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Abstract—Many software mechanisms for geophysics explo-
ration in Oil & Gas industries are based on wave propaga-
tion simulation. To perform such simulations, state-of-art HPC
architectures are employed, generating results faster and with
more accuracy at each generation. The software must evolve to
support the new features of each design to keep performance
scaling. Furthermore, it is important to understand the impact
of each change applied to the software, in order to improve the
performance as most as possible. In this paper, we propose several
optimization strategies for a wave propagation model for five
architectures: Intel Haswell, Intel Knights Corner, Intel Knights
Landing, NVIDIA Kepler and NVIDIA Maxwell. We focus on
improving the cache memory usage, vectorization, and locality
in the memory hierarchy. We analyze the hardware impact
of the optimizations, providing insights of how each strategy
can improve the performance. The results show that NVIDIA
Maxwell improves over Intel Haswell, Intel Knights Corner, Intel
Knights Landing and NVIDIA Kepler performance by up to
17.9x.

I. INTRODUCTION

Geophysics exploration remains fundamental to the modern
world to keep up with the demand for energetic resources.
This endeavor results in expensive drilling costs (100M$-
200M$), with less than 50% of accuracy per drill. Thus, Oil &
Gas industries rely on software focused on High-Performance
Computing (HPC) as an economically viable way to re-
duce risks. The fundamentals of many software mechanisms
for exploration geophysics are based on wave propagation
simulation engines. For instance, on seismic imaging tools,
modeling, migration and inversion use wave propagators at the
core. These simulation engines are built as Partial Differential
Equation (PDE) solvers, where the PDE solved in each case
defines the accuracy of the approximation to the real physics
when a wave travels through the Earth’s internals.

Acoustic wave propagation approximation is the current
backbone for seismic imaging tools. It has been extensively
applied for imaging potential oil and gas reservoirs beneath
salt domes for the last five years. Such acoustic propagation
engines should be continuously ported to the newest HPC
hardware available to maintain competitiveness. At the same
time, on the HPC hardware front, the days of faster single
core CPUs are over, and the solutions adopted are being
replaced by manycore technologies [1], [2]. The last decade

has seen a trend of building systems with dedicated devices
and accelerators, which produce a good return regarding
FLOPs/Watt. Among the available HPC alternatives, chip
manufacturers have dedicated efforts to provide tens to hun-
dreds of processing units working at low frequencies, such as
Graphic Processing Units (GPUs), Intel Xeon Phi processors
and coprocessors. Even more traditional multicore processors,
such as the Xeon family, are including dozens of cores in the
processors.

Several challenges must be addressed to better support these
manycore systems and thereby achieve high performance. One
of the most important aspects is the cache memory behavior,
as the cache memory plays a key role in the performance.
Likewise, the memory hierarchy, composed of several cache
layers and memory controllers, has a significant impact in the
execution. Xeon and Xeon Phi support vectorization, which
allows several operations per instruction, and can boost the
performance by several times. Furthermore, such manycore
systems are heavily dependent on load balancing, due to the
large number of cores. An application must address these
challenges to take advantage of the new architectures.

In this paper, we optimize an acoustic wave propagator
for two NVIDIA GPUs, Intel Xeon, Xeon Phi processor and
coprocessor. We focus on improving the performance based
on the hardware impact of each of the optimizations applied.
Petrobras provided a standalone acoustic modeling program,
with the same kernel used on Reverse Time Migration. The
program simulates the propagation of a single wavelet over
time by solving the isotropic acoustic wave propagation
(Equation 1), and the isotropic acoustic wave propagation
with variable density (Equation 2) under Dirichlet boundary
conditions over a finite three-dimensional rectangular domain,
prescribing p = 0 to all boundaries, where p(x, y, z, t) is
the acoustic pressure, V (x, y, z) is the propagation speed
and ρ(x, y, z) is the media density. The Laplace Operator is
discretized by a 12th order finite differences approximation on
each spatial dimension. The derivatives are approximated by
a 2nd finite differences operator.
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To the best of our knowledge, this work presents the first
approximation to correlate the hardware impact of optimiza-
tion performed on a largely used seismic imaging simulator
running on new architectures, by applying these optimization
techniques: (1) loop interchange to improve cache memory
usage; (2) vectorization to increase the performance of floating
point computations; (3) thread and data mapping to better
use the memory hierarchy. (4) usage of shared and read-only
GPU memories together to reduce the memory access latency.
Experiments running in the Intel Knights Landing processor
and NVIDIA Maxwell GPU have the best performance.

II. RELATED WORK

Recent architectures, including accelerators and coproces-
sors, proved to be well suited for geophysics, magneto-
hydrodynamics and flow simulations, outperforming the gen-
eral purpose processors in efficiency. To obtain maximum
performance from these new devices, some re-engineering
of regions of the code, if not the entire application, is
necessary. Thus, Krukeja et al. [3] automatically generate a
highly optimized stencil code for multiple target architectures,
while Niu et al. [4] suggest using run-time reconfiguration,
and a performance model, to reduce resource consumption.
Caballero et al. [5] studied the effect of different optimizations
on elastic wave propagation equations, achieving more than an
order of magnitude of improvement compared with the basic
OpenMP parallel version.

In [6], Andreolli et al. focused on acoustic wave propa-
gation equations, choosing the optimization techniques from
systematically tuning the algorithm. The usage of collaborative
thread blocking, cache blocking, register re-use, vectorization
and loop redistribution resulted in significant performance
improvements. Our proposal chooses a largely used seismic
imaging simulation based on the acoustic wave propagation
and provides a deeper evaluation of the hardware impact of the
optimizations applied to the Xeon and Xeon Phi processors.

Research efforts such as the presented in Castro et al. [7]
improved and evaluated the performance of the acoustic wave
propagation equation on Intel Xeon Phi and compared it
with MPPA-256, general-purpose processors and a GPU. The
optimizations include cache blocking, memory alignment with
pointer shifting and thread affinity. They show that the best
results are obtained from a combination of the first two and
also that the performance with the Xeon Phi is close to the
GPU. Our work goes one step further by understanding the
effect of each optimization in the overall performance.

Rubio et al. [8] rewrote an elastic wave propagator for an
anisotropy on general-purpose processors, GPUs and Xeon
Phi, showing that the coprocessor provides good performance
at reduced development cost. Our optimizations target only
isotropic domains to reduce the complexity of the problem
and restrict the number of variables playing in the analysis.

Zhebel et al. [9] compared scalability of unmodified codes
for finite-differences and finite-element algorithms on Intel
Xeon and Xeon Phi. On the Xeon, the scalability was similar
and non-linear for all the methods, while on the Xeon Phi,
only the finite difference showed less scalability, because of
some idleness of the I/O and program control thread. Our
proposal goes beyond a scalability analysis and looks for a
greater understanding of the effect of optimizations on the
expected scaling of a real-world application.

III. MANYCORE SYSTEMS THAT WERE OPTIMIZED

We used five environments to analyze the application perfor-
mance. (1) We used a 2-node Haswell architecture, where each
node consists of a 10-core Intel Xeon E5-2640 v2 processor.
Each core supports a 2-way Simultaneous Multithreading
(SMT) and has private L1 and L2 caches, while the L3 cache
is shared between all the cores of the processor. We refer to
this system as Haswell. (2) We used a 57-core Intel Xeon Phi
3120P from the Knights Corner architecture. It supports 4-way
SMT, where each core has a private L1 and L2 cache. We refer
to this system as KNC. (3) We used a 68-core Intel Xeon Phi
7250 from the Knights Landing architecture. It supports a 4-
way SMT, where each core has a private L1 and shared L2
cache. We refer to this system as KNL. (4) We used a NVIDIA
Tesla K80 from the Kepler architecture. We refer to this system
as Kepler. (5) We used a NVIDIA GeForce GTX TITAN X
from the Maxwell architecture. We refer to this system as
Maxwell. Table I summarizes the environments.

We measured execution time, cache misses and interchip
interconnection traffic of the applications. To measure cache
misses, we used the Intel PCM tool. To measure interchip
traffic, we used Intel VTune. Each experiment was executed
30 times, and we show average values as well as a 95%
confidence interval calculated with Student’s t-distribution.

TABLE I: Configuration of the evaluation systems.

System Parameter Value

Haswell Architecture Haswell
Processor 2 × Intel Xeon E5-2650 v3, 10 cores, 2-SMT
Memory 10 × 32KB L1, 10 × 256KB L2, 25MB L3

128GB DDR4-2133
KNC Architecture Knights Corner

Coprocessor Intel Xeon Phi 3120P, 57 cores, 4-SMT
Memory 57 × 32KB L1, 57 × 512KB L2, 6GB RAM

KNL Architecture Knights Landing
Processor Intel Xeon Phi 7250, 68 cores, 4-SMT
Memory 68 × 32KB L1, 68 × 512KB L2, 96GB DDR4

Kepler Architecture Kepler GK210
GPU NVIDIA Tesla K80, 2496
Registers 13 × 512KB
Memory 13 × 128KB L1 / shared, 1280KB L2

13 × 48KB texture (read-only), 12GB GDDR5
Maxwell Architecture Maxwell GM200

GPU GeForce GTX TITAN X, 3072
Registers 24 × 512KB
Memory 24 × 96KB shared, 3072KB L2

24 × 48KB L1 / texture (read-only), 12GB GDDR5
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Fig. 1: Speedup over the xyz sequence.
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Fig. 2: Cache hit rate in Haswell.
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Fig. 3: Cache hit rate in KNC.

IV. OPTIMIZING THE ACOUSTIC WAVE PROPAGATION
MODEL IN MANYCORE SYSTEMS

This sections presents the optimizations techniques we used
to improve the performance in a real world application and the
experiments performed to validate them. The application used
as benchmark simulates the propagation of a single wavelet
over time by solving the isotropic acoustic wave propagation
with constant density under Dirichlet boundary conditions over
a 3D domain. The input stencil size was 1024× 256× 256.
We describe the optimizations and analyze how they address
the challenges imposed by manycore systems. We also present
the results obtained by each technique and the results of the
optimizations, on the Intel’s and NVIDIA’s architectures.

A. Improving Cache Memory Usage

Current computer architectures provide caches and hardware
prefetchers to help programmers manage data implicitly [10].
The loop interchange technique can be used to improve the
performance of both elements by exchanging the order of
two or more loops. It also reduces memory bank conflicts,
improves data locality and helps to reduce the stride of an
array computation. In this way, more data that is fetched to
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Fig. 4: Cache hit rate in KNL.

the cache memories are effectively accessed, the data reuse in
the caches is increased, and cache line prefetchers are able to
fetch data from the main memory more accurately. In this
application, we have three loops that are used to compute
the stencil. The loops can be executed on any order without
changing the results. The default loop sequence was xyz.

We propose to change the loop sequence from xyz to all
possible combinations. The outermost loop is the one that
was always parallelized using threads. In Figure 1, we show
in the X axis the sequences and in the Y axis the speedup
versus the xyz sequence. The bars represent the architecture.
Loop sequence zyx has better results in Haswell. The speedup
compared with the xyz version is 6.2×. This sequence is better
than others because the data is accessed in a way that benefits
more from the caches, as can be observed in the cache hit
rates shown in Figure 2. The L2 and L3 cache hit rates were
improved from 14% and 36.8% to 73% and 99% when the
loop sequence was changed to zyx. However, this was not the
case with the L1 cache, as its hit rate decreases from 69.4% to
63%. In KNC and KNL, version yzx have better results. The
speedups in these architectures are up to 2× showing that
this optimization impact less in the performance of Xeon Phi
architectures than Haswell. The cache hit rates are showed in
Figures 3 and 4. The L2 cache hit rates were improved from
83.3% and 9.6% to 85.1% and 95.9%. Although L1 cache
hit rate decreases in both architectures, it shows that the best
option aiming performance is to increase the last level cache
(LLC) hit rates, even when the cache hit rate of any other level
decreases.

The differences in cache misses happened because the
data access stride becomes different when changing the loop
sequence, influencing both spatial and temporal localities.
Despite the reductions in the L1 hit rate, the increase of the
LLC hit rates resulted in the highest performance improvement
and is therefore the best choice for this application. The
performance improvement in the KNC and KNL is lower than
in Haswell because the amount of cache memory available per
thread in the KNC and KNL is much lower.

B. Exploiting SIMD Vector Instructions

Recent hardware approaches increase performance by in-
tegrating more cores with wider SIMD (single instruction,
multiple data) units [11]. This data processing technique,
called vectorization, has units that perform, in one instruction,
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Fig. 5: Performance gain using vectorization.

the same operation on several operands. To maximize the ef-
fectiveness of vectorization, the memory addresses accessed by
the same instruction on consecutive loop iterations must also
be consecutive. In this way, the compiler can load and store
the operands of consecutive iterations using a single load/store
instructions, optimizing cache memory usage, since data is
already fetched in blocks from the main memory anyway.
More recent processors introduce the support for gather
and scatter instructions, which reduce the overhead of
loading/storing non-consecutive memory addresses. Neverthe-
less, the performance is still much higher when the addresses
are consecutive. In this context, wherever was possible, we
modified the source code such that the memory addresses
accessed by the same instruction were consecutive along loop
iterations.

We used the Advanced Vector Extensions (AVX) instruc-
tions, which is a instruction set architecture extension to use
SIMD units to increase the performance of the floating point
computations. These instructions use specific floating point
units that can load, store or perform calculations on several
operands at once. As previously described, the efficiency of
AVX is better when the elements are accessed in the memory
contiguously, as they can be loaded and stored in blocks. We
show the execution time speedup in Figure 5. The speedup
shown is relative to the loop sequence without AVX. The
sequences yzx and zyx have better results because they have
more elements being accessed contiguously. The performance
gain differs from architecture to architecture. In Haswell,
the improvement was up to 2.38×. In the KNC and KNL
architectures, the improvement was up to 10.4× and 6.5×,
respectively. These differences are due to the size of each
architecture’s vector unit and the number of cores used.

C. Thread and Data Mapping

The goal of mapping mechanisms is to improve resource
usage by arranging threads and data according to a fixed
policy, where each approach may target different aspects
to enhance. For example, there are techniques focused on
improving locality, to reduce cache misses and remote memory
accesses, as well as traffic on inter-chip interconnections [12].
Other policies seek a uniform load distribution among the
cores and memory controllers. In this work, we analyze five
mapping strategies:
Baseline The default thread mapping of Linux, focused on
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Compact+NUMA Balancing
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Fig. 6: Data and thread mapping results.

load balancing, combined with a first-touch data mapping
policy.
Compact Thread Mapping A compact thread mapping that
arranges neighbor threads to closer cores according to the
memory hierarchy, coupled with a first-touch data mapping
policy.
Interleave Data Mapping The default thread mapping of
Linux combined with the interleave data mapping, which
arranges consecutive pages to consecutive NUMA nodes.
NUMA Balancing Data Mapping The default thread map-
ping of Linux, combined with the NUMA Balancing data
mapping [13], which migrates pages along the execution to
the NUMA node of the latest thread that accessed the page.
Compact+NUMA Balancing A compact thread mapping,
combined with the NUMA Balancing data mapping.

The results obtained from different mapping policies in the
Xeon processor are shown in Figures 6a and 6b. We did not
evaluate this on the Xeon Phi systems because they had a fixed
mapping of memory addresses to memory controllers. The
speedup and interchip interconnection traffic are normalized in
relation to the baseline mapping with the corresponding loop
sequence, such that we can measure the benefits from mapping
more precisely. The results of cache misses, previously shown
in Figure 2, can help us understand the behavior from different
mapping policies. The reason for this is that most of the
improvements from mapping are due to the reduction of
accesses to the main memory, but these benefits are mitigated
if the cache hit rate is high. It can be observed that the xyz
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Fig. 7: Scalability in different architectures.

variant, which benefited most from mapping, also had most
cache misses. In the other configurations, since the L3 cache
hit rate is very high, we have few accesses to the main memory,
such that, as explained, the benefit from mapping is lower.
The usage of an interleaved data mapping provided a better
distribution of the load between the memory controllers, with
the cost of additional interchip traffic. Despite the trade-off
between the load and interchip traffic, the interleaved data
mapping provided the best improvements overall.

D. Scalability

Figures 7a, 7b and 7c show the speedup for different
optimization algorithms in the Haswell, KNC and KNL ar-
chitectures. The performance due to vectorization is better
in KNC because its architecture provides wide SIMD vector
units, 512 bits units as in KNL. Furthermore, the pipelines of
KNL and Haswell are out-of-order, which are able to exploit
a higher degree of instruction level parallelism (ILP) than
the pipeline of KNC, which is in-order [14]. This higher
ILP slightly mitigates the improvements from vectorization in
Haswell and KNL compared to KNC.

The speedup decreases when the number of threads is
greater than the number of physical cores (but lower than
the number of virtual cores). The reason for this is because
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Fig. 8: Results obtained in Kepler and Maxwell architectures.

Haswell, KNC and KNL use Hyper-Threading to allow exe-
cuting several threads per core. Since threads running in the
same core share several resources, the speedup is expected to
be a little higher than the number of cores [15]. In Haswell,
the best speedup was 18.8× running 40 threads. In KNC, the
best speedup was 137.5× running 228 threads. In KNL, the
best speedup was 80.9× running 272 threads.

E. Shared and read-only memories to reduce global memory
accesses

Kepler and Maxwell architectures cores share a 512 KB
register file, composed of 128 K registers of 4 B. They also
share access to three cache memories internal to the stream
processor. The L1 memory cache is used to accesses the stack
and register spill. This cache is organized in lines consisting
of 128 B, generating accesses to the global L2 memory cache
when lines are not found. The second cache memory is the
shared cache memory, which stores data manually allocated
by the programmer. The third cache is the read-only cache.
Originally, it was used for textures, but in Kepler and Maxwell
architectures, any data can be stored in this cache by using the
intrinsic lgd().

We developed four versions using different GPU memories
aiming to understand the performance impact. Figure 8 shows
the execution time running these different versions. The naive
version uses only the memories that are automatically used by
the compiler. The ReadOnly and Shared versions use the same
memories as naive and use read-only and shared memory,
respectively. The Shared+ReadOnly takes advantage of both
read-only and shared memory. The performance improvement
by using these memories was up to 2.5× in comparison with
the naive version in the Kepler architecture and up to 1.8× in
the Maxwell architecture. The Maxwell architecture was 2×
faster than Kepler architecture.

F. Comparison between Haswell, KNC, KNL, Kepler and
Maxwell

We optimize the wave propagation kernel for different
manycore systems with very different architectural character-
istics. Figure 9 shows the execution time of the best version
for each architecture evaluated. In the Xeon Phi systems,
the best version was using the yzx sequence. The Haswell
architecture was better with the zyx sequence. In the Kepler
architecture, the best version was shared-readOnly, which
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stores data in both shared and read-only memories. In the
Maxwell architecture, the best version was readOnly, which
stores data in the read-only memory.

Although KNC has hundreds of threads, its performance
was the worst among the architectures. It has in-order cores,
which limits the performance because it reduces the instruction
level parallelism (ILP). The Haswell architecture has a high
ILP degree, but its performance is limited by the low number
of cores. The KNL architecture has both a high ILP degree and
a large number of cores, resulting in low execution times. The
Kepler architecture has a low execution time, but the Maxwell
architecture is even better once its a newer GPU architecture.
This architecture has thousand of cores that enables a high
performance in this kind of application.

V. CONCLUSIONS AND FUTURE WORK

Manycore systems introduce several challenges, such that
parallel applications need to be coded properly to address
them. In this paper, we applied and analyzed the perfor-
mance of a set of optimization techniques on Intel Haswell,
Intel Knights Corner (KNC), Intel Knights Landing (KNL),
NVIDIA Kepler and NVIDIA Maxwell. We showed that these
techniques can improve the performance of a real world
application in both processor and coprocessor. We also made
use of hardware performance counters to analyze the impact
of each optimization. The optimizations that we presented can
also be applied to other applications and architectures.

In our experiments, we show that loop interchange is a
useful technique to improve performance of different cache
memory levels, being able to improve the performance by
up to 6.2×, 2.01× and 2.06× in Haswell, KNC and KNL,
respectively. These improvements happened because we were
able to increase the cache hit ratio by up to 99%. Furthermore,
by changing the code such that elements are accessed contigu-
ously between loop iterations, we were able to vectorize the
code, which improved performance by up to 2.39×, 10.4×
and 6.5×. By modifying the scheduling, we were able to
increase the performance by up to 2.19×, 1.29× and 1.04×,
due to a better load balance among the cores. Thread and data
mapping techniques were also evaluated, but their performance
improvements were mitigated by the high cache hit ratio
that we were able to achieve. Using these techniques, the
speedup was up to 18.8×, 137.5× and 80.9× in Haswell,
KNC and KNL, respectively. We also developed GPU versions
aiming to understand which GPU architectures provide the

best performance to the geophysics application. The results
showed that using both shared and read-only memories the
performance was improved by up to 2.5×. At the end, we
compared the best version of each architecture and showed
that NVIDIA Maxwell has the best execution time.

As future work, we will evaluate the energy consumption
improvements of these optimizations. We also intend to eval-
uate newer architectures, such as the Coffee Lake and Pascal
architectures.
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