Improved Computation of Database Operators via Vector Processing Near-Data 3

enables systems to better suit applications that are data-centric, as opposed to
applications that are computation-centric [4]. The field of research that studies
and proposes architectures that fit that description is known as Near-Data
Processing (NDP).

NDP research often uses big-data applications to evaluate architecture
proposals and showcase results, as they expose the memory wall issue.
Thus, several works in the literature that apply different NDP concepts and
architectures to fields such as artificial intelligence, genome sequencing, and
computational fluid dynamics [11].

One such field is analytical database queries, which deal with very large
datasets by design and, thus, are also very commonly targeted by NDP
research. Much work is found in the literature describing efforts to filter data
near the memory [12], implement major database query operators for NDP
hardware [13], and provide frameworks for processing database applications
near-data [14].

Most existing work focused on analytical database applications have
focused on data streaming operators, such as selection and projection, which
suit NDP well due to their coalescent access patterns and low data reuse. How-
ever, operators with data reuse behavior that benefit from data caching are
also critical for NDP [13].

In this paper, we migrate common database query operators to run on
Vector-In-Memory Architecture (VIMA), a novel NDP architecture [15]. We
analyze how such operators perform regarding execution time and energy
consumption compared to implementations for an x86 system with AVX-512
extensions. Our main contributions are:

• We implement near-data versions of common database operators and provide
a simulation-based performance evaluation of such implementations.

• We implement a near-data bloom join database operator and provide a
simulation-based performance evaluation of such implementations.

• We discuss the benefits of near-data processing when running analytical
workloads over large datasets, comparing performance against a modern x86
system.

• We compare the performance of the NDP architecture with that of a modern
16-thread x86 traditional architecture.

• We simulate and evaluate the performance of database operators on a near-
data multi-threaded context.

Our work is, as far as we are aware, the first to use a near-data architecture
based on large vectors to implement and evaluate perfromance of database
operators, migrate the bloom join operator near-data and also the first to
consider an multi-threaded near-data processing environment.

In our simulation environment, VIMA is able to outperform the x8e base-
line for all database query operators, considering both a single-thread x86
baseline and a 16-thread x86 baseline. It speeds up execution by up to 16×
for the join operator considering a single-thread baseline, while consuming up

Springer Nature 2021 LATEX template

4 Improved Computation of Database Operators via Vector Processing Near-Data

to 99% less energy. Our results are superior to the related work in reducing
execution time and saving energy when considering large input sizes.

Outline: In Section 2, we describe the NDP architecture used for our
experiments, pointing out how it enables faster processing near the memory
for applications dealing with large data sets and a set of behaviors. In Section
3, we detail our implementations of the NDP database query operators. In
Section 4, we present and discuss our results. In Section 5, we present related
work, describing other NDP work aimed at database processing. Section 6
describes our conclusions.

2 Background on Near-Data Processing

Near-Data Processing (NDP) is an approach to computation that moves
processing close to the data, thus reducing data access times and energy con-
sumption when processing data-intensive tasks. The concept of NDP extends
the von Neumann architecture model by adding processing capabilities outside
of the processor and near the memory, thus eliminating the need for some of
the data movement between memory and processor that is required by the tra-
ditional model. Instead of moving massive amounts of data from the memory
to the processor for processing, an NDP architecture can move only a few bits
of data from the memory containing an instruction that will be then offloaded
for near-data execution. When considering data-centric applications that con-
stantly access data, using such an approach significantly reduces execution
time and energy consumption at the same time as it exploits the parallelism
and internal bandwidth of the main memory in systems.

While the first few NDP proposals first surfaced back in the last 1990s [16,
17], implementing processing and storage elements on the same hardware was
not feasible at the time and, since systems still has much performance to gain
from allowing Moore’s law to follow its course, the idea was not widely pursued
and thus saw very little advancement for many years. However, as Dennard
scaling began to show signs of exhaustion [18] and Through-Silicon Via (TSV)
technology [19] became viable, yielding the first few 3D-stacked memories,
NDP has again sparked the interest of researchers.

The era of Big Data has meant that applications are increasingly more
data-centric [20], which means the von Neumann bottleneck and the memory
wall are ever more relevant, seeing as the most significant source of inefficiency
and energy consumption in modern systems is data movement [21]. In hopes
of mitigating the impact of such inefficiency in both execution time and energy
consumption, the NDP approach brings computation to the data by placing
processing elements near the memory, thus reducing most costs associated with
moving data across the system.

In general, NDP is better suited to applications that access large volumes
of data in a coalescent fashion, meaning they do not benefit from traditional
cache hierarquies. Considering a traditional system, this means such programs
access the main memory for nearly every data access, thus experiencing longer

Springer Nature 2021 LATEX template

Improved Computation of Database Operators via Vector Processing Near-Data 5

execution times and increased energy consumption due to this constant data
movement between memory and processor. On the other hand, such a situation
is oftentimes ideal for near-data execution.

A simple experiment can illustrate the effects of NDP execution of a data-
hungry application in comparison to a traditional system. Figure 1 shows the
results of an experiment that compares the performance of a traditional sys-
tem with a 16 MB last level cache with that of a NDP architecture. Both
systems run an application that performs a simple integer comparison over a
large vector. Observed variables were input size (memory footprint), iterations
(repetitions over the same data) and number of baseline threads.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1
x

2
x

4
x

8
x

1
6

x

1
x

2
x

4
x

8
x

1
6

x

1
x

2
x

4
x

8
x

1
6

x

1
x

2
x

4
x

8
x

1
6

x

1
x

2
x

4
x

8
x

1
6

x
Data Reuse

1 Thread

Data Reuse

2 Threads

Data Reuse

4 Threads

Data Reuse

8 Threads

Data Reuse

16 Threads

S
p

e
e

d
u

p

1MB 4MB 16MB 64MB

0

1

2

3

1x 2x 4x 8x 16x

Data Reuse

8 Threads

Fig. 1 NDP performance compared to traditional x86.

Whenever the input data fits the last level cache of the baseline system,
as one would expect, execution on the baseline system is aided by the cache
hierarchy and is thus preferable to the near-data option. However, when input
data overwhelms the last level cache, data reuse is no longer possible, meaning
the baseline is forced to reload data for repeated iterations of the application.
From this point on, near-data execution achieves better performance and is,
therefore, preferable. This improvement can be seen in Figure 1 when observing
the 64 MB results, where the improvement the NDP alternative offers increases
sensibly with the number of application iterations on the baseline, as opposed
to the other data sizes, which fit in the last level cache.

Some of the most common approaches to NDP are: (i) in-cell accelerators,
which modify the behavior of memory cells to enable in-memory process-
ing [22–24]; (ii) in-memory accelerators, which add logic to memory devices,
oftentimes to the logic later of 3D-stacked memories [13, 15, 25–29], and; (iii)

Springer Nature 2021 LATEX template

6 Improved Computation of Database Operators via Vector Processing Near-Data

near-memory accelerators, which place separate devices close to the memory
using off-chip connections [30–32].

Figure 2 shows a diagram of a 3D-stacked memory. Such devices are made
possible by TSV connection technology, which allows for vertical integration of
Dynamic Random Access Memory (DRAM) layers. Memory space is split into
up to 32 logically independent vaults, allowing for high internal bandwidth.
The device also includes an underlying logic layer where processing elements
can be placed, thus enabling near-data computation and bypassing the need
for data movement.

DRAM layers

LOGIC layer

Vault

Fig. 2 Block diagram of a 3D-stacked memory.

For our experiments we consider HMC Instruction Vector Extensions
(HIVE) [26], a 3D-stacked memory-based NDP architecture. HIVE is a general-
purpose architecture with a readily available simulation environment and
several existing works in the literature documenting and extending its capabili-
ties [13, 15, 27]. It uses large vector instructions that leverage the large internal
bandwidth of 3D-stacked memories for improved performance, extending the
processor ISA with its own specific instructions for simplicity of front-end
instruction handling. We further extend this architecture by adding a dedi-
cated near-data cache memory to the architecture, which we use to store and
reuse vectorized data. Such storage is added in place of the register bank used
in the original research paper that describes HIVE [26]. The resulting design
is called Vector-In-Architecture (VIMA) [15].

VIMA communicates with the host processor through an instruction
sequencer, which emits memory requests to the memory and handles vector
operands. All data is stored in a 256 KB dedicated cache and processed with
a set of 512-bit vector units used to operate over 8 KB vectors. Figure 3 shows
the architecture.

VIMA instructions are inserted into the machine code by the compiler,
much like many other NDP proposals that extend the Instruction Set Archi-
tecture (ISA)t of host processors with their specific instructions or other vector
extensions like Intel Advanced Vector eXtensions (AVX) or ARM NEON.

Springer Nature 2021 LATEX template

Improved Computation of Database Operators via Vector Processing Near-Data 7

VIMA-specific instructions behave the same as regular memory instructions as
they move through the processor pipeline, being offloaded to the near-memory
device when they reach the execution stage. All VIMA instructions assume
8 KB vector operands and each cause up to two data loading operations and
one data storing operation of 8 KB to the main memory. This vector size was
chosen considering a 3D-stacked memory with 32 independent vaults and a
256 B row buffer, meaning 8 KB operands cause the device to request 256 B
from each memory vault.

Improved parallelism in data access is one of the main features of 3D-
stacked memories, which is another reason why such devices are so well suited
to NDP. Thus, much like many other NDP solutions, VIMA fetches data in
parallel from the several independent vaults, taking advantage of both the
internal parallelism and increased bandwidth of the 3D-stacked memory. All
data is stored in the dedicated cache memory, which is checked for existing
data before load and store requests are sent to the main memory. Data is only
fetched from the memory if it is not yet stored in the cache. Instruction execu-
tion starts once all operand data is successfully stored in the cache. Whenever
an instruction finishes execution or causes an exception, its status is updated
accordingly.

3D Stacked MemoryProcessor

Core

ALUFetch Decode
Rename

Dispatch

Write

Back

Memory Order Buffer

Cache

Hierarchy

MMU/

TLB

Last Level

Cache

VIMA

instruction

VIMA

instruction

VIMA inst.

(status)

VIMA inst.

status

Vault 0

logic

Vault 1

logic

Vault 31

logic

B0 B1

B2 B3

B4 B5

B6 B7

T

S

V
B0 B1

B2 B3

B4 B5

B6 B7

T

S

V
B0 B1

B2 B3

B4 B5

B6 B7

T

S

V

...

Crossbar switch

VIMA

VIMA Cache

Memory

Addr.

& Data

Ld/St Cmd.

Result

+ zero

Instruction sequencer

8 KB

Op.

L1 Cache

DRAM

Layers

Logic

Layer

Reorder Buffer

Fig. 3 3D-memory module with VIMA architecture.

2.1 Intrinsics-VIMA

We provide a library that can be used to core and debug applications using
VIMA instruction in C/C++, Intrinsics-VIMA. Code 1 shows an example of
an Intrinsics-VIMA routine.

Springer Nature 2021 LATEX template

8 Improved Computation of Database Operators via Vector Processing Near-Data

Listing 1 Intrinsics-VIMA routine example.

void *_vim2K_fadds(__v32f *a, __v32f *b, __v32f *c) {
for (int i = 0; i < vima_size; ++i) {

c[i] = a[i] + b[i];
}
return EXIT_SUCCESS;

}

The library functions similarly to the libraries provided by Intel or ARM to
access their own Single Instruction Multiple Data (SIMD) extensions, meaning
the function calls are substituted for their associated SIMD instructions by
the compiler. We use this for simulation purposes, where each function call is
swapped for its corresponding VIMA instruction during trace generation for
our simulation environment.

3 Near-Data Database Operators

Here we describe the three database operators selected for our experiments:
selection, projection and join. These specific operators were chosen because
of how ubiquitous they are on analytic queries, accouting for about 70% of
the total execution time of TPC-H, a standard database benchmark [13]. The
three operators display distinct two behaviors we aim to investigate: (i) the
selection and projection operators represent a data streaming behavior, and
(ii) the join operator represent a data reuse behavior.

3.1 Data Streaming

Data streaming applications only load and process each data point once per
execution, thus not reusing data or benefiting from the cache hierarchy of a
system. Instead, since all data is loaded to the processor, it gets stored in the
cache to never be reused, thus polluting the cache memory without providing
any benefit.

Selection. For the selection operator the Vector-In-Memory Architecture
(VIMA) code performs a simple comparison between a constant vector con-
taining a filter and a second vector into which all input data is loaded. The
application iterates over the input data and stores results considering a late
materialization model, meaning the the result of the operation is a bitmap the
same length as the input dataset.

Listing 2 VIMA selection operator code.

for (int i = 0; i < v_size; i += VECTOR_SIZE){
_vim2K_isltu (filter_vec , &vector1[i], &bitmap[i]);

}

Projection. The projection operator considers a bitmap mask such as
the one created by the selection operator. It is used to inform a conditional
loading operation that fetches and stores data from the memory according to
the positions of the bits set in the mask. The results are stored in a separate
vector.

Springer Nature 2021 LATEX template

Improved Computation of Database Operators via Vector Processing Near-Data 9

Listing 3 VIMA projection operator code.

for (int i = 0; i < v_size; i += VECTOR_SIZE){
_vim2K_ilmku (& vector2[i], &bitmap[i], &result[i]);

}

3.2 Data Reuse

Cache memories benefit applications that present some degree of data reuse,
e.g. locality of reference. The database join operator, which merges two
datasets according to a specific condition, behaves as such. It commonly relies
on an intermediary data structure to keep track of join elements, and this data
structure is repeatedly accessed for checking and updating.

Bloom Join. The join operator has many different implementations. We
chose to implement the bloom filter-based implementation, e.g. bloom join,
because it is not commonly implemented near-data. The bloom join has three
distinct phases: (i) creation, when the bloom filter data structure is set, usually
using the smaller of the two datasets in the join operation; (ii) probing, when
the bloom filter is used to check for whether elements of the larger dataset are
in the smaller one (and therefore are part of the result of the join operation);
and (iii) confirmation, when elements with a positive result in the probing
phase are checked against the actual original dataset to confirm the result.
The confirmation phase is necessary due to the nature of bloom filters, which
are based on hash functions and thus risk false positive results, although neg-
ative results are guaranteed. All bloom filter code used is based on an existing
algorithm by Polychroniou [33] with alterations to account for the different
Instruction Sec Architecture (ISA) available for our experiments.

Listing 4 VIMA bloom join create operator code.

for (int i = 0; i < entries_size; i += VECTOR_SIZE) {
_vim2K_ilmku (& entries[i], mask_1 , bit);
_vim2K_irmku (fun , mask_1);
for (int j = 0; j < functions; j++){

_vim2K_ipmtu (factors , fun , fac);
_vim2K_ipmtu (shift_m , fun , shift_vec);
_vim2K_imulu (bit , fac , bit);
_vim2K_isllu (bit , shift_vec , bit);
_vim2K_imodu (bit , bloom_filter_size , bit);
_vim2K_isrlu (bit , shift5_vec , bit_div);
_vim2K_iandu (bit , mask_31 , bit_mod);
_vim2K_isllu (mask_1 , bit_mod , bit);
_vim2K_iscou (bit , bit_div , bloom_filter);
_vim2K_iaddu (fun , mask_1 , fun);

}
};

Code 4 shows VIMA code for the bloom filter creation phase, which loops
over data elements, calculating the position of bits that must be set in the
data structure according to the input elements. Every data point must go
through the same calculations to determine which positions in the bloom filter
to which it will map its representation, which are then set. Information such
as how many elements the filter must represent and what rate of positives is

Springer Nature 2021 LATEX template

10 Improved Computation of Database Operators via Vector Processing Near-Data

acceptable is considered and impacts settings such as filter size and number of
hash functions used. The outer loop in the code is responsible for loading new
elements into the vector on each iteration, while the inner loop refers to each
hash function used for bit positioning.

Code 5 shows the VIMA implementation of the probing phase, which deter-
mines whether each element in the second dataset considered by the join
operation can be found in the bloom filter set during the creation phase. On
every iteration of the loop, elements undergo the same hash calculations as the
ones in the creation phase and the resulting bit positions are checked on the
data structure. As bits are checked, elements are deemed present or absent,
until every element in the data set is found either present or absent. The result
of each hash function indicates the bloom filter index that must be probed for
a specific data point and hash function. This is calculated for each element
in the vector of elements currently being considered for probing, and informs
a gather instruction that fetches the associated bloom filter indices contain-
ing the bits that must be checked. The specific bits are isolated for checking
through a series of bit-wise operations and each final value determines whether
its associated value is present in the bloom filter.

Listing 5 VIMA bloom join probe operator code.

int j = 0;
for (int i = 0; i <= entries_size;) {

_vim2K_ilmku (& entries[i], mask_k , key);
i += j;
_vim2K_irmku (fun , mask_k);
_vim2K_icpyu (key , bit);
_vim2K_ipmtu (factors , fun , fac);
_vim2K_ipmtu (shift_m , fun , shift_vec);
_vim2K_imulu (bit , fac , bit);
_vim2K_isllu (bit , shift_vec , bit);
_vim2K_imodu (bit , bloom_filter_size , bit);
_vim2K_isrlu (bit , shift5_vec , bit_div);
_vim2K_iandu (bit , mask_31 , bit_mod);
_vim2K_isllu (mask_1 , bit_mod , bit);
_vim2K_igtru (bloom_filter , bit_div , bit_div);
_vim2K_iandu (bit , bit_div , bit);
_vim2K_icmqu (bit , mask_0 , mask_k);
_vim2K_icmqu (fun , fun_max , mask_kk);

_vim2K_idptu (mask_kk , &j);
if (j > 0) {

_vim2K_ismku (key , mask_kk , &output [* output_count])
;

*output_count += j;
}

_vim2K_iorun (mask_k , mask_kk , mask_k);
_vim2K_idptu (mask_k , &j);
_vim2K_iaddu (fun , mask_1 , fun);

};

A vector is used to keep track of which hash function is currently being
calculated for each input value, and its elements are updated according to the
result of each loop iteration of the probing loop. This value is incremented

Springer Nature 2021 LATEX template

Improved Computation of Database Operators via Vector Processing Near-Data 11

every time the bit probed for its associated element is found in the bloom filter
and resets to zero when it is not, meaning the element in the corresponding
index of the input data vector is deemed absent. If this value reaches the total
number of hash functions used in the bloom filter, the corresponding element
is stored as a possible positive result. The vector is also used as a mask to load
new data for data, replacing elements that have been determined to not fit the
condition of the join operation, so as to not waste any processing time. Once
every data point has reached one of the two possible outcomes, all elements
deemed present in the bloom filter are eligible to go through the confirmation
phase.

The confirmation phase takes every positive result from the probing phase
and compares them against the entire original data used to set the bloom filter
structure. This step is necessary to remove all possible false positives from the
probing phase due to the nature of the hash functions used in the bloom filter.
The VIMA implementation is seen on Code 6.

Listing 6 VIMA bloom join confirmation operator code.

for (int i = 0; i < positives_size; i++){
_vim2K_imovu (positives[i], vector);
for (int j = 0; j < entries_size; j += VECTOR_SIZE){

count = 0;
_vim2K_icmqu (vector , &entries[j], check);
_vim2K_idptu (check , &count);
if (count > 0){

result ++;
break;

}
}

}

Table 1 lists all the functions used in our code. Our experiments considered
random data and the code was use to generate simulation traces within the
simulation environment. Results are presented in the next section.

4 Evaluation Methodology and Results

This section describes the methodology of our work and the simulation results
we obtained to evaluate our query operator implementations using the Vector-
In-Memory Architecture (VIMA).

Theoretically, VIMA is able to function with any 3D-stacked memory
device, observing its features and limitations. We must note, though, that the
organization of the devices directly impacts VIMA performance. Since VIMA
is a monolithic device that moves data out of the vaults of the 3D-memory, we
expect performance to be superior on memory devices that favor vault paral-
lelism, as opposed to bank parallelism. For our experiments, we consider that
the memory controller maps the least significant address bits to vaults and
most significant bits to memory banks (similar to what occurs on multi-channel
systems with DDR-x devices).

The most efficient way to gain performance with NDP when considering
DRAM-based memories is to access data directly on the memory row buffers

Springer Nature 2021 LATEX template

12 Improved Computation of Database Operators via Vector Processing Near-Data

Table 1 VIMA instruction used in the implementation of the database operators.

Instruction Description

vim2K iaddu Addition operation
vim2K imulu Multiplication operation
vim2K imovu Move operation
vim2K iandu Bitwise AND
vim2K iorun Bitwise OR
vim2K isllu Bitwise shift to the left
vim2K isrlu Bitwise shift to the right
vim2K isltu Set if lower than
vim2K icmqu If equal comparison
vim2K imodu Modulo division by immediate value
vim2K icpyu Copy operation
vim2K igtru Gather operation
vim2K iscou Scatter operation
vim2K ilmku Loads data from memory into vector according to set

indices in the mask
vim2K ismku Stores data from vector into memory according to set

indices in the mask
vim2K irmku Sets vector positions to zero according to set

indices in the mask
vim2K ipmtu Permutates elements from another vector according to

indices in the mask
vim2K idptu Dot product of all elements in a vector

Table 2 NDP vector size recommended for different 3D memory architectures.

3D-Stacked

Memory

of

Vaults

Row Buffer

Size

Max. #

of Banks

Max. Request

Size

NDP Vector

Size

HMC 1.0 16 256 bytes 8 128 bytes 4096 bytes
HMC 2.1 32 256 bytes 16 256 bytes 8192 bytes
HBM 8 2 KBytes 16 128 bytes 16384 bytes
HBM2E 8 1 KByte 32 128 bytes 8192 bytes
HBM3 16 1 KByte 64 128 bytes 16384 bytes

on each access (considering that such buffer will be filled by contiguous data).
Should we be able to access all such data at once, we would theoretically able
to explore all the internal bandwidth available in the memory. Thus, in order
to offer the best performance possible, an NDP architecture must adjust to the
underlying 3D-stacked memory to use as much of the bandwidth as possible. In
considering a SIMD instruction approach such as VIMA, this means adjusting
the width of vector operands according to the number of independent vaults
and the size of their row buffers. Table 2 shows, for each memory configuration
we are considering, its features that affect this aspect of our experiments and
the vector size (last column) that would, in theory, most efficiently leverage
both the internal bandwidth of the memory devices and the advantageous
placement of a NDP architecture.

For instance, if we consider the HMC 2.1 [34], we have 32 independent
vaults, each with a 256 B row buffer. Assuming parallel accesses to all 32 vaults,

Springer Nature 2021 LATEX template

Improved Computation of Database Operators via Vector Processing Near-Data 13

8192 B are available on the row buffers per access. This is the reasoning behind
the 8 KB size of VIMA vector operands, since we assume a HMC 2.1 underlying
memory. Since each vault in this configuration has 8 banks that can be accessed
in a pipeline fashion, the device could possibly provide 8192 B per access and
thus, a NDP architecture could consider this size for its instruction operands
in order to extract as much performance from the memory as possible. We
could also expect that most of the latency to fetch the next chunk of 8192 B
would be hidden by bank parallelism. It should be noted, however, that this
line of thought does not necessarily translate to actual performance for every
device as it ignores constraints such as internal transmission speed, maximum
supported request sizes and the width of the connections between devices. For
the HMC 2.1 3D-stacked memory device, however, this is theoretically possible
since it supports a maximum request size that is the same size as its row
buffers.

4.1 Methodology

For our testing workloads, we used standard C/C++ math functions and
libraries to generate random 32-bit integers. Dataset sizes were chosen for each
experiment according to the Last Level Cache (LLC) capabilities of each archi-
tecture involved. Since Near-Data Processing (NDP) will usually achieve good
performance against a traditional baseline when dataset beinf processed over-
whelms cache capacity, we ensure that, for every operator, at least one dataset
size would overwhelm the capacity of the x86 architecture’s LLC size.

For our experiements we consider three distinct situations: (i) a single-
thread x86 system against a single-thread system with VIMA, (ii) a 16-thread
x86 system against a single-thread system with VIMA, and (iii) a 16-thread
x86 against a multi-threaded system with VIMA.

4.2 Single-Thread Baseline

Table 3 shows the parameter details used in our simulations with a single-
thread baseline. We set parameters to be similar to Intel’s Skylake microarchi-
tecture. We used SiNUCA [35] for all simulations. Its original paper reports
only a 9% average error in comparison with the performance of a real machine,
thus being adequate for our evaluation goals.

Figure 4 shows the speedup (higher is better) of VIMA over AVX for selec-
tion and projection query operators. The figures on top of each bar refer to how
much energy was saved in comparison to execution on the baseline according
to our estimates. In both the selection and projection cases, VIMA is able to
speed up execution due to its superior use of the internal parallelism available
in the memory when fetching data. Both operators are based on instructions
that require fetching of two operands, meaning VIMA fetches two 8 KB vec-
tors for each individual instruction. As pictured in the figure, VIMA is able
to speed up execution of the selection operator by over 5× and of the pro-
jection operator by 2.5×. This is achieved by efficiently using the 3D-stacked

Springer Nature 2021 LATEX template

14 Improved Computation of Database Operators via Vector Processing Near-Data

Table 3 Baseline and VIMA system configuration.

OoO Execution Cores 1 core @ 2.0 GHz, 32 nm; Power: 6W/core;
6-wide issue; Buffers: 40-entry fetch,
128-entry decode; 168-entry ROB;
MOB entries: 72-read, 56-write; 2-load, 1-store units (1-1 cycle);
4-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);
2-alu, 2-mul. and 1-div. fp. units (3-5-10 cycle);
1 branch per fetch; Branch predictor: Two-level GAs. 4096 entry BTB;
L1 Inst. Cache 64 KB, 8-way, 4-cycle; 64 B line; LRU policy;
Dynamic energy: 194pJ per line access; Static power: 30mW;
L1 Data Cache 64 KB, 8-way, 6-cycle; 64 B line; LRU policy;
Dynamic energy: 194pJ per line access; Static power: 30mW;
L2 Cache 128 KB, 16-way, 34-cycle; 64 B line; LRU policy;
Dynamic energy: 340pJ per line access; Static power: 130mW;
LLC Cache 16 MB, 16-way, 52-cycle; 64 B line; LRU policy;
Dynamic energy: 3.01nJ per line access; Static power: 7W;
3D Stacked Mem. 32 vaults, 8 DRAM banks/vault, 256 B row buffer;
4 GB; DRAM@1666 MHz; 4-links@8 GHz; Inst. lat. 1 CPU cycle
8 B burst width at 2.5:1 core-to-bus freq. ratio; Open-row policy;
DRAM: CAS, RP, RCD, RAS and CWD latency (9-9-9-24-7 cycles);
Avg. energy per access: x86:10.8pJ/bit; VIMA:4.8pJ/bit;
Static power 4W;
VIMA Processing Logic Operation frequency: 1 GHz; Power: 3.2W;
256 int. units: alu, mul. and div. (8-12-28 cycles for 8 KB pipelined)
256 fp. units: alu, mul. and div. (13-13-28 cycle for 8 KB pipelined);
VIMA cache: 256 KB, fully assoc., 2-cycle (1-tag, 1-per data);
Dynamic energy: 194pJ per line access; Static power: 134mW;

memory’s vault parallelism and also causes a 75% energy consumption reduc-
tion for the selection operator and about a 50% reduction for the projection
operator in comparison with the baseline.

Selection Projection

0

5

0

7
7
,
1
9
%

4
8
,
4
1
%

7
6
,
9
9
%

5
4
,
8
9
%

7
9
,
2
3
%

5
4
,
6
5
%

7
6
,
8
3
%

5
4
,
1
4
%

Operators

S
p
ee
d
u
p

8MB 16MB 32MB 64MB

Fig. 4 Speedup over baseline for selection and projection operators, percentages indicate
energy savings over baseline.

Springer Nature 2021 LATEX template

Improved Computation of Database Operators via Vector Processing Near-Data 15

For each experiment of the bloom join operation we use two columns that
differ in size by 4×. All sizes mentioned in the results refer to the size of the
largest column of the two. The smaller column is used to set the bloom filter
structure while the larger one is used for probing.

To simulate real-world conditions, we designed datasets with varying selec-
tivity to assess the differences in how the systems deal with realistic data-join
operation situations. We generated all data randomly and controlled selectivity
by purposely adding elements from the smaller column into the larger accord-
ing to the desired selectivity. Selectivity ranges from 0% to 100%, varying by
10% for each test. The actual implementation of the bloom filter uses a hash
function based on operations implemented in the VIMA ISA, namely multi-
plications and bit shifting [36]. We vary the number of hash functions used in
each experiment according to the number of elements in the datasets. This is
done to maintain a low false-positive rate over all selectivities. All multiplica-
tion and shifting factors are the same for VIMA and AVX implementations.
Figure 5 illustrates all speedup results. The figures on top of each bar refer
to how much energy was saved in comparison to execution on the baseline
according to our estimates.

0 10 20 30 40 50 60 70 80 90 100
0
1

5

10

15

20

0

7
5
.
0
7
%

3
1
.
0
7
%

−
8
2
.
4
0

−
4
8
1
.
5
0

−
5
2
8
.
6
1
%

−
5
6
7
.
5
6
%

−
1
2
9
.
0
7
%

−
1
3
5
.
4
6
%

−
6
5
4
.
5
8
%

−
1
4
4
.
1
6
%

−
1
7
3
.
5
6
%

3
7
.
1
3
%

1
7
.
3
8
%

2
2
.
4
2
%

2
2
.
1
4
%

2
0
.
9
7
%

1
8
.
5
8
%

1
9
.
0
6
%

1
8
.
0
2
%

1
8
.
9
8
%

1
8
.
9
%

1
6
.
1
6
%

7
3
.
8
0

2
4
.
6
4
%

2
0
.
7
2
%

2
0
.
2
8
%

2
1
.
7
7
%

1
9
.
9
2
%

2
0
.
7
%

2
1
.
6
1
%

2
3
.
2
6
%

2
4
.
3
1
%

2
3
.
7
3
%

9
9
.
9
6
%

8
1
.
0
5
%

7
0
.
2
8
%

6
4
.
6
8
%

5
9
.
0
2
%

5
4
.
7
9
%

5
1
.
1
0

5
0
.
9
9
%

4
8
.
7
2
%

4
8
.
4
6
%

4
6
.
0
4
%

Selectivity %

S
p
ee
d
u
p

1MB 20MB 64MB 80MB

Fig. 5 Speedup over baseline for the bloom join operator with varying selectivity rates,
figures over 1 indicate speedup. Percentages over the bars indicate energy savings over base-
line, negative values indicate energy consumption exceeded baseline.

Each phase in the execution of the bloom join operator is greatly affected
by selectivity in the data, directly impacting performance. The three execution
phases are bloom filter creation, bloom filter probing, and confirmation. The
bloom filter is set during the creation phase. All data elements in the smaller
column of the join go through the hash functions and the results are used to
set the corresponding bits in the bloom filter vector. Since every data element
goes through all hash function calculations regardless of numerical value, the
creation phase has the same behavior no matter the results expected from the
selectivity in the data. On the other hand, bloom filters are much more efficient
at determining that any one data element is represented in the data structure

Springer Nature 2021 LATEX template

16 Improved Computation of Database Operators via Vector Processing Near-Data

than when it is not. This behavior happens as the bloom join executes distinct
operations according to data patterns.

At the probing phase, data content directly impacts performance. Here,
the bloom join uses the hash result of elements in the second column to check
whether a specific bit is set in the bloom filter. If any hash result for an element
points to a bit that is not set, that element is confirmed a negative, and we can
discard it. Consequently, data selectivity determines the length of the probing
and confirmation phases. This relationship explains why results for the 0%
selectivity datasets show a considerable advantage for VIMA over AVX. For
VIMA, each loop iteration discards up to 2048 elements, and therefore, the
probing process moves fast. Meanwhile, for the 100% selectivity dataset, all
elements go through all hash computations, meaning the probing phase lasts
very long. Here, VIMA’s dedicated cache comes into play. The cache can house
the vectors used for the hash function computations in the probing phase as
the bloom join repeatedly reuses them.

The confirmation phase is another reason why the 0% selectivity dataset
has superior results. During this phase, the bloom join operator checks posi-
tive results from the probing phase against the data used to create the bloom
filter. Since we must compare each element against all elements in this dataset,
this phase can be time-consuming. In datasets with positive results, many ele-
ments pass the probing phase and go to the confirmation phase, representing a
more significant portion of the execution time with each increase in selectivity.
However, with the all-negative dataset, the probing phase yields few positives.
Most of these are false-positives, causing a short confirmation phase. Since the
probing phase is highly efficient on VIMA, it represents most of the execution
time in these cases, explaining the sharply superior 0% selectivity result. These
gains decrease with selectivity, with the confirmation phase representing an
increasing portion of the entire execution time. With increasing selectivity, the
reuse capabilities of each architecture start to influence overall performance.

Another factor is the smaller column size, which the bloom join operator
repeatedly accesses for the confirmation phase. Since this column is one-fourth
of the dataset size, its size is 256 KB, 5 MB, 16 MB, and 20 MB for the datasets
considered here. These sizes mean that for all datasets but the largest one, the
baseline architecture’s LLC can store the entire column.

The benefits of the LLC are clear on the results for the 1 MB dataset.
While VIMA outperforms AVX at low selectivity levels, the advantage disap-
pears as selectivity rises, which shows how much the baseline benefits from
the faster access provided by its cache hierarchy. Energy consumption follows
the same pattern, with VIMA using much more energy as it reloads data from
the main memory repeatedly. Meanwhile, this data is kept in the baseline’s
LLC, translating into a significant advantage maintained from 20% selectivity
onward.

Looking at the results for the 20 MB and 64 MB datasets, VIMA remains
advantageous even with growing selectivity due to the effect of its large vec-
tors. As the amount of data under evaluation for the confirmation phase grows

Springer Nature 2021 LATEX template

Improved Computation of Database Operators via Vector Processing Near-Data 17

(original data column and positives from the probing phase), VIMA’s abil-
ity to load and process large vectors at once starts to surpass the effect of
AVX’s cache hierarchy. For more extensive datasets (e.g., 80 MB), VIMA
offers superior performance in both metrics. For example, when looking at the
80 MB results, we observe that VIMA outperforms AVX by 16× at 0% selec-
tivity while consuming over 99% less energy. Here, the data through which
the application must iterate to confirm probing phase results is larger than
the LLC in the baseline architecture. Thus, AVX no longer benefits from the
LLC locality and is forced to reload data directly from the main memory. At
this dataset size, the 0% selectivity workload still yields a few thousand false-
positive results from its probing phase. Thus, VIMA’s large vectors coupled
with the baseline’s fetching inefficiency results in this considerable performance
improvement. As selectivity grows, the confirmation phase grows, and VIMA’s
advantage drops. However, VIMA continues to outperform AVX by at least
3.5× at 100% selectivity while consuming 54% less energy.

4.3 Multi-Thread Results

Multithreaded systems traditionally benefit greatly from their ability to fetch
and process data in parallel. Since each core is equipped with its own set of
functional units and register banks, such systems are able to issue a large
number of memory requests in parallel, applying increased pressure to the main
memory and using much of its bandwidth. For this reason, we now consider a
16-thread system as our baseline, constructing a tough case against VIMA. We
assume all 16 cores in the baseline follow the same specifications determined
in Table 3.

A functional units-based near-data architecture like VIMA, in order to
favor simplicity and energy efficiency, is unable to behave like a superscalar
processor. Therefore, to provide an execution time performance improvement
over such systems, the vector size used by the device must be large enough to
match or surpass such levels of parallelism by leveraging as much of the mem-
ory bandwidth as possible. Nevertheless, the vector size also impacts on the
amount of VIMA instructions the processor needs to trigger to our architec-
ture, which also impacts energy and time. The smaller the operand size, the
more instructions the processor must trigger to fully process a given dataset.
This is the reasoning behind the 8 KB size of the vector operands we use for
VIMA.

Figure 6 shows the results for the experiments considering a 16-threaded
baseline. The selection query is a clear example of a data streaming application,
being composed of mainly one operation that stores an immediate value in
each entry of a vector. As can be seen on the graph, the advantage VIMA
has over the baseline shrinks as the input size grows. This happens due to the
multithreaded nature of the baseline we are considering, as it suffers from the
overhead of splitting the workload at the start of processing and aggregating all
results when processing is finished. As input size grows, this overhead becomes
a less significant portion of the overall execution time and thus the extent of

Springer Nature 2021 LATEX template

18 Improved Computation of Database Operators via Vector Processing Near-Data

Selection Projection

0

1

2

3

4

5

0

7
8
,
3
6
%

7
5
,
9
3
%

7
1
,
9
3
%

7
4
,
8
4
%

7
3
,
1
6
%

7
2
,
7
9
%

7
0
,
1
5
%

7
2
,
2
3
%

Operators

S
p
ee
d
u
p

8MB 16MB 32MB 64MB

Fig. 6 Speedup over baseline for the bloom join operator with varying selectivity rates,
figures over 1 indicate speedup. Percentages over the bars indicate energy savings over base-
line, negative values indicate energy consumption exceeded baseline.

the advantage of the NDP approach becomes more realistic. This applies to
every application with primarily data streaming behavior when considering a
multi-thread baseline.

Although the advantage of VIMA over the traditional architecture is not
as pronounced as it was for the single-threaded results, it is still fairly advan-
tageous. Regarding execution time, VIMA is able to at least match the
performance of the 16-thread baseline using a single-thread even at the largest
input size considered in our experiments. It is able to achieve this result while
consuming 70% less energy for the selection operator and 72% for the pro-
jection operator. This suggests that, by using VIMA in a system such as the
baseline considered here, one could free up 15 cores for other uses while still
achieving the same performance regarding execution time and consuming 70%
less energy.

Selection Projection

0

1

2

3

4

5

R
e
la
ti
v
e
T
h
ro
u
g
h
p
u
t

8MB 16MB 32MB 64MB

Fig. 7 Data throughput results of x86 system and VIMA executing selection and projection
database queries, normalized to 16-thread x86 baseline.

Springer Nature 2021 LATEX template

Improved Computation of Database Operators via Vector Processing Near-Data 19

Figure 7 shows results for relative average throughput for our experiments
considering selection and projection queries. The graph considers relative val-
ues of average data throughput achieved by VIMA and the 16-thread x86
baseline. The data throughput and execution time results graphs almost
exactly mirror each other, which shows how better usage of available data
throughput is the main reason why VIMA performs better than a traditional
architecture when running data streaming applications.

4.4 Near-Data Multi-Threading

We ran experiments to analyze the performance of a multithreaded system
using VIMA and the speedup and data throughput results can be seen on
Figures 8 and 9. Our experiments considered the selection and projection
database query operators running on a VIMA-enabled system with increasing
vector widths (256 B, 512 B and 1024 B) and number of cores (1, 2, 4 and 8
cores). The underlying memory chip we used was the HMC 2.1, as it has gen-
erally shown the most advantageous results so far, and consider the 64 MB
input size for both workloads.

Selection Projection

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

S
p
e
e
d
u
p

Selection Projection

0

0.5

1

1.5

2

2.5

S
p
e
e
d
u
p

VIMA ST VIMA 2T

VIMA 4T VIMA 8T

Selection Projection

0

1

2

3

4

S
p
e
e
d
u
p

Fig. 8 Speedup of VIMA over baseline running the selection and projection database
queries with a varying number of processing threads and (a) 256 B vector operands, (b) 512 B
vector operands and (c) 1024 B vector operands. Values higher than 1 indicate improvement
in performance over the baseline.

The speedup results, which are normalized to a 16-thread x86 system, show
that when using smaller vector operands, VIMA is unable to match the baseline
performance when running on a single-threaded system. However, even with
only one additional core, it outperforms the baseline for the selection work-
load and almost matches baseline performance for projection. This advantage
scales with larger vectors and a higher number of threads, achieving a 3.7×
improvement in execution time over the baseline for the selection database
query workload at 8 threads with a 1024 B vector operand width.

The data throughput results, as seen in Figure 9, show why there is such an
improvement in execution time performance with the addition of extra cores.
As is immediately clear when analyzing the results, the single-thread system
with the smaller VIMA vectors is unable to apply enough pressure to the
memory, thus failing to achieve very high data throughput. Although the load-
ahead mechanism helps VIMA extract more throughput from the memory, not

Springer Nature 2021 LATEX template

20 Improved Computation of Database Operators via Vector Processing Near-Data

Selection Projection

0

5

10

15

20

25

30

35

D
a
ta

T
h
ro
u
g
h
p
u
t
(G

B
/
s)

Selection Projection

0

5

10

15

20

25

30

35

D
a
ta

T
h
ro
u
g
h
p
u
t
(G

B
/
s)

VIMA ST VIMA 2T

VIMA 4T VIMA 8T

Selection Projection

0

5

10

15

20

25

30

35

40

45

D
a
ta

T
h
ro
u
g
h
p
u
t
(G

B
/
s)

Fig. 9 Data throughput of VIMA running the selection and projection database queries
with a varying number of processing threads and (a) 256 B vector operands, (b) 512 B vector
operands and (c) 1024 B vector operands. Values higher than 1 indicate improvement in
performance over the baseline.

enough instructions are ever in the VIMA instruction buffer at the same time
to allow it to exploit the full potential of the vault parallelism present in the
HMC 2.1 memory chip. However, with the addition of extra cores, many more
instructions are issued at the same time, which then enables VIMA, through
the load-ahead mechanism, to load the operands of more instructions out-of-
order, thus utilizing much more of the bandwidth the memory device is able
to offer.

As a result, even with a 256 B vector, VIMA outperforms the baseline by
44% even with only 2 cores at the selection database query. Under the same
conditions it gets to 82% of the execution time performance of the baseline for
the projection workload, achieving a 13% speedup when using 8 cores. This
trend remains true for the results of the experiments with 512 B and 1024 B
operands.

5 Related Work

Ailamaki et al. [37] and Boncz et al.[38] were some of the first researchers to
discuss the performance of database systems on modern systems and how it
was affected by the memory wall, back in the late 1990s. At that point, it was
clear that processors were evolving at a much faster pace than storage technol-
ogy and database software started to react to this trend. This reaction was to
create software techniques and strategies with the underlying hardware struc-
ture, so as to better utilize all the available resources. As a result, database
applications that applied strategies such as columnar data storage, bulk query
relational algebra, cache-conscious algorithms, and automatic optimization
became commonplace, as they utilize hardware resources efficiently [39].

Although these adaptations achieve their efficiency goal, they fail to reduce
data movement, which renders them still susceptible to the increasing issue of
the memory wall. However, due to their data-intensive nature, database appli-
cations are intrinsically well-suited for near-data execution, and are treated
as such by Near-Data Processing (NDP) researchers as near-data technology
becomes viable [40].

Springer Nature 2021 LATEX template

Improved Computation of Database Operators via Vector Processing Near-Data 21

The columnar storage of modern databases, for instance, is readily
exploitable by near-data approaches. By taking advantage of this, JAFAR [40,
41] implements the selection operation near-data considering a column-store
scheme and achieves an improvement of up to 9× in execution time for the
selection query. Their design adds an accelerator near the memory chip, which
provides it with direct access to the stored data for fast filtering with simple
comparison and predication. The technique device yields a bit-mask indicat-
ing selection results according to each tuple of a table, which can then be used
for further processing considering a late materialization scheme. Although this
design achieves interesting results, it is not easily extensible to implement other
database query operators.

Biscuit [14] fully translates the MySQL database engine to a near-data
implementation on Solid State Drive (SSD) disks. They provide an entire
framework that is ready for adoption, including dynamic task loading, support
for high-level programming languages, and multi-core and threading capabil-
ities, and an expressive programming model. The reported speedup of their
approach is of 3.6× for all TPC-H queries. However, Biscuit assumes several
complex modifications that include adding full processing cores to SSD devices.
In contrast, Vector-In-Memory (VIMA) is able to achieve similar improvements
in performance with much simpler requirements.

One approach that also considers a 3D-stacked memory is HIPE [27], which
adds predication to the Hybrid Memory Cube (HMC). This modification,
which considers an already modified HMC [26], enables it to compute database
algebra queries by allowing control-flow dependencies to be solved near-data.
The authors report a 6.46× execution time improvement over a x86 architec-
ture for the selection operator with being 5% higher energy-efficiency. While
this approach is very similar to VIMA both in architecture and simulation
infrastructure, it fails to match the its energy-efficiency and is much more
limited, only considering the selection operator.

Another HMC-based effort was done by Kepe et al [13], who implement
a wider range of database query operators (selection, projection, aggregation,
sorting, and join) near-data and compare their performance to that of a state-
of-the-art x86 system. They use HIVE [35] as their near-data architecture and
a baseline that features Intel AVX-512 extensions. The authors report sig-
nificant improvement across almost all operators. With the exception of the
aggregation operator, which fails to match the baseline regarding execution
time or energy efficiency, all other operators achieve improved performance. For
instance, execution of the selection operator is a minimum of 3× faster than the
baseline across all input sizes while consuming 45% less energy than the base-
line. Meanwhile, the projection operator outperforms the baseline by between
7× and 10×, depending on whether the dataset considered fits the last level
cache of the baseline architecture, while being 3× more energy efficient. Three
implementations of the join operator were considered (hash, sort-merge and
nested loop) and reported near-data performance is superior to the baseline for
all implementations regarding both execution time and energy consumption.

Springer Nature 2021 LATEX template

22 Improved Computation of Database Operators via Vector Processing Near-Data

Kepe et al. [13] implement five database query operators (selection, pro-
jection, aggregation, sorting, and join) to evaluate how an NDP architecture
performs against a state-of-the-art x86 architecture. The architecture used for
the experiments is HIVE [26], using a similar infrastructure used in the present
work. Considering a baseline x86 architecture with Intel AVX-512 extensions,
the authors report: the selection operator runs at least 3× faster, regardless of
input size, while consuming 45% less energy; the projection operator runs 7×
faster if the dataset fits the baseline’s last level cache otherwise it is 10× faster
while reducing energy use by 3×; performance for the join operator varies
according to implementation (nested loop, hash, and sort-merge), but the NDP
implementation is significantly more energy-efficient in all cases; the aggrega-
tion operator performs moderately worse at both execution time and energy
consumption. In comparison to our work, although the authors feature a wider
variety of database operators and use a similar architecture, they do not con-
sider vector sizes that fully utilize the parallelism opportunities possible with
such an architecture. We report superior execution time results for the selec-
tion and join operators (though this work implements different versions of the
join operator) and higher energy savings across all operators when considering
large input sizes. Here, we highlight our join results according to selectivity,
something this work also investigates. The authors report speed improvements
ranging from 1.6× to 3× with energy savings between 5 and 70%. Our results
range from 3.5× to 16× in speed improvement with energy savings ranging
from 46% to 99% for the highest input size considered. Additionally, we con-
sider a modern 16-thread x86 baseline, which VIMA also outperforms, while
the related work only considers a single-thread baseline.

6 Conclusions and Final Considerations

With the growing relevancy of analytics applications that process vast sets of
data, Near-Data Processing (NDP) emerges as a solution for the memory wall
problem. In this paper, we migrate the execution of database query operators
to a near-data architecture.

Against a single-thread baseline, our approach improves execution time
up to 5× for the selection operator, 2.5× for the projection operator, and
16× for the join operator used. We also achieved energy savings of 75% for
the selection, 50% for the projection, and 99% for the join operator. These
results are superior to the state-of-the-art and consider a simpler and more
programmer-friendly architecture. To the best of our knowledge, this work
is the first to implement and evaluate database operators on an architecture
featuring large vectors and also the first to migrate the bloom join operator to
any NDP architecture.

Unlike our closest related work, we also consider a modern 16-thread x86
baseline in our experiments, which we also manage to outperform. According

Springer Nature 2021 LATEX template

Improved Computation of Database Operators via Vector Processing Near-Data 23

to our results, even in a single-thread system, our approach matches the perfor-
mance of a 16-thread x86 system, meaning our strategy could free up 15 entire
cores for processing while maintaining the same execution time performance.

Future work includes migrating other database operators and implemen-
tations of the join operator, as other implementations can better suit certain
situations. This migration should enable us to evaluate our approach with the
entire TPC-H benchmark.

All the source code for our VIMA architecture simulation, the database
query operators’ algorithms, and the Intrinsics-VIMA library are available in
our on-line repositories123.

7 Declarations

7.1 Ethics approval and consent to participate

Not applicable.

7.2 Consent for publication

All authors agreed with the content and gave explicit consent to submit this
work for publication.

7.3 Availability of data and materials

All the source code for our VIMA architecture simulation, the database query
operators’ algorithms, and the Intrinsics-VIMA library are available in our
on-line repositories:

• https://github.com/mazalves
• https://github.com/ascordeiro
• https://github.com/sairosantos

7.4 Competing interests

The authors have no financial or proprietary interests in any material discussed
in this article.

7.5 Funding

This work was partially supported by the Serrapilheira Institute (grant number
Serra-1709-16621), CAPES and CNPq (Brazilian Government).

7.6 Authors’ contributions

All authors contributed to the study conception and design. Material prepara-
tion, data collection and analysis were performed by Sairo Raońı dos Santos.

1https://github.com/mazalves
2https://github.com/ascordeiro
3https://github.com/sairosantos

Springer Nature 2021 LATEX template

24 Improved Computation of Database Operators via Vector Processing Near-Data

The first draft of the manuscript was written by Sairo Raońı dos Santos and
all authors commented on previous versions of the manuscript. All authors
read and approved the final manuscript.

7.7 Acknowledgements

This work was partially supported by the Serrapilheira Institute, Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) and Conselho
Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq).

References

[1] Chang, K.K.: Understanding and improving the latency of dram-based
memory systems. PhD thesis, Carnegie Mellon University (2017)

[2] Preshing, J.: A look back at single-threaded cpu performance. Preshing
on Programming Blog, February 8, 821–828 (2012)

[3] Wulf, W.A., McKee, S.A.: Hitting the memory wall: implications of the
obvious. ACM SIGARCH Computer Architecture News 23 (1995)

[4] Balasubramonian, R., et al.: Near-data processing: Insights from a micro-
46 workshop. IEEE Micro 34 (2014)

[5] Hashemi, M., et al.: Accelerating dependent cache misses with an
enhanced memory controller. In: Int. Symp. on Computer Architecture
(2016)

[6] Xie, P., et al.: V-pim: An analytical overhead model for processing-in-
memory architectures. In: Non-Volatile Memory Systems and Applica-
tions Symp. (2018)

[7] Qureshi, M.K., et al.: Adaptive insertion policies for high performance
caching. ACM SIGARCH Computer Architecture News 35 (2007)

[8] Qureshi, M.K., et al.: Line distillation: Increasing cache capacity by fil-
tering unused words in cache lines. In: Int. Symp. on High Performance
Computer Architecture (2007)

[9] Boroumand, A., et al.: Google workloads for consumer devices: Mitigating
data movement bottlenecks. In: Int. Conf. on Architectural Support for
Programming Languages and Operating Systems (2018)

[10] Fisher, D., et al.: Interactions with big data analytics. interactions 19(3),
50–59 (2012)

[11] Santos, P.C., et al.: Survey on near-data processing: Applications and
architectures. Journal of Integrated Circuits and Systems 16(2), 1–17

Springer Nature 2021 LATEX template

Improved Computation of Database Operators via Vector Processing Near-Data 25

(2021)

[12] Tomé, D.G., et al.: Near-data filters: Taking another brick from the
memory wall. In: ADMS@ VLDB, pp. 42–50 (2018)

[13] Kepe, T.R., et al.: Database processing-in-memory: An experimental
study. In: Proc. VLDB Endow. (2019)

[14] Gu, B., et al.: Biscuit: A framework for near-data processing of big data
workloads. ACM SIGARCH Computer Architecture News 44(3), 153–165
(2016)

[15] Cordeiro, A.S., et al.: Machine learning migration for efficient near-data
processing. In: Int. Conf. on Parallel, Distributed and Network-Based
Processing (PDP) (2021)

[16] Patterson, D., et al.: A case for intelligent ram. IEEE Micro 17 (1997)

[17] Elliott, D.G., et al.: Computational ram: Implementing processors in
memory. IEEE Design & Test of Computers 16 (1999)

[18] Esmaeilzadeh, H., et al.: Dark silicon and the end of multicore scaling. In:
Int. Symp. on Computer Architecture (2011)

[19] Olmen, J.V., et al.: 3D stacked IC demonstration using a through silicon
via first approach. In: Int. Electron Devices Meeting (2008)

[20] Labrinidis, A., Jagadish, H.V.: Challenges and opportunities with big
data. Proceedings of the VLDB Endowment 5(12), 2032–2033 (2012)

[21] Zhang, D.P., et al.: A new perspective on processing-in-memory architec-
ture design. In: SIGPLAN Workshop on Memory Systems Performance
and Correctness (2013)

[22] Angizi, S., et al.: Pim-assembler: A processing-in-memory platform for
genome assembly. In: Design Automation Conf. (DAC) (2020)

[23] Gupta, S., et al.: Rapid: A reram processing in-memory architecture for
dna sequence alignment. In: Int. Symp. on Low Power Electronics and
Design (ISLPED) (2019)

[24] Huang, Y., et al.: A heterogeneous pim hardware-software co-design
for energy-efficient graph processing. In: Int. Parallel and Distributed
Processing Symp. (IPDPS) (2020)

[25] Alves, M.A., et al.: Saving memory movements through vector processing
in the dram. In: Int. Conf. on Compilers, Architecture and Synthesis for
Embedded Systems (CASES) (2015)

Springer Nature 2021 LATEX template

26 Improved Computation of Database Operators via Vector Processing Near-Data

[26] Alves, M.A.Z., et al.: Large vector extensions inside the hmc. In: Design,
Automation & Test in Europe Conf. (2016)

[27] Tomé, D.G., et al.: Hipe: Hmc instruction predication extension applied
on database processing. In: Design, Automation & Test in Europe Conf.
(2018)

[28] Oliveira, G.F., et al.: Nim: An hmc-based machine for neuron computa-
tion. In: Int. Symp. on Applied Reconfigurable Computing (2017)

[29] Santos, P.C., et al.: Operand size reconfiguration for big data processing
in memory. In: Design, Automation & Test in Europe Conf. (2017)

[30] Alian, M., et al.: Application-transparent near-memory processing archi-
tecture with memory channel network. In: Int. Symp. on Microarchitec-
ture (MICRO) (2018)

[31] Drumond, M., et al.: Algorithm/architecture co-design for near-memory
processing. Operating Systems Review (2018)

[32] Pugsley, S.H., et al.: NDC: analyzing the impact of 3d-stacked mem-
ory+logic devices on mapreduce workloads. In: Int. Symp. on Performance
Analysis of Systems and Software (ISPASS) (2014)

[33] Polychroniou, O.: Analytical Query Execution Optimized for All Layers
of Modern Hardware. Columbia University, ??? (2018)

[34] Hybrid Memory Cube Consortium: Hybrid Memory Cube Specification
2.1. http://www.hybridmemorycube.org/ (2014)

[35] Alves, M.A.Z., et al.: Sinuca: A validated micro-architecture simulator. In:
Int. Conf. on High Performance Computing and Communications (2015)

[36] Dietzfelbinger, M., et al.: A reliable randomized algorithm for the closest-
pair problem. Journal of Algorithms 25(1) (1997)

[37] Ailamaki, A., et al.: Dbmss on a modern processor: Where does time
go? In: VLDB’99, Proceedings of 25th International Conference on Very
Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pp.
266–277. Citeseer, ??? (1999)

[38] Boncz, P.A., et al.: Database architecture optimized for the new bottle-
neck: Memory access. In: VLDB, vol. 99, pp. 54–65 (1999)

[39] Boncz, P.A., et al.: Breaking the memory wall in monetdb. Communica-
tions of the ACM 51(12), 77–85 (2008)

[40] Xi, S.L., et al.: Beyond the wall: Near-data processing for databases. In:

http://www.hybridmemorycube.org/

Springer Nature 2021 LATEX template

Improved Computation of Database Operators via Vector Processing Near-Data 27

Proceedings of the 11th International Workshop on Data Management on
New Hardware, pp. 1–10 (2015)

[41] Augusta, A., Idreos, S.: Jafar: Near-data processing for databases. In:
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pp. 2069–2070 (2015)

	Introduction
	Background on Near-Data Processing
	Intrinsics-VIMA

	Near-Data Database Operators
	Data Streaming
	Data Reuse

	Evaluation Methodology and Results
	Methodology
	Single-Thread Baseline
	Multi-Thread Results
	Near-Data Multi-Threading

	Related Work
	Conclusions and Final Considerations
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Availability of data and materials
	Competing interests
	Funding
	Authors' contributions
	Acknowledgements

