
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

WALTER LAU NETO

Exact Multi-Level Benchmark Circuit
Generation for Logic Synthesis

Evaluation

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Microeletronics

Advisor: Prof. Dr. Renato Ribas

Porto Alegre
August 2018

CIP — CATALOGING-IN-PUBLICATION

Lau Neto, Walter
Exact Multi-Level Benchmark Circuit Generation for

Logic Synthesis Evaluation / Walter Lau Neto. – Porto Ale-
gre: PGMICRO da UFRGS, 2018.

69 f.: il.
Thesis (Master) – Universidade Federal do Rio Grande

do Sul. Programa de Pós-Graduação em Microeletrônica,
Porto Alegre, BR–RS, 2018. Advisor: Renato Ribas.

1. Digital circuit design. 2. Logic synthesis. 3. Exact
benchmarks. 4. Synthesis algorithm evaluation. 5. Reversible
logic. I. Ribas, Renato. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitor: Prof. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretor do Instituto de Informática: Prof. Carla Maria Dal Sasso Freitas
Coordenador do PGMICRO: Prof. Fernanda Lima Kastensmidt
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“If you limit your actions in life to things that nobody
can possibly find fault with, you will not do much!"

— Lewis Carroll

ACKNOWLEDGMENT

To my family, in special to my parents Richard and Claudia, my aunt Nelza and
my grandmother Astrid thank you for supporting me in my studies. To my uncle Sérgio
and my aunt Maria Candida thank you for receiving me in your home when I moved to
Porto Alegre, in 2011. Thanks to that I could have the opportunity to come to study
here. Also, I would like to thank my brother, Nicholas, who has tolerated to share an
apartment with me in the last years.

To my advisor, Renato Ribas, thank you for the patience and the valuable lessons.
In particular, I would like to thank you for the discussions about life in general. Even
though the technical knowledge is essential, many times it may be found in books and,
in our area, tends to become deteriorated in a short time. However, the kind of lessons I
have learned from you about research and life will remain with me forever.

Also, I would like to thank professor André Reis for trusting on me and giving me
opportunities to improve my knowledge. Furthermore, I would like to thank my colleagues
(friends) from LogiCS labs. Thank you for receiving me so well. I am grateful for all of
our discussions, funs, barbecues and soccer. In the scope of this work, I would like to
thanks Felipe Marranghello, for discussing reversible logic with me from the beginning
of my studies, as well as Vinicius Possani for always explaining me the concepts of logic
synthesis and algorithms.

To my friends from PUCRS and GAPH thanks for the discussions and fun we have
had during these years. Special thanks to Alexandre Amory who has introduced me to
the research and to Matheus Moreira who has taught me a lot and is a great friend.

Finally, to all my friends thank you for understanding when I could not go some-
where because of my studies. Also, thanks for all the funny moments we have had.

ABSTRACT

Electronic design automation (EDA) tools provide a highly automated flow for integrated
circuit (IC) design. This flow may be roughly divided into three main steps: high-level
synthesis, logic synthesis and physical synthesis. The logic synthesis step has as goal
circuit logic optimization and circuit implementation in a given technology. Usually,
the logic synthesis is performed over a multiple-level network, which implements the
combinational logic of a given circuit. The problem of synthesizing a multi-level network
is a complex task, where exact synthesis is just practical for functions with a few inputs,
and the vast majority of algorithms are heuristic. While validating and evaluating new
heuristic methods, benchmarks are of great importance. Usually, when a new method
emerges, it is compared to the previous best-known results for a similar set of circuits,
showing the relative efficiency of this new method over the previous one. However, with
such an evaluation it is not possible to assess if current approaches are producing a near-
optimal solution or if there is still room for improvement. To address this issue, it is of
great interest have circuits with an exact known solution. In this work, a novel method
to generate exact multi-level logic circuits is presented. The proposed method is based
on reversible logic and creates circuits acting as the identity function f(x) = x. It means
that the generated circuits can be reduced to wires, with no gate instantiation. The
proposed approach can generate exact benchmark circuits with up to 40 millions of AND-
inverter graph (AIG) nodes in a few seconds. Furthermore, with the proposed method,
it is possible to derive exact circuits in two different ways: (i) from real designs and (ii)
building synthetic circuits. Both approaches are discussed, and logic synthesis results
are presented running the state-of-art academic tools and a commercial tool for each.
From results, it is possible to note that the generated circuits are challenging to logic
synthesis tools and that there is a gap between the solutions found by these tools and
the optimal circuit implementation. Finally, we present and discuss the flexibility of the
proposed method, and how it can be further explored and applied in areas other than
logic synthesis.
Keywords: Digital circuit design. Logic synthesis. Exact benchmarks. Synthesis algo-
rithm evaluation. Reversible logic.

Geração de Circuitos Multi-Nível com Solução Exata para Avaliação de
Ferramentas de Síntese Lógica

RESUMO

Ferramentas de automação de projetos eletrônicos (do inglês EDA) proporcionam um
fluxo automatizado para o projeto de circuitos integrados. Este fluxo pode ser dividido
basicamente em três principais etapas: síntese de alto nível, síntese lógica e síntese física.
Durante a síntese lógica, os principais objetivos são a otimização lógica do circuito bem
como sua implementação em uma tecnologia alvo. Normalmente, a síntese lógica ocorre
em uma rede multinível que implementa a lógica combinacional de um dado circuito. A
síntese de redes multinível é uma tarefa complexa, de forma que a sua síntese exata é
possível apenas para funções com poucas entradas, e a maioria dos métodos são heurís-
ticos. Para avaliar novos métodos heurísticos, circuitos benchmark são de fundamental
importância. Esta avaliação apresenta a eficiência relativa desta nova proposta em relação
a anterior. Porém, ao avaliar a eficiência relativa, não sabemos se os métodos atuais já
estão produzindo soluções próximas do seu ótimo, ou se ainda podem ser melhorados.
Para avaliar esta questão, benchmarks onde se conhece a solução ótima são fundamentais.
Neste trabalho, é apresentado um novo método para gerar circuitos multinível com solu-
ção ótima conhecida. O método proposto baseia-se em lógica reversível e gera circuitos
que implementam uma função identidade f(x) = x. Isto significa que os circuitos gerados
podem ser reduzidos a simples conexões sem nenhuma instância de porta lógica. A abor-
dagem proposta pode gerar circuitos com até 40 milhões de nodos AIG (AND-inverter
graph) em poucos segundos. Além disto, com o método proposto pode-se gerar circuitos
exatos de duas diferentes maneiras: (i) baseado em circuitos reais e (ii) construindo circui-
tos sintéticos. Ambas abordagens são discutidas e para cada uma apresenta-se resultados
de síntese lógica usando ferramentas de código aberto do estado da arte e ferramentas
comerciais. Pode-se notar que os circuitos gerados são capazes de desafiar as ferramentas
de síntese lógica, havendo diferenças consideráveis entre os resultados achados por estas e
a solução ótima esperada. Finalmente, apresentamos e discutimos algumas flexibilidades
do método proposto, bem como possíveis aplicações do método em outras áreas além da
síntese lógica.

Palavras-chave: Projeto de circuitos digitais. Síntese lógica. Benchmarks exatos. Ava-
lição de algoritmos de síntese. Lógica reversível..

LIST OF ABBREVIATIONS AND ACRONYMS

AIG And-Inverter Graph

ASIC Application Specific Integrated Circuit

BDD Binary Decision Diagram

BLIF Berkeley Interchange Format

CAD Computer Aided Design

CEC Combinational Equivalence Checking

CMOS Complementary Metal-Oxide-Semiconductor

DAG Directed Acyclic Graph

DSD Disjoint-Support Decomposition

EDA Electrical Design Automation

FPGA Field-Programmable Gate Array

HDL Hardware Description Language

IC Integrated Circuit

ILB Identity Logic Block

ISOP Irredundant Sum-of-Products

LEKO Logic Synthesis Examples with Known Optimal

LEKU Logic Synthesis Examples with Known Upper Bounds

LUT Look-up Table

MAJ Majority Logic Function

MIG Majority-Inververter Graph

PLA Programmable Logic Array

POS Product-of-Sums

QoR Quality-of-Results

RTL Register-Transfer Level

SOP Sum-of-Products

VLSI Very-Large Scale Integration

LIST OF FIGURES

Figure 2.1 Input and output sets of a bijection f : X ⇒ Y ...18
Figure 2.2 PLA format representation of the function described in Table 2.122
Figure 2.3 PLA architecture configurantion for the function presented in Table 2.1. ...22
Figure 2.4 BLIF file describing the function presented in Table 2.1..............................23
Figure 2.5 BDD representation of the function described in Table 2.1.24
Figure 2.6 AIG representation of the function described in Table 2.1...........................25
Figure 2.7 MIG representation of the function described in Table 2.1.26
Figure 2.8 (a) Original circuit. (b) Structurally mapped. (c) Functionally mapped.(CONG;

MINKOVICH, 2007) ...27

Figure 3.1 LEKO with two layers (CONG; MINKOVICH, 2007).35
Figure 3.2 Representation of C5 circuit from (CONG; MINKOVICH, 2007)................36
Figure 3.3 Depth optimal realization of f = abc+ abd (AMARÚ et al., 2017).37
Figure 3.4 Breaking unateness of tree presented in Figure 3.3.37
Figure 3.5 Breaking disjoint support of tree presented in Figure 3.4.38

Figure 4.1 Identity logic block (ILB)...39
Figure 4.2 Flow for generating the ILB first stage. ...49

Figure 5.1 Example of an ILB composed by inverters. ..58
Figure 5.2 Example of custom block position in the ILB structure...............................59
Figure 5.3 H25 ILB arrangement...61
Figure 5.4 C5-ILB5 interleaved multi-layer arrangements: (a) M25a, (b) M25b and

(c) M25c. ...62

LIST OF TABLES

Table 2.1 Truth table of arbitrary function. ..19
Table 2.2 Truth table of arbitrary reversible function. ..20

Table 3.1 Summary of presented benchmark sets..33

Table 4.1 Approaches for exact multi-level logic circuit generation...............................40
Table 4.2 Irreversible full adder truth table. ...42
Table 4.3 Reversible full adder truth table. ...43
Table 4.4 2-input AND truth table..45
Table 4.5 Bennett’s embedding of 2-input AND. ..45
Table 4.6 Reversible truth table returned by RevKit tool for full adder.46
Table 4.7 Final ILB of an arbitrary three inputs function...50
Table 4.8 Number of nodes and logic depth for synthetic circuits.................................51

Table 5.1 Results for ILBs based on real designs in open-source tools.53
Table 5.2 Results for ILBs based on real designs in commercial tool.54
Table 5.3 Results for size (area) oriented commands...56
Table 5.4 Synthetic ILB synthesis in a commercial tool..57
Table 5.5 Results using XOR2 logic gate as custom logic. ..60
Table 5.6 Synthesis results for size (area) oriented ABC commands.61
Table 5.7 Benchmark synthesis in FPGA and ASIC design environments.62
Table 5.8 Experimental results combining LEKO arrangements with ILBs.62

CONTENTS

1 INTRODUCTION .. 12
1.1 Logic Synthesis .. 13
1.2 Motivation... 14
1.3 Objectives.. 15
1.4 Proposed Work.. 15
1.5 Text Organization ... 16
2 PRELIMINARIES.. 17
2.1 Boolean Function Definitions .. 17
2.2 Boolean Function Decomposition .. 18
2.3 Boolean Functions Representation .. 18
2.3.1 Truth Table ..19
2.3.2 Sum-of-Products...20
2.3.3 Programmable Logic Array ..21
2.3.4 Berkeley Logic Interchange Format ..23
2.3.5 Binary Decision Diagrams ..23
2.3.6 AND-Inverter Graph ..24
2.3.7 Majority-Inverter Graph...25
2.4 Integrated Circuit Design.. 26
3 RELATED WORK ... 29
3.1 Benchmark Circuits... 29
3.2 Exact Benchmark Circuits .. 33
4 PROPOSED APPROACH ... 39
4.1 Deriving ILB from Real Designs ... 41
4.2 Processing Embedded Output... 46
4.3 Generating ILB by Construction... 48
5 EXACT BENCHMARKS SYNTHESIS RESULTS AND DISCUSSION. 52
5.1 Synthesis Results for ILBs Based on Real Designs 52
5.2 Synthesis Results for Synthetic ILBs .. 55
5.3 Embedding Custom Logic into ILB... 58
5.4 Combining ILBs to increase circuit complexity..................................... 60
6 CONCLUSIONS ... 63
REFERENCES .. 65

12

1 INTRODUCTION

Since the emergence of the first integrated circuit (IC), in 1958, the number of
transistor per IC has doubled every 18 months (WESTE; HARRIS; BANERJEE, 2005).
This prediction was firstly done by Gordon Moore. being well known as the Moore’s law
(MOORE, 1965). With such a growth in integration, a single chip has evolved from thou-
sands to millions and then to billions of transistors, leading to the very large integration
scale (VLSI) era.

The first ICs were handcrafted designed, through an approach known as full-
custom. However, when the designs have evolved to millions of transistors, this ap-
proach has proved to be unsustainable (RABAEY; CHANDRAKASAN; NIKOLIC, 2002).
Therefore, designers started to look for new ways to adequate it for automation. In this
scenario, the semi-custom design style has emerged. The most common semi-custom style
is the standard-cell one, which is based in pre-designed libraries of cells used to implement
circuits. Those cells are pre-designed and pre-characterized sub-circuits used in tandem
to build more complex ones. With those sub-circuits, electronic design automation (EDA)
environments are able to provide a highly automated flow.

Usually, an EDA environment performs three main steps: high level synthesis, logic
synthesis and physical synthesis (MICHELI, 1994). The high-level synthesis is responsi-
ble for transforming the circuit behavior described in a higher level of abstraction into a
hardware format, like register transfer level (RTL), which implements the circuit behav-
ior. Logic synthesis consists of circuit logic optimization as well as implements the circuit
targeting a given technology, for instance, field-programmable gate arrays (FPGAs) and
application specific integrated circuit (ASIC). Finally, the physical synthesis assigns phys-
ical resources to the mapped circuit, i.e., basically the placement of logic elements and
routing of internal interconnection wires.

This work focuses on the logic synthesis step. To implement the circuit behavior,
it is possible to have, at least, two-levels of logic or multiple levels. The main advantages
of two-level logic over multi-level one are speed and simplicity, since the solution space is
restricted, making the network easier to design and implement (HACHTEL; SOMENZI,
2006). Though two-level logic has been used to deal with programmable logic devices,
such as programmable logic arrays (PLA) (FLEISHER; MAISSEL, 1975), it has limited
usefulness in current VLSI circuit and system design, mainly due to the fact that two-level
logic tends to oresent a larger circuit area and power dissipation when comparing with

13

multi-level logic (HACHTEL; SOMENZI, 2006).
On the other hand, deal with multi-level logic, which represents the majority of

the circuits designed in practice, is a harder task (HACHTEL; SOMENZI, 2006). That
is because the potential of reusing logic increases the size of solution space when com-
paring to two-level logic optimization (MICHELI, 1994). Thus, multi-level logic can be
formulated as a dynamic search problem in which its complexity relies on the fact that
the entire set of decisions is unknown until the search begins. Therefore, the search space
grows according to the network growing during synthesis process (ERNST, 2009).

1.1 Logic Synthesis

The logic synthesis may be divided into sequential and combinational synthesis
(MICHELI, 1994). Sequential synthesis deals with the sequential elements on the design,
e.g. registers, whereas combinational synthesis optimizes the existing logic operations
between sequential elements. In this work, we focus on combinational synthesis.

The combinational synthesis of two-level logic is well explored due to its sim-
plicity. Hence, several tools for two-level logic minimization are available (COUDERT,
1994)(MCGEER et al., 1993), and functions with up to hundreds of inputs and out-
puts can be optimally synthesized in terms of gate count (ERNST, 2009) (HACHTEL;
SOMENZI, 2006).

Nowadays, combinational logic circuits are usually implemented through multi-
level logic, which tends to be smaller and consumes less power than two-level topology
(HACHTEL; SOMENZI, 2006). Furthermore, multi-level logic allows a higher degree of
freedom while designing a logic circuit (MICHELI, 1994), and different structures may
be chosen to implement the same functionality (HACHTEL; SOMENZI, 2006). Unfortu-
nately, this great freedom comes at the price of high complexity for logic optimization.
Such a high complexity makes exact synthesis algorithms not practical, either while con-
sidering the number of logic gates or design logic depth. Though recent efforts have been
made towards the multi-level logic exact synthesis (SOEKEN et al., 2018)(SOEKEN et
al., 2017), it is still constrained by functions with a few inputs, and the proposed methods
may be suitable to use in tandem with larger non-exact logic synthesis algorithms. There-
fore, the majority of current logic synthesis algorithms are heuristic. These algorithms
must meet some constraint criteria while minimizing other costs functions as much as
possible (ERNST, 2009).

14

Whether the synthesis algorithm is exact or not, its assessment is done through
circuit benchmarking. These are sets of standardized circuits thought to impose challenges
to EDA (HARLOW, 2000). Usually, when a new method emerges, it is compared to the
previous best-known results for a similar set of circuits. Standard metrics for such a
comparison are speed, effectiveness and quality-of-results (QoR). This kind of contrast
shows the relative efficiency of a new method over the previous one (AMARÚ et al.,
2017).

1.2 Motivation

If no large improvements are achieved from one method to another, the standard
method of assessing algorithms through its relative efficiency leaves an open question:
are current methods already producing near-optimal solutions or is there still room for
further improvement? (CONG; MINKOVICH, 2007). In other words, there is a lack to
measure the method absolutely efficiency (AMARÚ et al., 2017). In order to achieve this
goal and to answer the question, it is of great interest have circuits with a known exact
solution.

The first work addressing the design of exact circuits regarding logic synthesis was
proposed in (CONG; MINKOVICH, 2007). In such a work, the authors designed by hand
a small synthetic circuit with the known optimal solution after technology mapping in
terms of the number of 4-input look-up tables (LUT-4). This circuit was designed and
tuned to be as hard as possible for structural-based mappers (CONG; MINKOVICH,
2007). The optimal implementation of this circuit is given by a binate-cover technique
available on the SIS tool, which can find optimal solutions for small circuits (SENTOVICH
et al., 1992). Thus, the authors present a method to build layers of these small circuits,
by repeating and connecting them in order to create more complex designs where exact
synthesis techniques are computationally unfeasible.

Recently, in (AMARÚ et al., 2017), the authors have proposed a method based on
balanced binary trees in order to build exact synthetic circuits. By assuming that each leaf
node is a different input variable, the authors guarantee depth optimality. Moreover, tricks
to break trivial features of the generated basic tree are discussed aiming to complicate
the synthesis tools. With the optimal tree, different possibilities to build a sub-optimal
circuit are presented, which will serve as input to the logic synthesis tool. The work
presents circuits with up to 600,000 AND-inverter graphs (AIG) nodes, and assess the

15

lack between the optimization done by FPGA open-source synthesis tools and the exact
solution in terms of the circuit logic depth.

1.3 Objectives

This work aims to propose a novel method to generate exact multi-level logic
circuits in terms of logic gate count and logic depth. Moreover, the resulting circuit must
be complex enough to challenge the state-of-art logic synthesis algorithms. To accomplish
this objective, we present two different approaches in Chapter 4.1 and Chapter 4.3.

The proposed methods differ from previous work in different ways, outstanding the
following features: (i) it provides proven-by-construction optimal solution and does not
depends on other methods/tools to guarantee the circuit exactness, and (ii) it unlocks the
possibility to generate exact multi-level logic circuits with structures computing functions
found in real applications.

Besides that, the method is flexible and can stress synthesis algorithms in respect
to a given function property. Moreover, the method can be combined with previous works
in order to increase their complexity. Finally, the proposed approach is able to generate
exact circuits that are dozens of times larger in terms of gate count (AIG nodes) than
those presented previously.

1.4 Proposed Work

This work proposes a new method to generate benchmark circuits with a known
exact solution. The proposed method generates identity logic blocks (ILB), which has
known exact solution in both circuit area and logic depth. Since the ILB performs the
identity function f(x) = x, the optimum solution is zero for both metrics. The method
generates ILBs with up to 40 millions of AIG nodes into a few seconds.

To derive the ILBs, the proposed method stands on reversible logic (SAEEDI;
MARKOV, 2013). Reversible logic implements reversible functions which maps each
input pattern to a unique output pattern (and vice-versa). Thus, reversible functions
perform bijective functions. By using reversible logic, our method can both generate exact
synthetic circuits by construction and derive exact circuits from real designs. This last
feature is possible thanks to embedded methods, which transform irreversible functions

16

into reversible ones (SOEKEN et al., 2016b)(ZULEHNER; WILLE, 2017).
Finally, since our method implements identity functions, it is flexible and may

be used in tandem with the methods proposed in (CONG; MINKOVICH, 2007) and
in (AMARÚ et al., 2017). In fact, the proposed method can be applied to any circuit
aiming to impose further difficulties to EDA tools. In the same way, exact functions can
be embedded in our ILB in order to check either the tool is able to find the function
itself or not, as discussed in Chapters 5.3 and 5.4. The embedding of Boolean functions
into ILB, with a given characteristic, is useful to look for algorithms flaws under a known
scenario.

1.5 Text Organization

The rest of the text is organized as follows:

• In Chapter 2, some fundamentals on Boolean functions are given to introduce the
concept of reversible functions that the proposed method implements. Moreover,
it presents some important ways to represent Boolean functions, which are utilized
along the work for both implementation and assessment. Finally, it reviews the IC
design flow, where we focus on the logic synthesis evaluation.

• Chapter 3 presents related works on benchmarks. This chapter covers previously
proposed benchmark circuit set.

• The proposed method to generate exact circuits is depicted in Chapter 4. Two
approaches are presented: (i) generating exact circuits from real designs and (ii)
generating synthetic exact circuits. Experimental results show that in both flows
there is still room for improvements.

• In Chapter 5, synthesis results are presented for an open-source and commercial tool.
Besides showing results for exact circuits derived from real designs and synthetic
exact circuits, we also present variations of the proposed block in order to increase
its complexity, within the synthesis results.

• Finally, Chapter 6 summarizes and concludes the contributions of this work.

17

2 PRELIMINARIES

This chapter presents the fundamentals for understanding this work. It discusses
the notion of Boolean functions, reversible Boolean functions and some ways to represent
such functions. Finally, it presents the IC design flow with a focus on logic synthesis for
FPGAs and standard-cell based ASICs.

2.1 Boolean Function Definitions

The Boolean set, defined as B = {0,1}, represents two logic values, i.e., false and
true. A Boolean set of dimension n (Bn) is composed by all distinct elements of length n.
Thus, the Bn set has 2n elements, e.g. B0 = ∅, B1 = {0, 1} and B2 = {00, 01, 10, 11}.

An n-input Boolean function f(X) is a mapping f : Bn ⇒ B defined by its input
variables (support) X = {x0, x1, ..., xn−1}, where the variables are in the Boolean domain,
i.e., each variable can only assume values of B. The function maps each of the 2n elements
from its domain set to either 0 or 1 into its image set.

A multiple output Boolean function is a mapping f : Bn ⇒ Bm, with n, m ∈ N. In
other words, it is a system of functions fi = {x0, x1, ..., xn−1}, with 0 ≤ i ≤ (m − 1). In
this work, multiple-output functions are denoted by n x m functions.

An n x m Boolean function is said to be reversible if, and only if, it maps each
input pattern into a unique output pattern (and vice-versa), and n = m. Therefore,
reversible functions realize bijective Boolean functions, i.e., each element of the input set
is paired with one element at the output set, and there are no unpaired elements. Since
for reversible function n = m, the output set is a permutation of the input set. Figure 2.1
presents the input and output sets of a bijection function f : X ⇒ Y . Note that, for a
given output, it is possible to determine its associated input pattern. That is, a bijection
has an inverse mapping f−1 : Y ⇒ X.

The relationship between the domain and the image sets of a Boolean function is
usually done by logic operations over the variables from X. There are some basic operators,
such as: AND (∧), OR (∨) and NOT (¬ or !). The AND operator evaluates the function
to 1 when all n variables are 1. Otherwise, the function is evaluated to 0. The OR
operator, in turn, evaluates to 0 when all variables are 0. Otherwise, the function is
evaluated to 1. The NOT operator, also known as negation, performs over only a single
variable and returns 0 if the variable is 1, and vice-versa.

18

0

1

2

3

4

5

6

7

1

5

6

4

3

2

7

0

Inputs Outputs

Figure 2.1: Input and output sets of a bijection f : X ⇒ Y .

2.2 Boolean Function Decomposition

Through decomposition, it is possible to express a complex Boolean function in
terms of simpler subfunctions (ASHENHURST, 1957)(CURTIS, 1962). A given Boolean
function f(X) can be represented through the subfunctions g and h, as follows:

f(x) = h(g(X1), X2) (2.1)

with X1 and X2 different from ∅, and (X1∪X2) = X. This representation, when
possible, is known as the functional decomposition of f . A special case of function de-
composition is the disjoint-support decomposition (DSD), in which the sets X1 and X2
do not share any element, i.e., (X1 ∩ X2) = ∅. DSD can be treated by special algo-
rithms (MISHCHENKO; BRAYTON, 2007), and has diversified applications in IC design
domain (KUTZSCHEBAUCH; STOK, 2002)(PLAZA; BERTACCO, 2005)(BERTACCO;
OLUKOTUN, 2002). The DSD is considered in some logic synthesis experiments carried
out in this work.

2.3 Boolean Functions Representation

There are several ways to represent Boolean functions, differing in trade-off be-
tween simplicity and scalability. For instance, the truth table representation is a quite
straightforward way to describe a given function, but it does not scale for large functions.

19

Therefore, this section presents an overview of models for representing Boolean functions
used or referred to in this work.

2.3.1 Truth Table

Truth table is a widespread form to represent a Boolean function. For a function
with n inputs, its truth table is composed of 2n rows and, consequently, by 2n minterms,
which are the product over the function variables. By applying the negation (NOT)
operator over the minterm, it is possible to derive a maxterm. Therefore, through the De
Morgan’s theorem, maxterms are given as the sum over the function variables.

In truth table representation, for each possible combination of Boolean values
assigned to the input variables, there is a correspondent output value. Table 2.1 shows the
truth table of an arbitrary function f(x0, x1, x2), as well as its minterms. The minterms
that evaluate f to 1 form the function on-set. On the other hand, the minterms which
evaluate f to 0 are part of the function off-set.

Table 2.1: Truth table of arbitrary function.
x0 x1 x2 f minterm
0 0 0 0 x0.x1.x2
0 0 1 1 x0.x1.x2
0 1 0 1 x0.x1.x2
0 1 1 1 x0.x1.x2
1 0 0 0 x0.x1.x2
1 0 1 0 x0.x1.x2
1 1 0 1 x0.x1.x2
1 1 1 0 x0.x1.x2

Alternatively, it is also possible to represent the function truth table f(x0, x1, x2)
as a bit string, where the most significant bit refers to the last minterm (111) and the
least significant bit refers to first minterm (000). For instance, the function presented in
Table 2.1 can be represented as f(x0, x1, x2) = 010011102.

The function presented in Table 2.1 has an output value for each of its input
combination, and it is then said completely specified. Sometimes, however, it may be
the case that under normal conditions, some input combinations should not occur. For
those, the output value is said to be don’t care, and both 0 or 1 can be assigned to the
output without changing the function behavior. This choice is usually done looking for

20

the minimal synthesis solution. When there is an output function marked as don’t care,
the function is said to be incompletely specified Boolean function.

Reversible functions may be represented by truth tables with 2n rows and an equal
number of input and output columns. Since the most of truth-table based synthesis
methods for reversible functions takes a completely specified function as input (WILLE;
DRECHSLER, 2010), don’t cares must be assigned while taking care to keep the bijective
function feature.

Table 2.2 presents the truth table of an arbitrary reversible function with three
inputs and three outputs. From this table, it is easy to note that there is one-to-one
correspondence between inputs and outputs. Therefore, the function is bijective. A
further discussion on embedding irreversible functions into reversible ones is presented in
Chapter 3.

Table 2.2: Truth table of arbitrary reversible function.
x0 x1 x2 f0 f1 f2
0 0 0 0 0 1
0 0 1 1 0 1
0 1 0 1 1 0
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 0 1 0
1 1 0 1 1 1
1 1 1 0 0 0

2.3.2 Sum-of-Products

Sum-of-products (SOP) form is an example of two-level logic expression, with cubes
(minterms) joined by disjunction operators. Conversely, a function can also be represented
through the product of its maxterms, which is known as product-of-sums (POS). If an
SOP (POS) contains all the minterms (maxterms) on the function on-set (off-set), then
it is canonical (unique). However, it is usually of interest to represent the SOP (POS) of
a given function with the minimal number of cubes (sum terms). This work focuses on
SOP representation.

21

The canonical SOP representation of the function presented in Table 2.1 is the
following:

F = x0.x1.x2 + x0.x1.x2 + x0.x1.x2 + x0.x1.x2. (2.2)

On the other hand, the canonical POS representation of the same function is given
by

F = x0 + x1 + x2.x0 + x1 + x2.x0 + x1 + x2.x0 + x1 + x2. (2.3)

A cube composed of variables x0, ..., xn−1 is said to be implicant of f(X), if any
assignment that evaluates the cube to 1 does not map f(X) to 0. An implicant cube can
cover one or more minterm. A cube is prime implicant if it is not contained (covered) in
any other implicant. Essential prime implicants are cubes that cover at least one minterm
which is not covered by any other prime implicant.

If a set of cubes S covers all the minterms of a function f(X), so it also covers
the function. The set S is a prime cover of f(X) if all its cubes are prime implicants. A
prime cover of f(X), where no prime cube can be removed from S without changing the
function behaviour, leads to an irredundant sum-of-products (ISOP). Since SOP and POS
are dual, it is also possible to obtain an irredundant product-of-sums (IPOS) (BRAYTON
et al., 1984).

The support variables X of f(X) can be represented in both positive and negative
polarities. A literal is an instance of a variable xn or its complement !xn. A cube is a
conjunction (product) of literals. The weight of a cube is given by the number of literal it
contains. By removing a literal, one doubles the number of input assignments that satisfy
a given cube.

2.3.3 Programmable Logic Array

The programmable logic array (PLA) format was thought to describe circuits im-
plemented in the PLA technology. This technology is comprised of a configurable archi-
tecture, which can be programmed to compute combinational logic. The architecture is
composed by an array of AND logic gates, connected to the circuit inputs, followed by
an array of OR logic gates, connected to the circuit outputs. In PLA architecture, both
arrays are programmable differing from other architectures, such as PAL where only the
AND array is configurable. Since PLAs are composed by AND logic gates followed by

22

Figure 2.2: PLA format representation of the function described in Table 2.1
number o f inpu t s
. i 3
number o f ou tpu t s
. o 1
input s i g n a l s name
. i l b x0 x1 x2
output s i g n a l s name
. ob f0
on−s e t
001 1
010 1
011 1
110 1
. e

OR logic gates, they implement sum-of-product expressions. Figure 2.3 shows the PLA
implementation of the same function presented in Table 2.1. There are 2n AND logic
gates in the AND plane, one for each minterm, as well as m OR logic gates, where m
is the number of outputs of a given function. Each input can be connected to the AND
logic gate directly or complemented through the inverter connected to each of them. The
cubes that compose the function on-set are marked by a black dot and are connected to
the OR logic gate.

Therefore, the PLA format representing a function implemented in such a technol-
ogy is composed by the cubes that are in the function on-set. The Listing 2.2 shows the
PLA file representing the circuit configuration in Figure 2.3. It is also possible to provide
the on-set and off-set in the file.

Figure 2.3: PLA architecture configurantion for the function presented in Table 2.1.

23

2.3.4 Berkeley Logic Interchange Format

The Berkeley logic interchange format (BLIF) is a textual format to describe hi-
erarchical circuits. The BLIF format allows to describe the design internal nodes and is
suitable for multi-level logic representation. The Listing 2.4 presents the BLIF description
of the same circuit represented in the Table 2.1. In this code, n5 and n6 denote interme-
diate nodes as well as the cubes that evaluates them to true. The node n7 is connected
to the inverted outputs of nodes n5 and n6. Finally, the primary output f0 receives the
negation of the node n7 output. The same circuit is presented in Figure 2.6.

Figure 2.4: BLIF file describing the function presented in Table 2.1
network name
. model b l i f _example
inpu t s
. inputs x0 x1 x2
outpu t s
. outputs f 0
network connect ion
. names x0 x1 x2 n5
−10 1
. names x0 x1 x2 n6
0−1 1
. names n5 n6 n7
00 1
. names n7 f0
0 1
. end

2.3.5 Binary Decision Diagrams

A binary decision diagram (BDD) is a rooted, directed acyclic graph used to rep-
resent Boolean functions (AKERS, 1978). The graph vertex set V accepts three types of
vertices. A terminal vertex v may denote a true or false decision, through the values 1
and 0, respectively. On the other hand, a non-terminal vertex v has as attribute an input
variable xi and represents a decision node with two children. If xi = 1, go to high(v),
else go to low(v). Finally, there is the function node, which has one incoming edge and
no outgoing edges, and denotes the function being represented. Figure 2.5 presents the
BDD representation of the function described in Table 2.1, respecting the variable order

24

x0 <x1 <x2. The F node denotes the function under representation. The dashed edges
refer to the low(v) nodes.

XOR

x1

0 1 1 1

XOR

0 0 1 0

XORx0

x1

x2 x2 x2 x2

F

Figure 2.5: BDD representation of the function described in Table 2.1.

In order to make the BDD a canonical representation, the idea of reduced and
ordered binary decision diagram (ROBDD) was introduced in (BRYANT, 1986), being
a more compact way to represent BDDs. The canonicity is related to a given order
of variables in the graph, which has a direct impact on the ROBDD size (HACHTEL;
SOMENZI, 2006). In fact, for a given order, it may be the case that it is not possible
to derive an ROBDD. For a given variable ordering, non-terminal nodes controlled by
the same variable and pointing to the same child in both values (xi = 1 and xi = 0) are
removed. Furthermore, nodes controlled by the same variable and pointing to the same
left and right child are merged.

2.3.6 AND-Inverter Graph

AND-inverter graph (AIG) is the most common data structure for performing
logic synthesis, even though it was first proposed to perform combinational equivalence
checking (KUEHLMANN; KROHM, 1997). An AIG is a directed acyclic graph (DAG)
used to represent Boolean functions, and its nodes have zero or two incoming edges.
Nodes with zero incoming edges are primary inputs (PI), and nodes with two incoming
edges represent the 2-input AND (AND2) logic operator. Also, nodes can be marked
to represent primary outputs (PO). The operators may or may not be inverted. The
inversion is represented by complementing the graph edges.

While using AIGs for logic synthesis, it is very common to compute k-cuts (PAN;
LIN, 1998)(MISHCHENKO; CHATTERJEE; BRAYTON, 2007a). For a given AIG node

25

n, its cut C is a set of nodes in the network, also known as leaves of the cut, such that
every path from a PI to n contains at least one node in C. A cut is said to be k-feasible
if it contains no more than k nodes. Otherwise, the cut is discarded. Usually, the k-cuts
are computed into a single pass from PIs to POs, and the computation is performed as
follows. If the node is a PI, it has a trivial cut, i.e., the node itself is the cut. If a node
represents the AND2 logic operator, its k-cuts is given by the cartesian product between
the cut sets at each of its inputs as well as its trivial cut.

Figure 2.6 presents the AIG of the function represented in Table 2.1, as well as
k-cuts for each node. The dashed lines represent inverters.

Network structure visualized by ABC
Benchmark "/Users/walterlau/Desktop/dissertacao-pla/example". Time was Thu Jun 7 13:17:36 2018.

The network contains 3 logic nodes and 0 latches.

f0

7

5 6

x1 x2 x0
{{x0}}{{x2}}{{x1}}

{{6},
{x0,x2}}

{{5},
{x1,x2}}

{{7},{5,6},
{5,x0,x2},
{6,x1,x2},
{x1,x0,x2}}

Figure 2.6: AIG representation of the function described in Table 2.1.

2.3.7 Majority-Inverter Graph

Majority-inverter graph (MIG) is a DAG which was recently proposed to manipu-
late Boolean functions (AMARÚ; GAILLARDON; MICHELI, 2014). In this model, each
node has three incoming edges and represents the majority (MAJ) logic function. The
MAJ function with n-inputs, being n an odd number, returns true when at least (

⌈
n

2

⌉
+1)

inputs are true. Similarly to AIGs, inversion on operators is represented through a com-
plemented edge.

MIGs are a universal representation form, since AIGs are universal (BRAYTON;
MISHCHENKO, 2010), and the majority node can implement the AND logic by setting

26

one of its inputs to 0. Therefore, MIGs ⊃ AIGs. To unlock the MIG manipulation,
in (AMARÚ; GAILLARDON; MICHELI, 2014), the authors present a Boolean algebra
based exclusively on MAJ and inverter operations. This new algebra is composed of five
fundamental transformation rules, which enables to explore the entire MIG representation
space. The results presented by MIGs are promising and show improvements for signal
delay propagation, circuit area and power dissipation when comparing to AIGs over the
MCNC benchmark suite (AMARÚ; GAILLARDON; MICHELI, 2014).

Figure 2.7 shows the MIG representation of the same function represented by the
AIG shown in Figure 2.6. Since that is a simple function, it is not possible to note any
improvement in respect to its AIG representation. However, it is possible to note the
MIG capability of representing the AND2 logic node by setting one of node input in 0.
Therefore, the other two inputs must be 1 so that the gate output evaluates to 1.

f0

7

0

65

x2 x1x0

Figure 2.7: MIG representation of the function described in Table 2.1.

2.4 Integrated Circuit Design

As discussed before, the role of EDA is to provide an automated flow for design-
ing ICs. Such a flow relies on the semi-custom design style, which has a shorter design
time when comparing to the full custom approach, at the price of a larger penalty in
performance and power consumption. This work concerns the design flows for field pro-
grammable gate array (FPGA), as well as the standard-cell approach for application
specific integrated circuit (ASIC) technology.

There are three main steps performed by the EDA tool: high level synthesis, logic
synthesis and physical synthesis (MICHELI, 1994). In this work, we focus on the logic

27

synthesis step, which has two primary goals: (i) to transform a digital circuit described in
a high level of abstraction, usually in hardware description language (HDL), into a logic
network (AIG/MIG), and (ii) to optimize the resulting logic network. While performing
logic synthesis over the design, the tool has multiple goals, such as minimize circuit area,
power consumption and critical path delay.

The logic network optimization is performed into two steps. The first one is known
as technology independent optimization and consists of optimizations such as constant
propagation, logic sharing, redundancy removal and circuit restructuring (CHEN et al.,
2006). As a second step, the technology independent logic network is mapped into look-
up tables (LUT) for FPGA or standard cells, when considering ASIC. The technology
mapping has a significant impact in the final physical implementation and is subject
of extensive work (CHEN et al., 2006). Technology mapping methods can be classified
according to their optimization goals (area, power, timing, routability) or according to the
transformation techniques explored while mapping, i.e., structural or functional (CHEN
et al., 2006). This work studies mapping methods in respect to their transformation
techniques.

230 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

Optimality Study of Logic Synthesis
for LUT-Based FPGAs

Jason Cong and Kirill Minkovich

Abstract—Field-programmable gate-array (FPGA) logic syn-
thesis and technology mapping have been studied extensively over
the past 15 years. However, progress within the last few years
has slowed considerably (with some notable exceptions). It seems
natural to then question whether the current logic-synthesis and
technology-mapping algorithms for FPGA designs are produc-
ing near-optimal solutions. Although there are many empirical
studies that compare different FPGA synthesis/mapping algo-
rithms, little is known about how far these algorithms are from
the optimal (recall that both logic-optimization and technology-
mapping problems are NP-hard, if we consider area optimization
in addition to delay/depth optimization). In this paper, we present
a novel method for constructing arbitrarily large circuits that
have known optimal solutions after technology mapping. Using
these circuits and their derivatives (called Logic synthesis Exam-
ples with Known Optimal (LEKO) and Logic synthesis Exam-
ples with Known Upper bounds (LEKU), respectively), we show
that although leading FPGA technology-mapping algorithms can
produce close to optimal solutions, the results from the entire
logic-synthesis flow (logic optimization + mapping) are far from
optimal. The LEKU circuits were constructed to show where the
logic synthesis flow can be improved, while the LEKO circuits
specifically deal with the performance of the technology map-
ping. The best industrial and academic FPGA synthesis flows
are around 70 times larger in terms of area on average and, in
some cases, as much as 500 times larger on LEKU examples.
These results clearly indicate that there is much room for further
research and improvement in FPGA synthesis.

Index Terms—Circuit optimization, circuit synthesis, design
automation, field-programmable gate arrays (FPGAs), optimiza-
tion methods.

I. INTRODUCTION

F IELD-PROGRAMMABLE gate arrays (FPGAs) have
been gaining momentum as an alternative to application-

specific integrated circuits (ASICs). FPGAs consist of program-
mable logic, input-output (I/O), and routing elements, which
can be programmed and reprogrammed in the field to customize
an FPGA, enabling it to implement a given application in a
matter of seconds or milliseconds. The most common type
of programmable-logic element used in an FPGA is called a
K-LUT, which is a K-input one-output lookup table (LUT),

Manuscript received March 16, 2006; revised July 17, 2006 and
September 13, 2006. This work was supported in part by the National Science
Foundation under Grant CCF-0306682 and Grant CCF 0430077 and in part by
Altera Corporation, Magma Design Automation Inc., and Xilinx Inc. under the
California MICRO Program. This paper was recommended by Associate Editor
K. Bazargan.

The authors are with the Computer Science Department, University of
California, Los Angeles, CA 90095 USA (e-mail: cong@cs.ucla.edu; cory_m@
cs.ucla.edu).

Digital Object Identifier 10.1109/TCAD.2006.887922

Fig. 1. Possible area-minimal mapping solutions. (a) Original circuit.
(b) Mapping solution without logic optimization. (c) Mapping solution with
logic optimization.

capable of implementing any K-input one-output Boolean
function.

Given a register transfer level (RTL) design, the typical
FPGA synthesis process consists of RTL elaboration, logic syn-
thesis, and the physical design (layout synthesis) [11]. In this
paper, we will focus on logic synthesis, which can be broken
down into two main steps: logic optimization and technology
mapping. Logic optimization transforms the current gate-level
network into an equivalent gate-level network more suitable for
technology mapping. Technology mapping transforms the gate-
level network into a network of programmable cells (in our
case, these cells are LUTs) by covering the network with these
cells. Several algorithms perform logic optimization during
technology mapping. As an example, Fig. 1 shows the differ-
ence between mapping algorithms that use logic optimization
and those that do not. By examining the logic function of f , we
can see that it just takes the logical AND of all its inputs; thus, by
manipulating the circuit, we can reduce the mapping solution
by one 4-LUT. Since the size of the circuit will be directly
proportional to the price of an FPGA that can implement
it, the logic-synthesis step will play an integral role in the
design flow.

As FPGA technology gained popularity throughout the
1990s, a large amount of work was published that dealt with
logic synthesis and/or technology mapping of FPGAs, includ-
ing Chortle-crf [20], XMap [24], TechMap [31], DAG-map [9],

0278-0070/$25.00 © 2007 IEEE

Figure 2.8: (a) Original circuit. (b) Structurally mapped. (c) Functionally
mapped.(CONG; MINKOVICH, 2007)

Structural mappers are those in which the logic network is not modified and the
mapping may be seen as covering problem, where sub-graphs from the logic network are
mapped to standard cells or LUTs. Even though this method is suitable for large designs
(CHEN et al., 2006), it depends strongly on the input logic network, which is known as
structural bias (CHATTERJEE et al., 2006).

28

On the other hand, functional mappers are those that mix Boolean optimization
with covering. Since functional mappers perform Boolean optimization and transforma-
tions over the input logic network, it can explore a larger solution space than the struc-
tural mapper, at the price of being time-consuming (CHEN et al., 2006) (MISHCHENKO;
CHATTERJEE; BRAYTON, 2007b).

Figure 2.8, from (CONG; MINKOVICH, 2007), presents the difference from func-
tional and structural mappers. The left-hand image presents the original circuit before
mapping. This circuit realizes the AND operation of all its inputs, and each AND logic
gate can be seen as an AIG node. While mapping this circuit, the structural mapper
role is just to cover the logic network (subject graph), mapping the nodes to LUTs, as
presented in Figure 2.8(b). The functional mapper, in contrast, can minimize the Boolean
function while mapping, resulting in just one 4-input LUT (LUT4), presented in Figure
2.8(c).

29

3 RELATED WORK

The complexity of the multi-level logic synthesis problem, where optimal (exact)
solutions are impractical for current real size designs, pushes the electronic design automa-
tion (EDA) community to adopt benchmark circuits in order to evaluate and compare
those methods. While a diversified set of benchmark suites have been proposed so far, the
exact solution is unknown for most of them. Therefore, it is quite difficult for developers
to estimate the efficiency of their tools and possible improvements. In this context, exact
benchmark circuits are of paramount importance since they allow the evaluation of syn-
thesis methods and algorithms concerning the exact expected solution. This chapter first
presents general benchmark circuits as well as their main characteristics. Afterwards, we
present and discuss exact benchmark circuits, highlighting their features.

3.1 Benchmark Circuits

Benchmarks are standards by which similar things can be compared against the
same reference. In the circuit design scope, benchmarks are standardized circuits which
impose challenges for algorithms (tools). These circuits are used to compare performance
among different algorithms, being standard metrics for such a comparison the speed,
effectiveness and quality-of-results (QoR). Furthermore, benchmarks can end up by finding
out problems that algorithms can not deal at all. When it happens, they unlock the
possibility of diagnosing the algorithm flaw and may lead to innovation (DAVIDSON;
HARLOW, 2000).

Back to ’60s and ’70s, the first benchmark circuits were freely available in the
form of a data book provided by Texas Instruments, and anyone could look at it. Such a
databook was composed by large-scale integration (LSI) gate-level designs (DAVIDSON;
HARLOW, 2000), such as arithmetic logic unit (ALU) and counters. However, through
the years, designs have become more complex and with a higher cost, making it difficult
for universities acquiring industrial grade circuits. At this time, the lack of available
complex benchmark circuits to universities has precluded the emerging of novel techniques.
Therefore, the efforts were concerned with incremental improvement of existing methods
(DAVIDSON; HARLOW, 2000).

In this context, the first effort regarding a free standardized set of circuits was made
by Franc Brglez and Hideo Fujiwara. This set was composed of ten purely combinational

30

circuits and was published in a special issue at the IEEE International Symposium on
Circuits and Systems (ISCAS), in 1985. Nowadays, this set is still trendy and is well
known as ISCAS’85 (BRGLEZ; FUJIWARA, 1985). In its first release, these circuits
were described in a proprietary logic format, and a translator written in FORTRAN was
distributed along with the set of circuits, to convert them into other popular formats
(DAVIDSON; HARLOW, 2000). In this benchmark suite, the combinational circuits are
multi-level, and its primary purpose when released was to assess combinational automatic
test-pattern generation (ATPG) tools. Despite that, the ISCAS’85 circuits have been used
to evaluate methods in additional areas, including logic synthesis. Even though these
circuits are very small and ceased to be good representatives for the majority of current
applications, they are still widely adopted in academia. This work has had a considerable
impact, leading to an increase in the test generation research (DAVIDSON; HARLOW,
2000).

From this first effort, a trend has evolved and there were several workshops, special
sessions and scientific articles introducing new and/or modified circuits for benchmarking,
targeting different areas in circuit design. In 1989, the ISCAS’85 suite was extended and
sequential circuits were added up as well as more complex circuits. This has led to the
ISCAS’89 benchmark suite, with 31 new sequential circuits. At the time, this new set
of circuits has increased the work on sequential ATPG tools (DAVIDSON; HARLOW,
2000). However, such as the ISCAS’85, this suite is still very used but its complexity
is too low for new challenges. For instance, the most complex circuit consists of 22,179
gates and 1,636 flip-flops (BRGLEZ; BRYAN; KOZMINSKI, 1989), where it is expected
trillions of logic gates to design future generation of ICs (STOK, 2013).

Also in 1989, at the International Workshop on Logic and Synthesis (IWLS), the
Microelectronics Center of North Carolina (MCNC) has introduced a new set of circuits
for benchmarking (YANG, 1991b). This new set was composed by 2-level logic circuits,
which were firstly introduced by U. Leuven, in 1985, and by small synthetic circuits.
Later, the set introduced by U. Leuven was extended by a group from Berkeley, with
some industrial circuits and arithmetic operands. The junction of these two sets, with
some industrial multi-level and finite state machine circuits, as well as the ISCAS’85 and
ISCAS’89 suite, has led to the MCNC benchmark suite (YANG, 1989). The MCNC circuit
set has later become known as the LGSynth’89 benchmark suite, which was primarily
proposed for logic synthesis and optimization. In IWLS’91 and IWLS’93, LGSynth’89
was successively extended to LGSynth’91 (YANG, 1991a) and LGSynth’93 (MCELVAIN,

31

1993), respectively. From these efforts, different conferences and workshops followed this
trend by publishing new benchmark suites, including HLSynth92 and PDWorkshop93,
just to name a few (DAVIDSON; HARLOW, 2000). Although it is still being used in
some academic works, they no longer represent challenges for most of the applications
nowadays. Its main issue is the size of the circuits.

In the 1990’s, industrial circuits have become more complex, and there was a gap
between publicly available benchmarks and real designs. In this context, in 1999, at the
International Test Conference (ITC), was published the ITC’99 benchmark suit. The
ITC’99 suite was extended in 2000 and it was firstly designed to increase the complexity
from previous benchmarks, as well as to provide realistic circuits as study cases, aiming
research in design-for-testability (DFT) and ATPG (CORNO; REORDA; SQUILLERO,
2000) (BASTO, 2000). The ITC’99 suite has four branches, as follows:

• I99X subset comprises ASIC and ICs designs and has fairly good-sized industrial
circuits, including superscalar microprocessor and digital signal processor (DSP)
circuits (DAVIDSON; HARLOW, 2000).

• I99T is a subset of Politecnico di Torino which comprises 22 diversified circuits,
namely from b01 to b22. This branch includes from simple circuits, such as finite
state machines (FSM), to a pseudo-system-on-chip (SOC). The first goal of this
branch is to enable researchers to develop algorithms working on register transfer
level (RTL) circuits described in VHDL (CORNO; REORDA; SQUILLERO, 2000).

• I99S presents some circuits from ISCAS‘89 described in RTL. Even though they
keep the same flaws from the original ISCAS‘89 subset, i.e., low complexity, their
goal is to provide a way to compare RTL level versus gate level ATPG.

• I99C is a special circuit derived from industrial design and it is said to cause troubles
in industrial ATPG approaches (Scott Davidson, 1999).

Even though the ITC‘99 has accomplished its initial purpose and is composed by
reasonably good-sized circuits (up to 98K+ gates and 6K+ flip-flops), this benchmark
suit lacks from maintenance. Except for the I99T subset, all other circuits are hard
to find for download. Even for the I99T subset, its original function may have been
lost during the development process. Furthermore, its release clearly states that, due to
the development process, there is no guarantee that VHDL descriptions are functionally
meaningful (CORNO; REORDA; SQUILLERO, 2000).

By the year 2005, a new benchmarking effort has been made by the IWLS com-

32

munity. The IWLS’05 benchmark is a joint of previously proposed suites, i.e., ISCAS’85,
ISCAS’89 and ITC’99 (subset I99T), with three new set of circuits (ALBRECHT, 2005).
One of them is a selection from the OpenCores whereas the others are industrial initia-
tives, from Gaisler and Faraday. The Gaisler benchmarks are composed by the LEON2
processor, developed by and to the European Space Agency (ESA), and by LEON3, com-
pliant with the SPARC V8 architecture. From the Farady side, three functional blocks
were provided, a 16 bit DSP with SRAM blocks, a 32-bits RISC CPU and a direct memory
access (DMA) controller. This benchmark is available in two formats, i.e., OpenAccess
and Verilog, and in total has 84 good-sized circuits, with up to 900,000 cells and 185,000
registers. The IWLS‘05 suite is well maintained and is a good representative for many of
current challenges.

In 2007, the Altera Corp. and UC Berkeley released a new FPGA-oriented bench-
mark suite at IWLS (PISTORIUS et al., 2007). The initial release consisted of eight
large designs, each comprising at least 10,000 4-input look-up-tables (LUT-4) and, in
addition to the distribution of the circuits, it has the goal to provide a reference compila-
tion flow and assess logic synthesis and technology mapping algorithms available in EDA
environments. The flow supports designs written in VHDL, Verilog and SystemVerilog.
Moreover, this benchmarking effort has been updated and an interesting improved sub-
set claims attention: 12 medium-size OpenCores designs free of multi-entity hierarchies,
memories or other hard blocks (which would create design flow restrictions), and also free
of adders/multipliers (which would be functionality synthesized to macros in ASIC flows
or mapped to dedicated circuitry in FPGAs). The main drawback of this set is also the
size of the circuits.

Recently, in 2015, a new set of benchmarking circuits was introduced, known as
EPFL benchmark suite (AMARÚ; GAILLARDON; MICHELI, 2015). This set was pub-
lished in IWLS’15 and is composed by purely combinational circuits. The set includes 10
arithmetic circuits, 10 random/control circuits and 3 synthetic circuits with more than
ten million (MtM) gates, ranging from 16 to 23 millions of nodes. The arithmetic part
includes from simple circuits, such as an adder, to more complex circuits, as the hy-
potenuse operator. The same is true for the random/control set, which varies from an
ALU controller to a memory controller. This initiative disposes of these circuits in differ-
ent formats and keeps track of the best-reported results online to serve as a reference for
the community.

Table 3.1 presents a summary of the benchmarks described in this section. The

33

table presents their complexity, first purpose when released and the maximum number of
gates (or AIG nodes) reported. It is possible to note that the efforts to design new and
more complex circuits for benchmarking is a continuous process.

Table 3.1: Summary of presented benchmark sets.
Name Year Logic Levels Complexity Purpose Max Number of Gates
ISCAS 1985 multi low combinational ATPG 3,512 cells
ISCAS 1989 multi low sequential ATPG 22,179 cells
MCNC 1989 2 and multi low logic synthesis ∼35,000 cells
ITC 1999 multi medium ATPG ∼98,000 cells
IWLS 2005 multi complex logic synthesis ∼900,000 cells
EPFL 2015 multi complex logic synthesis ∼23 millions of AIG nodes

Although these benchmarks present a variety of circuits, complexity and are still
widely adopted, they all lack from an important feature. From these sets of circuits,
it is possible to evaluate new algorithms and tools with respect to the previous best-
known results. It means, it is possible to assess a new algorithm in respect to another for
some metric, which shows its relative efficiency (AMARÚ et al., 2017). Though a vast
improvement from previously reported result could be achieved, it is still hard to know
whether the algorithm can be further improved, i.e., there is room for more optimization
or the method has found the optimum circuit implementation. To do such an evaluation,
it would be necessary to have a set of circuits with a known exact solution, so that it
would be possible to assess the absolute efficiency of algorithms.

3.2 Exact Benchmark Circuits

An optimality study was firstly proposed inside the placement community, which
had faced a slow down in research effort in the 2000s. Therefore, the question that had
emerged at the time was if the placement methods had hit a plateau. In order to look for
this answer, in (CHANG et al., 2004), the authors proposed the called placement examples
with known optimal (PEKO). In this study, they presented that the state-of-art tools at
the time produced wirelengths ranging from 1.66 to 2.53 times the optimal solution. This
work renewed the interest of this community to look for new methods and, in three years,
the optimality gap on the PEKO was reduced to around 20% (CHANG et al., 2004).

In that context, the first study with respect to circuits with exact solution aiming
to evaluate logic synthesis algorithms was proposed in (CONG; MINKOVICH, 2007). In

34

this work, the authors propose a study where the optimal solution after FPGA technol-
ogy mapping is known. The primary motivation is that throughout the 1990s, several
works were published regarding FPGA synthesis and technology mapping, but a decrease
in those publications have taken place during the 2000s (CONG; MINKOVICH, 2007).
Therefore, to investigate whether proposed methods have hit a plateau and were near-
optimal solutions, the author proposed an optimality study, called logic synthesis examples
with known optimal (LEKO).

The design of the LEKO circuits is based on the design of small core circuit. The
core circuit presented in (CONG; MINKOVICH, 2007) was handcrafted to be as hard
as possible for structural mappers. The designed core circuit must have the following
features:

• the core circuit has the same number of inputs and outputs;

• each output is a function of all inputs;

• each internal node of the core circuit has exactly two inputs; and

• there is an exact mapping solution in terms of LUT-4.

To proof the exact solution of the core circuit presented in their work, the authors
rely on a command of binate-covering available on SIS tool (SENTOVICH et al., 1992).
This algorithm can find exact mapping, in terms of LUT-4, for circuits with up to a
hundred of logic gates. To generate huge circuits, so that the algorithm cannot find the
exact solution, is proposed a method for stacking the core circuit in layers, such that by
the end there is only one way to traverse the resulting graph from the outputs to get to
the inputs. Since the exact solution of the core circuit is given in terms of LUT-4, the
LEKO known optimal solution is in respect to the circuit area.

Let C5 denotes a core circuit with five inputs and outputs, as presented in Figure
3.2. To design a LEKO circuit with L layers, the first step is to create a bottom layer
with nL−1Cn. Then, for each layer, one should make nL−1 copies of the Cn and connect
the outputs from the previous layer to the inputs of the new layer. The connections must
be spread in a way that each Cn in the top level is connected to every Cn at the bottom
level. To design larger circuits, one must increase the number of layers. Figure 3.1 shows
a LEKO with two layers of C5 circuits. With this scheme, the authors show that the best
solution for mapping each layer of the LEKO is given by mapping each Cn optimally and
separately, and not by mapping between layers.

35CONG AND MINKOVICH: OPTIMALITY STUDY OF LOGIC SYNTHESIS FOR LUT-BASED FPGAs 233

Fig. 3. createLEKO algorithm.

Fig. 4. LUT spanning two layers.

get a LEKO example of L layers. It first creates the bottom
layer of nL−1 Cns, then for each additional layer, it makes
nL−1 copies of Cn and proceeds to connect the outputs of graph
G to the inputs of the newly created layer. It spreads out the
connections in such a way that for an arbitrary Cn at the top
layer, there exists a path to it from every Cn at the bottom layer
(i.e., every Cn at the top level is connected to every Cn at the
bottom level). Thus, using this algorithm and any number m,
one can create a LEKO circuit having more than m nodes and a
known optimal technology mapping solution whose optimality
is proved in Theorem 2. By using this method, we were able to
construct G25 (Fig. 5) by calling createLEKO with two layers
and a C5. G36 (Fig. 6) was constructed the same way but used

Fig. 5. LEKO(G25).

Fig. 6. LEKO(G36).

C6 instead of C5. We similarly constructed G125 (Fig. 7) with
three layers, and we constructed G625 with four layers.

Theorem 2: The optimal mapping solution of an arbitrarily
sized LEKO circuit without logic optimization is achieved
when every Cn in the circuit is mapped optimally without
overlapping any other Cn.

Proof: Now that we have the ability to construct arbitrar-
ily sized LEKO circuits, we can show that this construction
creates a circuit G with a known optimal binate cover, which
we proved in Theorem 1. Assuming we have an arbitrary LEKO
circuit G with L layers, we prove Theorem 2 by induction over
the layers of G. Claim 1 will be used in almost all of the
other claims as it proves that there are no reconverging paths
of Cns. Claims 2 and 3 will help prove the base case, while
Claim 4, working with Claims 2 and 3, helps prove the induc-
tive step. !

Claim 1: Treelike structure of Cns (no reconverging paths
of Cns).

Given an arbitrary Cn, x, on the top layer and a LEKO G,
starting at any Cn at the bottom layer, there is only one way to
traverse the Cns to get to x.

Proof: Assume we start at an arbitrary Cn, call it x, on the
top layer. From the construction it should be obvious that a path
exists from any Cn at the bottom layer to x (i.e., x is connected
to every Cn on the bottom layer). Now, let us consider the
maximum number of Cns we are connected to after one layer,
which is n (since x has n inputs). Similarly, after two layers
the maximum number of Cns that are connected to x is n2

(since x has n inputs and the nCns that feed x’s inputs also
have n inputs), and the maximum number of Cns that can reach
x at layer L (after L-1 layers) is nL−1. Now, if there were any
reconverging paths connecting x to the rest of the Cns, there
would be strictly less than nL−1 Cns at the bottom layer that

Figure 3.1: LEKO with two layers (CONG; MINKOVICH, 2007).

In the same work, the authors have also introduced the logic synthesis examples
with known upper bounds (LEKU). The LEKU circuit is generated from the LEKO one
by firstly collapsing the circuit in a 2-level network, and then decomposing the resulting
network into an equivalent one, bounded to 2-input simple gates. The network collapsing
and decomposition are done by SIS tool (SENTOVICH et al., 1992). By executing these
steps, redundant logic is added to the original LEKO circuit, deriving the upper bound
solution, since both LEKO and LEKU are functionally equivalent. The results show that,
at the time for the LEKO case, the state-of-art mappers were far from finding the optimal
solution. For the LEKU case, industrial and academic FPGA synthesis flows, both were
around 70 times larger in terms of area in average and up to 500 times larger in the worst
case.

More recently, in (AMARÚ et al., 2017), Amarù et al. have proposed a new
constructive approach for exact multi-level logic circuit generation. Since the LEKO
circuits had an exact solution in respect to the number of LUTs, the authors have proposed
a new method to synthesize circuits with known optimal logic depth. It is of interest to
evaluate how current algorithms perform while optimizing for depth since it correlates
with the delay of the final system.

For designing exact circuits, the approach relies on balanced binary trees. The
input of the method is the level of complexity targeted. For a level n, the resulting
tree has 2n input variables. While constructing the balanced binary tree, each node
is randomly assigned for one among ten binary Boolean operators, each one depending
on two variables (AMARÚ et al., 2017). Furthermore, each leaf of the tree represents a
separate variable, so that the resulting tree is depth-optimal. Figure 3.3 presents a possible
generated balanced binary tree of complexity two realizing the function f = abc + abd.
This representation is depth optimal because a balanced binary tree of depth n depends
on all its 2n leaf variables. Suppose it was possible to implement the function in Figure

36232 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

Fig. 2. Example of C5.

Proof: This is proved using the binate-cover technique,
which is able to compute the minimum-area technology map-
ping solution. In particular, we use the binate-covering solver in
SIS [32] using the command “xl_cover - h 0.” The binate solver
in our case returned a seven 4-LUT solution. The reason that
this method cannot be used to prove the optimality of the larger
LEKO circuits is because this tool is computationally infeasible
for returning an optimal binate-covering solution for any graph
with more than 100 logic gates. !

Theorem 1b: C6 has an area-optimal technology mapping
solution of ten 4-LUTs.

Proof: This can also be proved using the binate cover
provided in SIS. But for testing any core graphs with more
than six inputs, the binate-cover algorithm would have to be
implemented using a current SAT solver. !

Using this newly created Cn, a LEKO circuit G is created
by stacking up Cns in such a way that from the outputs of G,
there is only one way to traverse Cn to get to the inputs. The
exact algorithm is presented in Fig. 3, where createLEKO (L)
creates a LEKO example with L · nL−1 Cns in L layers. In the
algorithm, the

⋃
(union) operator does not disturb the order of

the inputs or outputs. For example, when looking at the A
⋃

B,
we can think of the inputs and outputs as an array of nodes.
Then, the index of every input node from A appears before any
input node from B in A

⋃
B; likewise, the property holds for the

output nodes. The Copy operator creates a copy of the network
renaming all the nodes, createEdge(x, y) just creates an edge
from x to y, and Goutput[i] is the ith output of G (Fig. 3).

Logically, the createLEKO algorithm works as follows. It
builds up the graph using layer upon layer of Cns in order to

Figure 3.2: Representation of C5 circuit from (CONG; MINKOVICH, 2007).

3.3 with (n− 1) levels. A circuit with (n− 1) levels, with each node representing a binary
operator, can have at most 2(n−1) leaves, contradicting the assumption.

Even though the proposed method guarantees trees with exact logic depth, it may
lead to trivial functions, which could be treated as a particular case by the logic synthesis
computing engines. For instance, if the generated tree has only AND/OR operators, it
generates a unate function (ALON; BOPPANA, 1987). Therefore, the tree would be
easily synthesized by dedicated methods, such as the one presented in (THORP; YEE;
SECHEN, 1999). In order to avoid these functions, after assigning the nodes randomly,
the authors propose to ensure the presence of at least one binate operator (exclusive-OR

37

years, sequential circuits were added to ISCAS’85 generating
the ISCAS’89 benchmark suite. In 1991, these benchmarks
plus others presented at past workshops and conferences were
collected and distributed under the maintainance of the Micro-
electronics Center of North Carolina (MCNC) [1]. The MCNC
suite was published in the same year at the International
Workshop on Logic Synthesis (IWLS). Even though quite
outdated, MCNC benchmarks are still popular in academic
research.

2) IWLS Benchmarks: In 2005, a new set of benchmarks
for logic synthesis was presented at the IWLS workshop under
the name of IWLS05 benchmark suite [2]. It consisted of 84
designs collected from various websites (OpenCores, Faraday,
etc.) and previous benchmark suites (MCNC, ITC, etc.).

3) EPFL Benchmarks: The EPFL combinational bench-
mark suite has been introduced at the IWLS workshop in
2015 [3]. It consists of 23 combinational circuits designed
to challenge modern logic optimization tools. The benchmark
suite is divided into arithmetic, random/control, and MtM
(more-then-ten-million) benchmarks. The arithmetic part in-
cludes 10 benchmarks, e.g., square-root, hypotenuse, divisor,
and multiplier. The random/control part consists of another 10
benchmarks, e.g., round-robin arbiter, lookahead XY router,
alu control unit, and memory controller. The MtM part con-
tains 3 very large benchmarks, featuring more than ten million
gates each. In addition to providing the benchmarks, the EPFL
suite also keeps track of the best optimization results.

B. Exact-Size Benchmarks

It is unknown whether any benchmark of the previously
discussed benchmark suits is optimum—in fact, for most of
the benchmarks it is quite unlikely. Other benchmark suites
have been presented which only contain exact benchmarks that
are optimum with respect to size.

1) LEKO Benchmarks: Logic synthesis Examples with
Known Optimal (LEKO) have been introduced in [11] with
application to FPGA synthesis. They target area-optimal map-
pings so they can be classified as exact-size benchmarks. The
core idea of LEKO is to replicate a small circuit with known
optimal size. If the replication follows a specific strategy [11],
the final results preserve size-optimality. Size-optimality is
measured in terms of the number of 4-LUTs rather than
number of binary operations.

2) LEKU Benchmarks: Logic synthesis Examples with
Known Upper Bounds (LEKU) are derived from LEKO by
collapsing them into two level logic and successively de-
composing them into primitive gates. LEKU circuits serve as
suboptimal starting points for the heuristic techniques under
test.

C. Motivation

In this work, we are addressing the construction of exact-
depth benchmarks, which has not been proposed so far. These
benchmarks are of particular interest to today’s design flows

^

^

a b

_

c d

Fig. 1. Depth-optimal balanced-tree realization for f = abc+ abd.

that often optimize for depth as it correlates with the delay of
the final system.

III. CONSTRUCTION OF DEPTH-OPTIMAL BENCHMARKS

In this section we present a construction method for multi-
level logic circuits with optimal depth. Our construction is
based on balanced binary tree circuits, i.e., circuit in which
each node that is not a leaf has two children and every path
from the root to a leaf has the same length. We further assume
that each leaf represents a unique variable. In Section III.A,
we show that balanced binary tree circuits with unique inputs
are depth-optimal. However, the simple construction has two
major drawbacks: (i) there are assignments of binary functions
to the nodes that lead to trivial functions, and (ii) each
subcircuit is disjoint support decomposable, which makes
them easy to optimize using disjoint support decomposition
techniques [15], [16]. In Sections III-B and III-C we address
these drawbacks with more advanced algorithms.

A. Depth-Optimality of Balanced Binary Tree Circuits
As binary operations for the nodes in balanced binary tree

circuits we consider the 10 binary Boolean operators of two
variables1 a ^ b, ā ^ b, a ^ b̄, ā ^ b̄, a _ b, ā _ b, a _ b̄, ā _ b̄,
a � b, and ā � b. Recall, that leaves are labeled by a unique
variable.

Theorem 3.1: A balanced binary tree as described above is a
depth-optimal realization for the Boolean function it realizes.

Proof: (Reductio ad absurdum) It is easy to see that a
function represented by a balanced binary tree of depth k
depends on all 2k variables obtained from the tree’s leaves.
Let us assume it can be realized by a circuit of depth k � 1.
A circuit of depth k�1 in which each node represents one of
the 10 Boolean operators can have at most 2k�1 unique leaves
and hence depend at most on 2k�1 variables which contradicts
our assumption.

Fig. 1 shows an example for a depth-optimal realization us-
ing a balanced binary tree structure. The represented function
is f = abc+ abd.

Although balanced binary trees are provably depth-optimal,
sometimes they represent trivial functions. For example, if all

1There are 16 possible binary Boolean operators, but operators 0, 1, a, ā,
b, b̄ do not functionally depend on both variables.

Figure 3.3: Depth optimal realization of f = abc+ abd (AMARÚ et al., 2017).

or exclusive-NOR). The binate operator can be randomly assigned and is enough to end
up the possibility of the function be handled as a special case by methods dedicated
to unate functions. Figure 3.4 shows a possible assignment of the exclusive-OR (XOR)
operator in order to break the unateness feature of the trivial tree presented in Figure
3.3.

XORXOR

^

^
a b c d

Figure 3.4: Breaking unateness of tree presented in Figure 3.3.

Still, the resulting tree is disjoint support for any node (BERTACCO; DAMIANI,
1997). Therefore, a further improvement is proposed to avoid the generation of trees
representing disjoint support functions, which can also be efficiently handled by special
algorithms implementing disjoint support decomposition (DSD) (MISHCHENKO; BRAY-
TON, 2007). To avoid such functions, the authors generate two random trees with the
same number of input variables, but with different functionality. Since the trees are gen-
erated randomly, it is unlikely that both represent the same function (AMARÚ et al.,
2017). Then, both trees have their inputs shared, and their roots merged with a binate
operand, leading to a unique output, as presented in Figure 3.5. The addition of this new
node results in a tree with (n+ 1) levels. In the next step, a technique based on Boolean
satisfiability is adopted to guarantee that the final tree depends on all its 2n variables
(SOEKEN et al., 2016a). Guaranteeing that the function depends on all its variable leads
to a binate tree, where at least one node does not accept disjoint support decomposition
techniques (MISHCHENKO; BRAYTON, 2007).

38

XORXOR

^

^

a b c d

XOR^

^

a b c d

^

XORXOR

Figure 3.5: Breaking disjoint support of tree presented in Figure 3.4.

At the end of the process, the method proposed in (AMARÚ et al., 2017) it is
able to generate a tree with exact logic depth. The final tree has 2n inputs, (n + 1)
levels because the operator added to join both roots and (2(n+1) − 1) nodes. Although
the depth optimality is guaranteed at the binary tree, it is not guaranteed when this
tree is transformed in an AIG. Thus, the authors run the "rewrite" command available
on the ABC tool to recover the depth optimality in the AIG level (MISHCHENKO;
CHATTERJEE; BRAYTON, 2006).

From the AIG with optimal logic depth, it is generated binary decision diagram
(BDD) representing the target circuit (BRYANT, 1986). The BDD of a given circuit has
as many levels as inputs. Hence, the circuit with an optimal logic depth of (n+ 1) would
be collapsed into 2n levels. This resulting circuit serves as a sub-optimal starting point
to feed the synthesis tools. At the end, the work presents an exponential gap between
results found by tools and the optimal solution. Results are presented for AIGs with up
to 600,000 nodes.

Besides having exact benchmarks for a given metric (i.e., circuit area or logic
depth), it is also important to have available those circuits with different sizes. Therefore,
it becomes easier to assess why a method does not find the expected solution, and how
does the method scale as circuits become huge. This work presents a novel method to
automatically generate exact benchmark circuits.

39

4 PROPOSED APPROACH

In this work, we propose a new method for designing exact multi-level logic circuits
in both circuit size (number of nodes) and logic depth. The proposed method has a proven
known optimal solution at the AIG level and after the technology mapping process. That
is possible because our method relies on the principle of reversible logic, and the final
circuit implements an identity function F (x) = x. So that, we implement a transparent
logic, which could be simplified to wires by the logic synthesis tool.

To do so, the method proposes the design of a logic block comprising two stages: the
first stage performs a reversible function F , whereas the second one implements another
reversible function corresponding to the inverse function F−1 of the first stage one. As
a result, by combining both stages, the logic behavior of the second stage output is
equivalent one-by-one to the input logic value of the first stage. Therefore, the resulting
block implements an identity function corresponding to F (x) = x. The resulting identity
logic block (ILB) diagram is shown in Figure 4.1.

In(1)

In(2)

In(3)

Out(1)

Out(2)

Out(3)

P(1)

P(2)

P(3)

Identity Logic Block
First Stage Second Stage

Reversible
Combinational

Logic

Rebuilding
Combinational

Logic

Figure 4.1: Identity logic block (ILB).

There are different possibilities for generating the first stage of ILBs. At first, it
is possible to derive such a stage from any standard (irreversible) logic circuit. To do so,
one alternative is to take a real design (usually implementing an irreversible function) and
then embedding it into a reversible function. It can be done by applying known embedding
methods, such as the ones presented in (SOEKEN et al., 2016b) and in (ZULEHNER;
WILLE, 2017).

In this work, we address the issue of deriving exact blocks from real designs, which
are often used as benchmark circuits, by exploring open-source embedding tools. We
derive the ILB first stage from three different sized circuits, ranging from a very simple
design to more complex ones. The ILB generation from irreversible functions is discussed
in Section 4.1.

40

Another possibility is to generate a synthetic logic block and guarantee its re-
versibility by construction. Such an alternative is addressed in Section 4.3, where an
algorithm to generate exact synthetic circuits is presented. Generating synthetic circuits
through the proposed algorithm is useful to keep control on the number of inputs and
outputs nodes (I/O) of the circuit, so that it is easier to figure out when the logic synthesis
methods stop to finding the exact solution. Work in this frontier between finding or not
the exact solution may lead to new methods.

Besides the possibilities to generate an exact multi-level logic circuit exploiting
reversible logic, whether by construction or by embedding, the proposed approach also
unlocks the possibility to embedding any custom logic in the ILB block, as discussed in
Chapter 5. The custom logic can be exact and be built by performing exact synthesis
methods over a given function or by incorporating previously proposed exact synthesized
circuits. Embedding a custom block with a known solution can stress different features
on the target logic synthesis algorithm. It is also possible to take a custom logic with
the previously known best synthesis result (which may not be the optimum solution) and
incorporate it into the ILB. This approach is also discussed in Chapter 5. It enables the
possibility to assess how the redundant logic disturbs the synthesis tool, representing a
kind of noise in the logic synthesis process.

A summary of methods for exact multi-level logic circuit generation is presented
in 4.1. The BBT name refers to the balanced binary tree method proposed in (AMARÚ
et al., 2017). It is possible to note that the method proposed in this work is the only one
to accomplish the main features for exact benchmarks. The interrogation mark about
deriving LEKO from real designs is because the authors argue that it is possible and all
one need to do it is to extract a sub-graph from the circuit AIG (CONG; MINKOVICH,
2007). However, it is nor described neither clear in the reference how this graph will
respect the features required by LEKO, i.e., each output depending on all inputs.

Table 4.1: Approaches for exact multi-level logic circuit generation.
Name Year Exact Area Exact Logic Depth Synthetic From Real Design

LEKO/LEKU 2007 Yes No Yes ?
BBT Based 2017 Yes Yes Yes No
This Work 2018 Yes Yes Yes Yes

41

4.1 Deriving ILB from Real Designs

To derive circuits from real designs, the proposed method relies on reversible logic,
which has had a growth in research in the last decade. Such renewed interest in this
topic has been mainly motivated by reversible logic applications in low power designs and
beyond complementary metal-oxide-semiconductor (CMOS) based integrated circuits.

Even though there are well-established techniques to reduce power, there will al-
ways be some energy dissipated per bit of information lost, regardless of the target tech-
nology. This observation was firstly introduced by Rolph Landauer, in (LANDAUER,
1961), and experimentally validated by Bérut, in (BÉRUT et al., 2012). Landauer stated
that using traditional (irreversible) logic leads to a minimal of heat generated for each bit
of information lost, which is at least (k.T.ln(2)), where k is the Boltzmann constant and
T is the room temperature. Later, in (BENNETT, 1973), Bennet demonstrated that zero
energy dissipation is only possible in a circuit where there is no information lost, i.e., a
reversible circuit.

Besides the application in low power, reversible logic also finds use in emerging
technologies, such as quantum computing (NIELSEN; CHUANG, 2002), DNA comput-
ing (KLEIN; LEETE; RUBIN, 1999) and optical computing (KNILL; LAFLAMME; MIL-
BURN, 2001). As discussed in (NIELSEN; CHUANG, 2002), quantum computing is of
particular interest because it was shown that quantum algorithms could solve problems
in polynomial time, whereas for convention algorithms only exponential methods exist.
Furthermore, all quantum operations are reversible. Therefore, synthesis of reversible
functions has become an deeply studied topic.

In this work, we propose a novel application for reversible logic, i.e., generating
exact multi-level logic benchmarks. In order to achieve this goal, we explore previously
proposed methods of embedding, which were developed targeting reversible logic synthesis.
For a further discussion on reversible logic synthesis, please refer to (WILLE; DRECH-
SLER, 2010)(SAEEDI; MARKOV, 2013). With the embedding methods, we achieve the
goal of generating exact benchmarks from real functions.

The possibility of generating exact circuits from real designs is particularly in-
teresting since while creating these circuits by synthetic construction, as in (CONG;
MINKOVICH, 2007) and in (AMARÚ et al., 2017), it is not possible to guarantee that it
is composed by structures implementing logic commonly found in real designs. In other
words, a random construction may lead to circuits computing meaningless functions. In

42

this sense, we can end up tuning our algorithm to optimally synthesize functions that are
not likely to appear in real applications. Therefore, embedding methods of irreversible
functions unlock the possibility of deriving exact circuits from designs with some practi-
cal and useful functionality. Therefore, programmers can tune their tools concerning real
designs.

To use real designs as seed to generate exact benchmarks, first of all its functionality
must be represented as a reversible function. To convert an irreversible function into a
reversible one, one does what is known as embedding. The embedding process for an
irreversible function consists of adding k inputs and g outputs such that, at the end,
the number of inputs and outputs must match. Furthermore, the newly added outputs
are don’t cares, and must be assigned such that each input pattern must map a unique
output, i.e., a bijection. This process is quite complex, being coNP-hard (SOEKEN et
al., 2016b)), and, in the worst case, all inputs/outputs relationship must be addressed.
Usually, the extra inputs are constants, known as ancilla, while the additional outputs
are identified as garbage outputs.

The first embedding methods were based on truth tables. With such representa-
tion, the minimum overhead regarding extra inputs and outputs is easily calculated. For
instance, let’s consider the full adder function described in Table 4.2. Since the output
patterns (sum = 1, cout = 0) and (sum = 0, cout = 1) appear three times each, the
full adder function does not implement a bijection, being irreversible. Furthermore, the
number of inputs and outputs are different.

Table 4.2: Irreversible full adder truth table.
x0 x1 x2 sum cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Therefore, let µ denotes the times the most frequent output pattern occurs (in the
full adder case µ = 3), then it is necessary to add the following number of garbage outputs

43

to distinguish all the occurrences of the pattern:

l = dlog2µe (4.1)

This formula gives us both the upper and lower bound, being that an optimal
bound (SOEKEN et al., 2016b). Thus, if we add l garbage outputs in the embedding
process, the embedded is said optimal because it has the minimum overhead regarding
additional inputs and outputs. Notice that this optimum does not relate to the optimal
implementation of the circuit. An optimal implementation depends on the don’t cares
assignment after adding the constant inputs and the garbage outputs (WILLE; DRECH-
SLER, 2010).

Table 4.3 presents a straightforward embedding of the full adder into a reversible
function. Notice that there exist no distinct input pattern mapping the same output.
Since the most frequent pattern appears three times, by using the equation 4.1, µ = 2.
It means that two garbage outputs must be added and, consequently, one constant input
will be added to keep n = m. In Table 4.3, the constant input is denoted by k while the
garbage outputs are denoted by g1 and g2.

Table 4.3: Reversible full adder truth table.
k x0 x1 x2 sum cout g1 g2
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 1 0 0 1
0 0 1 1 0 1 0 0
0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0
0 1 1 1 1 1 0 0
1 0 0 0 0 0 0 1
1 0 0 1 0 0 1 0
1 0 1 0 0 0 1 1
1 0 1 1 0 1 1 1
1 1 0 0 1 1 0 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 1

However, even though truth table based methods are straightforward and may
lead to a minimal overhead, they do not scale for large functions since the truth table
size increases exponentially with respect to the number of input variables. Therefore, new

44

embedding methods have been proposed targeting scalability. In (SOEKEN et al., 2016b),
the authors proposed two ways, the first is exact and based on cube representation, and
the second is heuristic and based on BDD (AKERS, 1978). More recently, a new method
based on matrix representation was proposed in (ZULEHNER; WILLE, 2017).

In this work, we have adopted the embedding method based on BDD, presented in
(SOEKEN et al., 2016b). That is because the method is publicly available on the RevKit
tool (SOEKEN et al., 2012), unlike the one presented in (ZULEHNER; WILLE, 2017),
and scales better than the exact cube based approach.

The heuristic BDD based embedding relies on a BDD structure that may be created
by any algorithm. The designs used in this work were read either in Verilog or PLA format
and then converted to BDD utilizing a set of commands available on the RevKit tool.
This embedding algorithm is adapted from the initial idea of embedding proposed by
Bennett, in (BENNETT, 1973).

Bennett has proven the upper bounds in the number of additional outputs as
follows:

Theorem 1. For a function f ∈ Bn,m, at most n additional outputs are required to embed
f .

Proof. The number of additional outputs is maximized if, for a given output y ∈ Bm,
we have f(x) = y for all x ∈ Bn. Therefore, there are 2n repetitions and the number of
additional outputs, from equation 4.1, is given by l =dlog22ne= n.

With this upper bound, Bennett has applied an explicit embedding described by
the following theorem:

Theorem 2. A function f ∈ Bn,m is embedded by the function g ∈ Bm+n,m+n, where

g(k0, ..., km-1, x0, ..., xn-1) = (y0, ..., ym-1, g0, ..., gn-1). (4.2)

with

yi(k0, ..., km-1, x0, ..., xn-1) = ki ⊕ f i(xi, ..., xn-1) (4.3)

and

gi(k0, ..., km-1, x0, ..., xn-1) = xi (4.4)

45

To exemplify it, lets take as example the 2-input AND Boolean operator, presented
in Table 4.4.

x0 x1 y0
0 0 0
0 1 0
1 0 0
1 1 1

Table 4.4: 2-input AND truth table.

From the Theorem 2, it is known that the resulting function has (n+m) inputs and
outputs, in this example (n + m = 3). The resulting embedded function g(k0, x0, x1) =
(y0, g0, g1) is presented in Table 4.5. The value of the function output y0 is given by
equation 4.3, i.e., if the constant input ki = 0 then the output receives its own value
(x0 ∧ x1), else if ki = 1 then y0 receives its inverse. In turn, the garbage outputs are given
by equation 4.4, that is g0 = x0 and g1 = x1.

To unlock this embedding procedure in large functions, in (SOEKEN et al., 2016b),
the authors adapt the Bennett’s embedding to run over BDD. After the embedding, the
circuit is stored in a data structure called as RCBDD (SOEKEN et al., 2016b). From
the RCBDD, it is possible to write the reversible function specification into an output file
described in the PLA format.

k0 x0 x1 y0 g0 g1
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 1 1

Table 4.5: Bennett’s embedding of 2-input AND.

46

4.2 Processing Embedded Output

This section presents an example of a full adder embedded with the RevKit tool,
as well as the resulting function specification. We show that the function specification
given by the tool output is not suitable to generate the ILB so that an algorithm to enable
the ILB generation is presented.

The full adder presented in Table 4.2 was described in PLA format and used as
input to the RevKit tool. The PLA was read in RevKit and converted to a BDD by using
commands provided by the tool. In the sequence, the BDD based embedding was run and
the resulting reversible circuit, described in an RCBDD, was wrote back in PLA format.
However, instead of having a complete description in the output PLA, such as the one
in Table 4.3, what we get from the method is the function specification for the constant
input k equals to 0. Therefore, the truth table provided by the method has 2n−1 rows.
For the full adder case, the returned truth table looks like the one presented in Table 4.6.

Table 4.6: Reversible truth table returned by RevKit tool for full adder.
k0 x0 x1 x2 sum cout g0 g1
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 1 0 0 1
0 0 1 1 0 1 0 0
0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0
0 1 1 1 1 1 0 0

Since the function specification is incompletely specified, that is not possible to
directly derive an ILB from that. Let’s consider, for instance, the embedding function
g(k,x0,x0,x1,x2) = (sum,cout,g0,g1) when g(0, 0, 0, 1) = (1, 0, 0, 0). Trying to inverse this
specification leads to the function g(1, 0, 0, 0). However, this input pattern is not specified
in the function description (it is a don’t care). Therefore, it is not possible to guarantee
the bijection feature for the first stage of the ILB if it is obtained directly from the RevKit
embedding method.

To quickly completely specify the function, we propose an algorithm composed of
three main steps, as follows:

1. Read the inputs and outputs from the PLA output given by RevKit tool into both
a vector and a hash table, serving as a look-up table.

47

2. Iterate over each input pattern and search for it on the outputs hash table. If the
hash does not contain the element, the pattern is added in both, the output vector
and the output look-up table. The same is done from the outputs to the inputs.

3. Generating the missing inputs and outputs relationship, and adding them to both
the hash table and the vector.

The hash table serves as a look-up table to store and search patterns that were
already considered. However, we also use a vector since the hash table does not keep the
order of the processed elements. At the end, the patterns stored in the input and output
vectors are added to the original PLA file, resulting in a completely specified function
which keeps its initial output values. Through this method, a truth table of a 4-input
arithmetic logic unit with 19 I/O (after embedding) was completely specified in less than
4 seconds.

After the PLA processing by the described algorithm, the resulting file is read into
the ABC tool (Berkeley Logic Synthesis and Verification Group, 2018). ABC is used to
create a multi-level description of the resulting circuit, which is written in a BLIF file.
This resulting file implements the reversible function F of the ILB first stage, as presented
in Figure 4.1.

To create the second block implementing the inverse function, F−1, all we need to
do is to swap the input and output patterns from the first block PLA file, i.e., specify a
circuit to undo the first block logic. This inverse block is also described in PLA format,
and ABC is again used to provide the BLIF description.

Both BLIF files are then connected through a script and the final ILB description
is done. To combine both BLIFs, all one needs to ensure is that the first stage inputs are
the ILB primary inputs, the first stage outputs are internal nodes connected to internal
nodes representing the second stage inputs, and the second stage outputs are the ILB
primary outputs.

Even though this method relies on real circuits to generate benchmarks, it tends
to be restricted to small designs. That is due to the complexity of the process in turning
irreversible function into reversible one, which does not scale for large designs. Therefore,
in order to have unlock the generation of complex circuits with known solution, the next
section discusses the proposed method to generate synthetic benchmarks. The exact
solution is guaranteed by construction.

48

4.3 Generating ILB by Construction

This section discusses how to generate synthetic circuits with a known exact so-
lution. Our interest in creating synthetic circuits is to keep control on the benchmark
size, with the goal of discovering for which sizes open-source and commercial tools can
find the exact solution, as well as verifying when these tools start to have problems while
optimizing the circuit.

To derive the synthetic ILB, we need to generate each of its stages apart. Therefore,
the first stage computes a reversible function F . From the primary stage function F , we
need to design the second stage to perform F−1.

ILB First Stage: The first stage corresponds to a circuit implementing a randomly
generated reversible multi-output Boolean function f , with n inputs and m outputs,
being m = n. To describe a completely specified function, we have adopted a truth table.
Each row of the truth table output is represented as an integer, and our truth table can
be represented through a vector of 2m positions. To guarantee the reversibility of the
generated function, we start by enumerating unique positive integers from 0 to (2m − 1)
and storing each of these integers into a different index of the vector. Afterwards, a
random shuffle procedure from C++ standard library is applied over this vector, leading
to our random function. From that, we can construct our truth table, where the output
bits of the ith row are defined by the binary expansion of the ith integer of the vector.
The input bits are given by the binary expansion of the ith index.

From the presented construction algorithm, it is easy to note that the generated
function is a bijection. Since the integers are uniquely enumerated, there are not repeated
patterns at the output, keeping a one-to-one mapping from inputs to outputs.

At the end, the generated truth table describing the ILB first stage is written in
PLA format. This file serves as input to the ABC tool in order to obtain the BLIF
description of the first block, which is connected to the second block.

Figure 4.2 presents the flow to generate the first block of an arbitrary 3-input
function. The numbers above the boxes represent the index of each element stored on the
vector. In the generated truth table, i(1), i(2) and i(3) are equivalent to the PIs of the
ILB In(1), In(2) and I(3) shown in Figure 4.1. P(x), with 1 ≤ x ≤ m, in the generated
truth table represents the outputs of the first block, which are intermediate outputs of
the ILB, as shown in Figure 4.1.

49

4 7 2 0 1 3 5 6

0 1 2 3 4 5 6 7

i1 i2 i3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

p1 p2 p3

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Integer Enumeration

Random Shuffle

Truth Table Generation

1 0 0
1 1 1
0 1 0
0 0 0
0 0 1
0 1 1
1 0 1
1 1 0

Figure 4.2: Flow for generating the ILB first stage.

ILB Second Stage: To generate the second stage, the intermediate nodes of the
ILB, i.e., the outputs of the first stage, serve as the inputs of the second stage. Hence,
this second stage is designed to rebuild the primary inputs of the first stage in its output,
so that the proposed ILB computes the identity function, i.e., In = Out. The second
stage is easily obtained from the first stage structure. Here, the input bits of the ith row
are defined by the binary expansion of the ith integer in the output vector. On the other
hand, the outputs bits of the truth table ith row is defined by the binary expansion of the
ith vector index.

The second stage is written as PLA file by the proposed method and serves also
as input of the ABC tool to generate its BLIF description. In the sequence, we connect
the BLIF description of each stage, resulting in a BLIF describing the whole ILB, as
presented in Figure 4.1. As the last step, this file is read in ABC tool and we obtain
its AIG representation by running the ABC command strash. The resulting AIG has its
known exact solution in both circuit logic depth and area (zero), and serves as the start
point to assess the logic synthesis algorithms.

Table 4.7 presents the truth table of the ILB generated from the flow depicted in
Figure 4.2, with the corresponding intermediate nodes. In(x) and Out(x) denote the PIs
and POs of the ILB, respectively, with 1 ≤ x ≤ (n,m). From this truth table, it is possible
to note that the resulting block implements an identity function and could be reduced to

50

Table 4.7: Final ILB of an arbitrary three inputs function.
In(1) In(2) In(3) P(1) P(2) P(3) Out(1) Out(2) Out(3)
0 0 0 1 0 0 0 0 0
0 0 1 1 1 1 0 0 1
0 1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1 1
1 0 0 0 0 1 1 0 0
1 0 1 0 1 1 1 0 1
1 1 0 1 0 1 1 1 0
1 1 1 1 1 0 1 1 1

wires.

The trends in the size of the synthetic circuits are presented in Table 4.8. The
first column represents the number of inputs and outputs of each circuit, followed by
the number of AIG nodes and circuit logic depth for the original ILB. Even though the
presented approach can generate circuits with more than 21 I/O, the ABC tool takes
more than one day to produce the corresponding AIG, so we have considered time out. It
is possible to note that the AIG size and logic depth from the created synthetic circuits
are exponential with respect to the number of the circuit I/O. Also, it is shown that the
proposed approach can generate huge circuits in the number of AIG nodes, which tends
to impose difficulties to the state-of-art synthesis algorithms.

51

Table 4.8: Number of nodes and logic depth for synthetic circuits.
I/O # nodes depth

2 6 3
3 25 8
4 83 12
5 206 17
6 489 22
7 1,115 28
8 2,496 32
9 5,616 37
10 12,170 44
11 25,714 49
12 55,176 56
13 116,879 63
14 244,561 69
15 515,165 78
16 1,068,922 88
17 2,221,295 99
18 4,564,853 114
19 9,395,112 136
20 19,626,463 159
21 39,978,858 205

52

5 EXACT BENCHMARKS SYNTHESIS RESULTS AND DISCUSSION

This chapter presents and discusses the experimental results for the synthesis of
ILBs based on both real designs and synthetically generated ones. Furthermore, the use
of ILBs in more complex scenarios is also evaluated. Experimental results are presented
for the state-of-art open source tools as well as commercial tools, taking into account
standard cell ASIC design and LUT-based FPGA synthesis.

5.1 Synthesis Results for ILBs Based on Real Designs

The first experiments of ILB synthesis based on real designs were carried out using
the open-source tools ABC and CirKit (Mathias Soeken, 2018). ABC is widely used in
academia for logic synthesis processes whereas CirKit has been chosen because it supports
synthesis over MIGs, which is a promising data structure.

Considering that the ILB implements an identity function that could be replaced
by wires, i.e., zero logic gates, we have chosen for both tools commands to reduce the
AIG and MIG sizes. Reaching the optimal solution in the number of nodes will also
lead to the optimal solution in circuit logic depth. To do so, we have opted per area
optimization commands that are not constrained by logic depth preservation. It means
that the command always chooses to reduce the circuit area, even though it may increase
the logic depth. It is worth to notice that the area oriented commands from ABC are
based on AIG rewriting (MISHCHENKO; CHATTERJEE; BRAYTON, 2006), which is
a standard for both academia and industry (AMARÚ et al., 2017). On the CirKit side,
the chosen command was the mig_rewrite, enabling the flag that sets the area as the cost
metric for optimization. To run the mig_rewrite, the AIG is first converted to a MIG
using CirKit commands. The rewrite command is then run and, at the end, the MIG
network is converted back to the AIG one for a fair comparison. We stop running each
command when the AIG (MIG) size is no longer reduced during five successive iterations.

Table 5.1 presents the synthesis results. The Depth column presents the AIG logic
depth after embedding and before any optimization. In the sequence, the number of I/O
for each circuit is presented for both the original design and the embedding result. Finally,
the column nodes presents the original number of nodes after embedding and the resulting
number of nodes after running a given command. Time-out means that the command has
not finished its execution after one day running, being then aborted.

53

The first tested circuit was the 4-input arithmetic logic unit (alu4). This circuit
was chosen because it has arithmetic structures, which are often found in real applications.
Since none of the commands could find the expected solution for this circuit, a smaller
circuit should be taken in place to assess if any algorithm can find the exact solution.

Therefore, the z4ml circuit, from the LGSynth’93 was chosen (MCELVAIN, 1993).
From results, we can note that none of the rewriting based commands could find the exact
solution. In fact, the dc2 command, which has had the best result among the rewriting
based commands, provides results still very far from the expected solution. Moreover, we
have run the dsd command which applies the disjoint-support decomposition. For this
command, it is expected that it can reach the minimal solution for the proposed circuits
since its underlying data structure for Boolean decomposition is a BDD (BERTACCO;
DAMIANI, 1997). Therefore, when considering the proposed case studies, the exact
solution with zero nodes can be found as soon as the BDD construction is finished. Even
though the dsd command is able to run and found the solution for small circuits, we are
still interested in assessing the rewriting based commands. The objective while evaluating
these commands is to figure out for which size of circuits it was possible to reach the exact
solution.

Hence, an even smaller circuit was taken from the ISCAS’85 benchmark (BRGLEZ;
FUJIWARA, 1985), the c17. This circuit is initially composed of six 2-input NAND logic
gates and it is one of the simplest circuits for benchmarking. Still, even for this simple
circuit, with a few hundreds of nodes, the commands were not able to find the exact
solution. In fact, all commands are much closer to the original AIG size than the optimal
solution. Thus, it is possible to conclude that the current state-of-art algorithms available
on open-source tools may be improved.

Notice that there is a considerable gap between the size of z4ml and alu4 cir-
cuits. Therefore, it would be interesting to identify a thinner frontier where the synthesis
commands are able to find or not the optimal solution.

Table 5.1: Results for ILBs based on real designs in open-source tools.
I/O # nodes

Circuit Depth Original Embedded Original dc2 mig_rewrite drw compress2rs dsd
alu4 86 14/8 19 443,227 274,089 441,138 350,114 317,996 time-out
z4ml 34 7/4 8 1,898 1,224 1,886 1,529 1,320 0
c17 22 5/2 6 390 251 386 314 248 0

The benchmark circuits mentioned above were also synthesized by applying a stan-
dard commercial tool. To perform this experiment, the ILBs were converted to Verilog

54

format, from the AIG representation, by using the ABC tool. The Verilog file was then
used as input for the synthesis tool, as well as a simple constraint file.

Table 5.2 presents the solutions for the commercial tool. The first column presents
the design name and the second column presents the AIG depth. The number of I/O for
the original design and after embedding is presented in the third column. The original
AIG number of nodes is presented in the column nodes, while the commercial synthesis
results are presented in terms of the number of logic gates in the last column.

Table 5.2: Results for ILBs based on real designs in commercial tool.
I/O #nodes #gates

Circuit depth original embedded generic mapped
alu4 86 14/8 19 443,227 172,632 188,485
z4ml 34 7/4 8 1,898 3,390 0
c17 22 5/2 6 390 714 0

Notice that for the z4ml and c17 circuits the generic results have more gates than
the original number of AIG nodes. That is because the number of gates also considers
inverters, while in the AIG the inverters are a parameter on the graph edges. For the alu4
circuit, it is possible to see that there are more gates in the mapped circuit than in the
generic one. That is because there are more inverters and buffers in the mapped circuit.
If we consider only logic gate instances, the generic synthesis has fewer gates than the
original AIG, and the mapped synthesis has lesser gates than the generic one.

The synthesis results are presented for two steps on the logic synthesis flow. The
generic column stands for results provided by the tool while optimizing the circuit before
proceeding to the technology mapping task. In turn, the mapped presents the number of
logic gates after mapping the circuits based on a given standard cell library.

In respect to the generic synthesis results, it is expected that the minimum solution
could be found at this phase, i.e., through the application of technology independent
optimizations. However, as the commercial tools are black boxes, it is quite difficult to
understand and predict their behavior.

Therefore, we have proceeded in the logic synthesis flow by running the technology
mapping after the generic synthesis. As discussed in Chapter 2, mappers can be classified
as structural or functional. The experimental results presented in Table 5.2 show that
the exact solution was just found after technology mapping. Hence, we have a clue that

55

more powerful optimizations are performed in the commercial tool during the technology
mapping, which may indicate that the tool implements a functional mapper.

Notice that there is a considerable gap in the size of the circuits that the tool can
or can not find the exact solution. It also motivates us to generate synthetic circuits
keeping control on the size, so that we can check when the commercial tool starts having
difficulties.

5.2 Synthesis Results for Synthetic ILBs

We propose a progressive approach to validate the proposed method. At first,
we have incrementally generated circuits starting from n = m = 2 up to n = m = 21.
Then, we have executed the same set of commands we have used to synthesize the real
designs. The optimization commands are run over the generated AIGs, targeting area
reduction without being constrained by the circuit logic depth. In the same way that in
the experiments describe before, we stop running each command when the AIG size is no
longer reduced during five successive iterations. For the mig_rewrite command, the same
procedure was adopted to run MIG optimization.

The results for the synthetic ILBs synthesis are presented in Table 5.3. The first
three columns show the AIG I/O, size and depth, respectively. In the command columns,
y indicates that the command has found the exact solution. Otherwise, it is presented the
final number of AIG nodes after stop running the command. We are showing results up
to n = m = 15 because most of the commands have already stopped finding the optimum
number of nodes for n = m = 5. For the dsd command, it starts timing out (the command
have not finished after one day executing) for circuits with 14 I/O.

The results presented in Table 5.3 can be justified by the intrinsic characteristics
of the applied synthesis algorithms. Most of these algorithms are based on tables of
precomputed structures, which are used for replacing subgraphs defined by 4-input cuts
(MISHCHENKO; CHATTERJEE; BRAYTON, 2006). Notice that the exact solutions
are often found for the case studies with up to four inputs. In these cases, even by using
4-input cuts, the algorithms have a global view of the related AIG due to their reduced
number of inputs and AND nodes. However, the local nature of such optimizations is
strongly associated to the problem of escaping from local minima for larger AIGs.

56

Table 5.3: Results for size (area) oriented commands.
I/O size depth dc2 mig_rewrite drw compress2rs dsd

2 6 4 0 6 0 0 0
3 25 8 0 24 0 0 0
4 83 12 0 78 0 0 0
5 206 17 151 203 173 148 0
6 489 22 345 483 396 346 0
7 1,115 28 808 1,107 924 837 0
8 2,496 32 1,818 2,480 2,090 1,889 0
9 5,616 37 4,021 5,585 4,652 4,262 0
10 12,170 44 8,574 8,323 10,108 9,523 0
11 25,714 49 18,017 25,623 21,403 20,136 0
12 55,176 56 37,970 54,936 45,734 42,629 0
13 116,879 63 79,490 116,424 96,663 91,009 0
14 244,561 69 163,588 243,480 202,097 189,627 time-out
15 515,165 78 336,760 512,754 422,805 397,834 time-out

In order to verify whether increasing the number of AND nodes in the circuits with
up to 4 inputs would change the algorithm behavior, we have cascaded ILBs with the same
amount of I/O in a chain configuration. By doing that and re-running the commands,
the results are quite similar. It can be explained by the fact that all blocks have the same
number of I/O. Therefore, the command computes k-cuts to deal with the first stage and
simplifies it to a wire (no logic included). In that sense, while dealing with the next ILB,
the previous one has already been consumed, and the k-cuts are computed at the PIs of
the next ILB. By the end, it becomes equivalent to synthesize each ILB independently.

Regarding the dsd command, as previously explained, it is expected that this
method can reach the exact solution since its underlying data structure for Boolean de-
composition is BDD (BERTACCO; DAMIANI, 1997).

Finally, in order to evaluate whether the randomness during the generation of the
proposed benchmarks brings a bias to the experiments, we have generated and assessed ten
more circuits with four and five I/O nodes. This experiment has not presented any changes
in the results, i.e., on the frontiers between exact and non-exact solutions. Therefore,
these results are not explicitly shown herein. However, with such an experiment, we
could evaluate that the randomness of our approach is not crucial when looking for the
frontiers of finding or not exact solutions.

Notice that, similarly to the analysis presented in (AMARÚ et al., 2017), the pri-
mary goal of our experiments is not to compare the available synthesis methods. Instead,
we are concerned to figure out the frontiers where algorithms stop to find out exact solu-
tions. Determining such a boundary is interesting because it enables to select small case

57

studies where the exact solution is not found, contributing to the effort toward possible
improvement in logic synthesis algorithms.

The same set of synthetic circuits used in the open-source tools were also synthe-
sized by a commercial tool. For the same reason, as discussed before, the generic synthesis
result has more logic gate instances than the original number of AIG nodes. That is, in
AIG representation, inverters are represented through a parameter on the graph edges
and are not counted. On the other hand, inverters and buffers are counted on the report
provided by the commercial tool.

As in the results presented for benchmarks based on real circuits, the generic
synthesis was not able to find the exact solution, even for the smallest circuit, with
two I/O. Again, it was expected that this step could reduce the circuits to its optimal
implementation through technology independent optimization.

Proceeding to the technology mapping, the commercial tool was able to optimally
synthesize the circuits with up to 25,000 AIG nodes. This result gives a better notion
for which circuit size the commercial tool can find the optimal solution for circuits imple-
menting an identity function, and when it starts to have problems. Moreover, these results
reinforce the clue that commercial tools perform more powerful optimization during the
technology mapping step.

Table 5.4: Synthetic ILB synthesis in a commercial tool
I/O AIG nodes generic synthesis mapped synthesis

2 6 11 0
3 25 44 0
4 83 153 0
5 206 380 0
6 489 887 0
7 1,115 2,002 0
8 2,496 4,314 0
9 5,616 9,622 0
10 12,170 20,947 0
11 25,714 43,764 0
12 55,176 93,063 24,956
13 116,879 196,325 46,663
14 244,561 409,263 153,454
15 515,165 206,864 227,005

58

5.3 Embedding Custom Logic into ILB

In addition to generating the ILB by construction or deriving it from a real design,
it is also possible to embed custom blocks, which may be useful to evaluate how algorithms
act with respect to some function characteristic and structure.

Such a custom block may comprise a function whose circuit was exactly syn-
thesized. It can be done with exact synthesis methods that run over small functions
(SOEKEN et al., 2018)(SOEKEN et al., 2017)(HAASWIJK et al., 2018). Also, exact
benchmarks proposed in (CONG; MINKOVICH, 2007) and in (AMARÚ et al., 2017)
could be adopted as custom blocks.

By adding a custom block with an exact synthesized function into the ILB, it
is possible to assess the noise caused by the redundant logic over the logic synthesis
algorithm. That is, the main idea of adding a custom block with an exact synthesized
function is to check if the logic synthesis tool is able to eliminate the redundant logic and
recover the minimal solution.

There are several ways to place this custom block. For instance, the block can be
placed as follows:

• Between primary inputs (PI) and the first stage of an ILB;

• Between the ILB second stage and the primary outputs (PO);

• Between any of the ILBs in a cascade.

It would also be possible to place a custom block between the ILB stages. How-
ever, notice that while putting the custom block between the two ILB stages, the block
functionality may be lost. Let’s address this issue considering a simple two I/O ILB,
comprising two inverters, as illustrated by Figure 5.1.

In(1)

In(2)

Out(1)

Out(2)

P(1)

ILB
First Stage

P(2)

Second Stage

Figure 5.1: Example of an ILB composed by inverters.

By placing a custom block with the two input logic gate OR in front of the ILB, as
presented in 5.2(a), the resulting circuit has Out(1) = In(1) and Out(2) = In(1)∨ In(2).

59

Custom Block

In(1)

In(2)

Out(1)

Out(2)

P(1)

ILB

P(2)

First Stage Second Stage

(a) Custom block placed between PIs and the ILB.

Out(1)

Out(2)

ILB
First Stage Second StageCustom Block

In(2)

In(1)

(b) Custom block between the ILB stages.

Figure 5.2: Example of custom block position in the ILB structure.

That is, the block functionality is keep and presented in Out(2) whereas the Out(1) keeps
the value of In(1).

However, when the custom block is moved to in between the ILB stages, as depicted
in Figure 5.2(b) shows, the custom block (OR) behavior in the Out(2) is lost. Consider, for
instance, the case where In(1) = 0, In(2) = 1. Instead of having Out(1) = 0, Out(2) = 1,
the Out(2) is equals to 0. Therefore, placing custom blocks between ILB stages may lead
to an unknown behavior.

To illustrate the potential of the custom block, a 2-input exclusive-OR (XOR2)
gate was placed between the PIs and the ILB first stage, similar to illustrated in Figure
5.2(b) for the OR gate. We have opted by XOR2 gate because it is a more complex
circuit than the OR one, and is represented by three AIG nodes. Therefore, its optimal
implementation is known. In that sense, after running a logic synthesis algorithms over
this ILB with this custom block, it is expected the final result to be three nodes.

Results with the XOR2 gate in our custom block are presented in Table 5.5. As
can be seen in Table 5.5, the addition of a simple gate as custom logic may cause a small
noise in the obtained results. For instance, the drw command has stopped finding the
exact solution for the circuit with three I/O and 28 AIG nodes. Still, this experiment
could be extended for exact multi-level functions.

60

Table 5.5: Results using XOR2 logic gate as custom logic.
I/O size depth dc2 mig_rewrite drw compress2rs dsd

2 9 6 0 9 0 0 0
3 28 10 0 27 11 0 0
4 86 14 0 81 0 0 0
5 209 19 146 206 170 146 0
6 492 24 354 486 395 346 0

5.4 Combining ILBs to increase circuit complexity

This section presents how ILBs can be used to increase the benchmark circuit
complexity. To address that, we present two different possibilities: (i) arranging and
combining ILBs, and (ii) using ILBs as redundant logic in other designs.

The first option allows to instantiate and combine as many ILBs as wished. To
combine them, ILBs can be layered and cascaded. While layering ILBs, we are increasing
the AIG breadth, being possible to simulate as many PI as wished. If one wants to embed
a custom block with more PI than a single ILB, it is possible to instantiate as much
ILBs as necessary to achieve the desired number of PI. On the other hand, by cascading
ILBs and custom blocks the AIG depth is increased and logic depth oriented synthesis
algorithms may be analyzed.

In this work, even though there is no limit in the number of ILBs connected, we
present a two-layer connection, inspired in the LEKO circuits, as presented in Fig. 5.3.
We have designed blocks layering ILB3, ILB4, ILB5, ILB6 and ILB7. They are refereed
as H9, H16, H25, H36 and H49, respectively. To check if these arrangements impose
some new challenges and difficulties to the ABC tool, they were also synthesized and
the technology independent results are presented in Table 5.6. However, experimental
results show that the tool is able to provide the exact solution when the arrangement is
composed by ILBs that have their exact solution found when synthesized by their self. We
believe that it happens because the tool is able to identify each block itself while running
optimizations, so that each block is reduced to wires, leading to the exact global solution.

Results for this set of circuits after ASIC and FPGA technology mapping are
presented in Table 5.7. It is worth to notice that the FPGA synthesis was able to found
the exact solution for ILB5 and ILB6 but not for the respective H25 and H36 where they
are replicated in an interconnected two-layer topology.

61

Figure 5.3: H25 ILB arrangement.

Table 5.6: Synthesis results for size (area) oriented ABC commands.
Circuit AIG nodes dc2 drw compress2rs dsd
H9 150 0 0 0 0
H16 664 0 0 0 0
H25 2,060 1,489 1,725 1,469 0
H36 5,868 4,104 4,734 4,130 0
H49 15,610 11,257 12,958 11,632 0

Finally, as for the second option, another set of experiments have been carried
out aiming to verify the impact that identity blocks have inside other circuits. For that,
C5 and G25 arrangements proposed by Cong and Minkovich, in (CONG; MINKOVICH,
2007), were described in Verilog and synthesized to act as reference in this further analysis.
Notice that the G25 arrangement is a composition of two layers of C5, as depicted in Figure
3.1. The interleaved multi-level arrangements shown in Figure 5.4 have been taken into
account. It was expected to obtain results for these mixed C5-ILB5 topologies equivalent
to the G25 one, since such a transparent block (ILB circuit) does not include additional
logic to the final circuit behavior, acting just as a sort of noise in the logic synthesis
process. As observed in Table 5.8, it has not happened when comparing the synthesis
results between M25a, M25b and M25c to the original G25 arrangement. As for the C5
circuit, one can notice that current FPGA tools were not able to find the optimal solution
presented in (CONG; MINKOVICH, 2007), which comprises 70 LUTs. However, there
are improvements when comparing the obtained results to the ones presented by Cong
and Minkovich, in 2007.

62

Table 5.7: Benchmark synthesis in FPGA and ASIC design environments.
Circuit FPGA LUT Std Cell
H9 0 0
H16 0 0
H25 26 444
H36 76 1,752
H49 3,170 3,469

[a] [b]

[c]
Figure 5.4: C5-ILB5 interleaved multi-layer arrangements: (a) M25a, (b) M25b and (c)
M25c.

Table 5.8: Experimental results combining LEKO arrangements with ILBs.
Circuit FPGA LUT Std Cell

C5 (CONG; MINKOVICH, 2007) 7 13
G25 (CONG; MINKOVICH, 2007) 71 110
M25a 475 509
M25b 475 504
M25c 553 159

63

6 CONCLUSIONS

Logic synthesis methods rely on circuit benchmarks to evaluate its efficiency com-
pared to previous approaches. The majority of publicly available benchmarks do not
have an exact known solution, so when running methods over them it is not possible
to know how well the current state-of-art logic synthesis algorithms are performing. On
the other hand, by using exact multi-level logic circuits, it is possible to verify whether
current methods are producing near-optimal solutions or if there is still room for further
improvement.

Therefore, this work proposed a novel method to generate exact multi-level logic
benchmarks circuits. The process is based on reversible logic and creates the circuits
in two different ways. Firstly, open-source tools targeting reversible logic synthesis are
explored, enabling the generation of exact benchmarks based on real designs. It means
that the resulting circuit has portions of combinational logic computing real functions,
being useful to tune algorithms concerning structures found in practical designs.

Secondly, this work presented an algorithm to generate exact synthetic circuits.
Synthetic circuits are used to keep control on circuit size, being valuable to identify for
which size of circuit tools start having difficulties. Also, it is possible to generate huge
circuits through the synthetic approach, which can be used as a benchmark for future
generations of logic synthesis tools. Both approaches presented to derive exact circuits in
this work are challenging to current open-source and commercial tools.

The possibility of embedding custom blocks with specific logic were also discussed,
which seems to be an interesting opportunity to asses methods in respect to functions with
a given specificity. Moreover, the flexibility while arranging and connecting the generated
blocks were discussed, so that blocks with more I/O can be created.

As future work, combinational equivalence checking (CEC) is seen as a promising
application of the benchmarks proposed herein. CEC plays a significant role in EDA by
verifying the functional equivalence between different combinational circuits after multi-
level logic synthesis. That is, CEC tools must ascertain if two structurally different circuits
have the same functionality.

Given the importance of CEC methods, they must be fast and should scale for large
circuits. However, in the same way that multi-level logic synthesis, combinational equiv-
alence checking is a complex task. In fact, it is a co-NP hard-problem (MISHCHENKO
et al., 2006). In this sense, the increasing complexity of current designs may break down

64

current CEC tools (MISHCHENKO et al., 2006). Therefore, proper heuristic methods
are are crucial (MATSUNAGA, 1996).

In that sense, ILBs may be a good candidate to increase complexity in designs
and challenge CEC tools incrementally. By doing that, it would also be possible to know
for which size of circuits these tools start to undesirable or even prohibitive execution
time. Since ILBs implement identity function and do not change the logic, they could
be inserted in any circuit, adding redundancy. For instance, a bus of eight wires could
be connected to an eight I/O ILB. Therefore, additional redundant logic is attached and
may disturb the verification tool.

Another possibility is to understand if it is possible to replace clouds of combina-
tional logic by ILBs. That is not straightforward because extra inputs and outputs may
be created while embedding the irreversible logic into a reversible function. Even though
the additional inputs may be tied to a constant logic value (0, for instance), the extra
outputs cannot be propagated to the POs to pass the combinational equivalence checking.

65

REFERENCES

AKERS, S. B. Binary decision diagrams. IEEE Transactions on computers, IEEE,
n. 6, p. 509–516, 1978.

ALBRECHT, C. Iwls 2005 benchmarks. In: INTERNATIONAL WORKSHOP ON
LOGIC AND SYNTHESIS (IWLS). Proceedings... [S.l.: s.n.], 2005.

ALON, N.; BOPPANA, R. B. The monotone circuit complexity of boolean functions.
Combinatorica, Springer, v. 7, n. 1, p. 1–22, 1987.

AMARÚ, L.; GAILLARDON, P.-E.; MICHELI, G. D. Majority-inverter graph: A novel
data-structure and algorithms for efficient logic optimization. In: ACM. PROCEEDINGS
OF THE 51ST ANNUAL DESIGN AUTOMATION CONFERENCE. Proceedings...
[S.l.], 2014. p. 1–6.

AMARÚ, L.; GAILLARDON, P.-E.; MICHELI, G. D. The epfl combinational benchmark
suite. In: INTERNATIONAL WORKSHOP ON LOGIC AND SYNTHESIS (IWLS).
Proceedings... [S.l.: s.n.], 2015.

AMARÚ, L. et al. Multi-level logic benchmarks: An exactness study. In: IEEE.
DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2017 22ND ASIA AND SOUTH
PACIFIC. Proceedings... [S.l.], 2017. p. 157–162.

AMARÚ, L. et al. Enabling exact delay synthesis. In: PROCEEDINGS OF THE
36TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN.
Proceedings... Piscataway, NJ, USA: IEEE Press, 2017. (ICCAD ’17), p. 352–359.
Available from Internet: <http://dl.acm.org/citation.cfm?id=3199700.3199747>.

ASHENHURST, R. L. The decomposition of switching functions. In: PROCEEDINGS
OF AN INTERNATIONAL SYMPOSIUM ON THE THEORY OF SWITCHING,
APRIL 1957. Proceedings... [S.l.: s.n.], 1957.

BASTO, L. First results of itc’99 benchmark circuits. IEEE Design Test of
Computers, v. 17, n. 3, p. 54–59, 2000.

BENNETT, C. H. Logical reversibility of computation. IBM journal of Research
and Development, IBM, v. 17, n. 6, p. 525–532, 1973.

Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential
Synthesis and Verification. 2018. Available from Internet: <http://www.eecs.
berkeley.edu/~alanmi/abc/>. Accessed in: 2018-04-16.

BERTACCO, V.; DAMIANI, M. The disjunctive decomposition of logic functions. In:
IEEE COMPUTER SOCIETY. PROCEEDINGS OF THE 1997 IEEE/ACM INTER-
NATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN. Proceedings...
[S.l.], 1997. p. 78–82.

BERTACCO, V.; OLUKOTUN, K. Efficient state representation for symbolic simulation.
In: IEEE. DESIGN AUTOMATION CONFERENCE, 2002. PROCEEDINGS. 39TH.
Proceedings... [S.l.], 2002. p. 99–104.

http://dl.acm.org/citation.cfm?id=3199700.3199747
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/

66

BÉRUT, A. et al. Experimental verification of landauer/’s principle linking information
and thermodynamics. Nature, Nature Research, v. 483, n. 7388, p. 187–189, 2012.

BRAYTON, R.; MISHCHENKO, A. Abc: An academic industrial-strength verification
tool. In: SPRINGER. INTERNATIONAL CONFERENCE ON COMPUTER AIDED
VERIFICATION. Proceedings... [S.l.], 2010. p. 24–40.

BRAYTON, R. K. et al. Logic minimization algorithms for VLSI synthesis. [S.l.]:
Springer Science & Business Media, 1984.

BRGLEZ, F.; BRYAN, D.; KOZMINSKI, K. Combinational profiles of sequential
benchmark circuits. In: CIRCUITS AND SYSTEMS, 1989., IEEE INTERNATIONAL
SYMPOSIUM ON. Proceedings... [S.l.: s.n.], 1989.

BRGLEZ, F.; FUJIWARA, H. A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran. In: PROC. OF THE INT’L SYMPOSIUM
CIRCUITS AND SYSTEMS (ISCAS). Proceedings... [S.l.: s.n.], 1985. p. 677–692.

BRYANT, R. E. Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on, IEEE, v. 100, n. 8, p. 677–691, 1986.

CHANG, C.-C. et al. Optimality and scalability study of existing placement algorithms.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, IEEE, v. 23, n. 4, p. 537–549, 2004.

CHATTERJEE, S. et al. Reducing structural bias in technology mapping. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
IEEE, v. 25, n. 12, p. 2894–2903, 2006.

CHEN, D. et al. Fpga design automation: A survey. Foundations and Trends R© in
Electronic Design Automation, Now Publishers, Inc., v. 1, n. 3, p. 195–330, 2006.

CONG, J.; MINKOVICH, K. Optimality study of logic synthesis for lut-based fpgas.
IEEE Transactions on Computer-aided Design of Integrated Circuits and
Systems, IEEE, v. 26, n. 2, p. 230–239, 2007.

CORNO, F.; REORDA, M.; SQUILLERO, G. Rt-level itc’99 benchmarks and first atpg
results. Design Test of Computers, IEEE, v. 17, n. 3, p. 44–53, Jul 2000.

COUDERT, O. Two-level logic minimization: an overview. Integration, the VLSI
journal, Elsevier, v. 17, n. 2, p. 97–140, 1994.

CURTIS, H. A. A new approach to the design of switching circuits. [S.l.]: van
Nostrand, 1962.

DAVIDSON, S.; HARLOW, J. Guest editors’ introduction: Benchmarking for design
and test. IEEE Design & Test, IEEE Computer Society Press, v. 17, n. 3, p. 12–14,
2000.

ERNST, E. A. Optimal combinational multi-level logic synthesis. Thesis (PhD)
— University of Michigan, 2009.

FLEISHER, H.; MAISSEL, L. I. An introduction to array logic. IBM Journal of
Research and Development, IBM, v. 19, n. 2, p. 98–109, 1975.

67

HAASWIJK, W. et al. Sat based exact synthesis using dag topology families. In: DAC.
Proceedings... [S.l.: s.n.], 2018. p. 53–1.

HACHTEL, G. D.; SOMENZI, F. Logic synthesis and verification algorithms.
[S.l.]: Springer Science & Business Media, 2006.

HARLOW, J. E. Overview of popular benchmark sets. IEEE Design & Test of
Computers, IEEE, v. 17, n. 3, p. 15–17, 2000.

KLEIN, J. P.; LEETE, T. H.; RUBIN, H. A biomolecular implementation of logically
reversible computation with minimal energy dissipation. Biosystems, Elsevier, v. 52,
n. 1, p. 15–23, 1999.

KNILL, E.; LAFLAMME, R.; MILBURN, G. J. A scheme for efficient quantum
computation with linear optics. nature, Nature Publishing Group, v. 409, n. 6816, p.
46–52, 2001.

KUEHLMANN, A.; KROHM, F. Equivalence checking using cuts and heaps. In: ACM.
PROCEEDINGS OF THE 34TH ANNUAL DESIGN AUTOMATION CONFERENCE.
Proceedings... [S.l.], 1997. p. 263–268.

KUTZSCHEBAUCH, T.; STOK, L. Layout driven decomposition with congestion
consideration. In: IEEE COMPUTER SOCIETY. PROCEEDINGS OF THE
CONFERENCE ON DESIGN, AUTOMATION AND TEST IN EUROPE.
Proceedings... [S.l.], 2002. p. 672.

LANDAUER, R. Irreversibility and heat generation in the computing process. IBM
journal of research and development, Ibm, v. 5, n. 3, p. 183–191, 1961.

Mathias Soeken. CirKit. 2018. Release 20130425. Available from Internet:
<https://msoeken.github.io/cirkit.html>. Accessed in: 2018-04-16.

MATSUNAGA, Y. An efficient equivalence checker for combinational circuits. In: ACM.
PROCEEDINGS OF THE 33RD ANNUAL DESIGN AUTOMATION CONFERENCE.
Proceedings... [S.l.], 1996. p. 629–634.

MCELVAIN, K. Iwls’93 benchmark set: Version 4.0. In: INTERNATIONAL
WORKSHOP ON LOGIC AND SYNTHESIS (IWLS). Proceedings... [S.l.: s.n.], 1993.

MCGEER, P. C. et al. Espresso-signature: A new exact minimizer for logic functions.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, IEEE,
v. 1, n. 4, p. 432–440, 1993.

MICHELI, G. D. Synthesis and optimization of digital circuits. [S.l.]: McGraw-Hill
Higher Education, 1994.

MISHCHENKO, A.; BRAYTON, R. Faster logic manipulation for large designs. Citeseer,
2007.

MISHCHENKO, A.; CHATTERJEE, S.; BRAYTON, R. Dag-aware aig rewriting a
fresh look at combinational logic synthesis. In: ACM. PROCEEDINGS OF THE 43RD
ANNUAL DESIGN AUTOMATION CONFERENCE. Proceedings... [S.l.], 2006. p.
532–535.

https://msoeken.github.io/cirkit.html

68

MISHCHENKO, A. et al. Improvements to combinational equivalence checking. In:
ACM. PROCEEDINGS OF THE 2006 IEEE/ACM INTERNATIONAL CONFERENCE
ON COMPUTER-AIDED DESIGN. Proceedings... [S.l.], 2006. p. 836–843.

MISHCHENKO, A.; CHATTERJEE, S.; BRAYTON, R. K. Improvements to technology
mapping for lut-based fpgas. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, IEEE, v. 26, n. 2, p. 240–253, 2007.

MISHCHENKO, A.; CHATTERJEE, S.; BRAYTON, R. K. Improvements to technology
mapping for lut-based fpgas. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, v. 26, n. 2, p. 240–253, 2007.

MOORE, G. Moore’s law. Electronics Magazine, v. 38, n. 8, p. 114, 1965.

NIELSEN, M. A.; CHUANG, I. Quantum computation and quantum information.
[S.l.]: AAPT, 2002.

PAN, P.; LIN, C.-C. A new retiming-based technology mapping algorithm for
lut-based fpgas. In: ACM. PROCEEDINGS OF THE 1998 ACM/SIGDA SIXTH
INTERNATIONAL SYMPOSIUM ON FIELD PROGRAMMABLE GATE ARRAYS.
Proceedings... [S.l.], 1998. p. 35–42.

PISTORIUS, J. et al. Benchmarking method and designs targeting logic synthesis for
fpgas. In: INTERNATIONAL WORKSHOP ON LOGIC AND SYNTHESIS (IWLS).
Proceedings... [S.l.: s.n.], 2007.

PLAZA, S.; BERTACCO, V. Staccato: disjoint support decompositions from bdds
through symbolic kernels. In: ACM. PROCEEDINGS OF THE 2005 ASIA AND
SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE. Proceedings... [S.l.],
2005. p. 276–279.

RABAEY, J. M.; CHANDRAKASAN, A. P.; NIKOLIC, B. Digital integrated
circuits. [S.l.]: Prentice hall Englewood Cliffs, 2002.

SAEEDI, M.; MARKOV, I. L. Synthesis and optimization of reversible circuits—a
survey. ACM Computing Surveys (CSUR), ACM, v. 45, n. 2, p. 21, 2013.

Scott Davidson. ITC‘99 Benchmarks. 1999. Available from Internet: <https:
//www.cerc.utexas.edu/itc99-benchmarks/bendoc1.html>. Accessed in: 2018-04-25.

SENTOVICH, E. M. et al. SIS: A system for sequential circuit synthesis. Univ.
California, Berkeley, Tech. Rep. UCB/ERL M92/41, 1992.

SOEKEN, M. et al. Exact synthesis of majority-inverter graphs and its applications.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, IEEE, v. 36, n. 11, p. 1842–1855, 2017.

SOEKEN, M. et al. RevKit: An open source toolkit for the design of reversible circuits.
In: REVERSIBLE COMPUTATION 2011. Proceedings... [S.l.: s.n.], 2012. (Lecture
Notes in Computer Science, v. 7165), p. 64–76. RevKit is available at www.revkit.org.

SOEKEN, M. et al. Practical exact synthesis. In: IEEE. DESIGN, AUTOMATION &
TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2018. Proceedings...
[S.l.], 2018. p. 309–314.

https://www.cerc.utexas.edu/itc99-benchmarks/bendoc1.html
https://www.cerc.utexas.edu/itc99-benchmarks/bendoc1.html

69

SOEKEN, M. et al. Sat-based combinational and sequential dependency computation.
In: SPRINGER. HAIFA VERIFICATION CONFERENCE. Proceedings... [S.l.], 2016.
p. 1–17.

SOEKEN, M. et al. Embedding of large boolean functions for reversible logic. ACM
Journal on Emerging Technologies in Computing Systems (JETC), ACM,
v. 12, n. 4, p. 41, 2016.

STOK, L. Developing parallel eda tools [the last byte]. IEEE Design & Test, IEEE,
v. 30, n. 1, p. 65–66, 2013.

THORP, T.; YEE, G.; SECHEN, C. Design and synthesis of monotonic circuits. In:
IEEE. COMPUTER DESIGN, 1999.(ICCD’99) INTERNATIONAL CONFERENCE
ON. Proceedings... [S.l.], 1999. p. 569–572.

WESTE, N.; HARRIS, D.; BANERJEE, A. Cmos vlsi design. A circuits and systems
perspective, v. 11, p. 739, 2005.

WILLE, R.; DRECHSLER, R. Towards a design flow for reversible logic. [S.l.]:
Springer Science & Business Media, 2010.

YANG, S. Logic synthesis and optimization benchmarks. In: INTERNATIONAL
WORKSHOP ON LOGIC AND SYNTHESIS (IWLS). Proceedings... [S.l.: s.n.], 1989.

YANG, S. Logic Synthesis and Optimization Benchmarks User Guide: Version
3.0. [S.l.], 1991.

YANG, S. Logic synthesis and optimization benchmarks version 3.0. Tech. Report,
Microelectronics Centre of North Carolina, 1991.

ZULEHNER, A.; WILLE, R. Make it reversible: Efficient embedding of non-reversible
functions. In: IEEE. 2017 DESIGN, AUTOMATION & TEST IN EUROPE
CONFERENCE & EXHIBITION (DATE). Proceedings... [S.l.], 2017. p. 458–463.

	Acknowledgment
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Logic Synthesis
	1.2 Motivation
	1.3 Objectives
	1.4 Proposed Work
	1.5 Text Organization

	2 Preliminaries
	2.1 Boolean Function Definitions
	2.2 Boolean Function Decomposition
	2.3 Boolean Functions Representation
	2.3.1 Truth Table
	2.3.2 Sum-of-Products
	2.3.3 Programmable Logic Array
	2.3.4 Berkeley Logic Interchange Format
	2.3.5 Binary Decision Diagrams
	2.3.6 AND-Inverter Graph
	2.3.7 Majority-Inverter Graph

	2.4 Integrated Circuit Design

	3 Related Work
	3.1 Benchmark Circuits
	3.2 Exact Benchmark Circuits

	4 Proposed Approach
	4.1 Deriving ILB from Real Designs
	4.2 Processing Embedded Output
	4.3 Generating ILB by Construction

	5 Exact Benchmarks Synthesis Results and Discussion
	5.1 Synthesis Results for ILBs Based on Real Designs
	5.2 Synthesis Results for Synthetic ILBs
	5.3 Embedding Custom Logic into ILB
	5.4 Combining ILBs to increase circuit complexity

	6 Conclusions
	References

