
A Framework for Modeling, Building and Maintaining
Enterprise Information Systems Software

Alexandre Cláudio de Almeida1, Glauber Boff1, Juliano Lopes de Oliveira1

1Instituto de Informática – Universidade Federal de Goiás (UFG)
Caixa Postal 131, Campus II, CEP 74.001-970 - Goiânia - GO - Brasil

{alexandre,glauber,juliano}@inf.ufg.br

Abstract. An Enterprise Information System (EIS) software has three main as-
pects: data, which are processed to generate business information; application
functions, which transform data into information; and business rules, which
control and restrict the manipulation of data by functions. Traditional ap-
proaches to EIS software development consider data and application functions.
Rules are second class citizens, embedded on the specification of either data (as
database integrity constraints) or on the EIS functions (as a part of the appli-
cation software). This work presents a new, integrated approach for the devel-
opment and maintenance of EIS software. The main ideas are to focus on the
conceptual modeling of the three aspects of the EIS software - application func-
tions, business rules, and database schema - and to automatically generate code
for each of these software aspects. This improves software quality, reducing re-
dundancies by centralizing EIS definitions on a single conceptual model. Due to
automatic generation of code, this approach increases the software engineering
staff productivity, making it possible to respond to the continuous changes in the
business domain.

1. Introduction
Modern organizations make intensive use of Enterprise Information Systems (EIS) to
manage and control increasingly complex business processes and data in order to support
both operational and decision making processes [Debevoise 2007]. EIS support business
processes by mediating the flow of information between the actors in the enterprise and
providing accurate information to improve these actors performance.

The development of EIS software requires thorough understanding of business
domain and business rules (BR). The ability to connect business processes and business
rules, making quality information available on time, defines the real value of the EIS
software.

The construction and evolution of EIS software capable of providing this abil-
ity have challenged the Software Engineering community for many years. In spite of
the advances in the software technology, which eliminated a lot of incidental problems,
EIS software is still built using the traditional approach: software requirements, business
rules, and data models are separately analyzed, designed, and implemented. The object-
oriented approach was not able to solve this problem since persistence and performance
issues frequently lead to the division of software responsibilities between the application
software and the underlying database system, with business rules been embedded on one
of both of these components.



While current EIS software is able to attend immediate business needs, it is very
difficult to evolve or to adapt this software to the continuous changes in the business
domain, since the concepts of this domain are spread among different components.

In this paper we present a software framework that solves this difficulty by adopt-
ing a model based approach to EIS software development. In this approach, the applica-
tion software, the business rules, and the underlying database schema are generated from
a single conceptual model of the business domain concepts. Thus, evolving or adapting
the EIS software to new business requirements is restricted to changing the conceptual
model of the EIS software. The software, the rules and the database are automatically
constructed from this conceptual model.

Due to space limitations, we will not discuss the details of the user Interface com-
ponent or the Service component. We focus on Metadata, Persistence and Business Rules
components to explain our approach for code generation and database schema evolution
based on EIS metadata.

To introduce the ideas of this approach and the framework which implements these
ideas, this paper is organized as follows. Section 2 provides an overview of the framework
that generates the EIS code from the system conceptual model. Section 3 discusses the
conceptual modeling of databases and business rules for EIS. Section 4 details the code
generation for business rules and for the EIS database. Section 5 discusses aspects of EIS
model evolution that are critical for the maintenance of EIS. Finally, Section 6 presents
concluding remarks, comparing our approach to related works and pointing directions for
future work.

2. Framework Overview

Our framework was inspired on the ideas of model-driven engineering [Schmidt 2006].
The framework was built to support automatic generation and maintenance of EIS soft-
ware components using the EIS conceptual model as its input.

The macro-architecture of the framework, shown in Figure 1, has five main com-
ponents. The Interface, Business Rules and Persistence components contains transforma-
tion procedures and tools that map each aspect of the EIS conceptual model (application
functions, business rules, and database schema, respectively) to software implementation
models, generating the corresponding code.

Figure 1. Framework components architecture.



The Metadata component is at the core of the framework. It supports all other
components and is responsible for managing the EIS conceptual model. This conceptual
model defines metadata that are used by the other framework components to build and
manage the execution of the EIS software code (application functions, business rules, and
database schema). This component doesn’t need any service from other components but
it provides some services in its interface that are used in Object-Relational Mapping, like
obtaining logical key attributes from an entity.

The Interface component of the architecture uses the EIS conceptual model (or
simply the EIS metadata) to automatically generate the user interface widgets for the
business applications. The Metadata component maintains, for each EIS concept, a User-
Interface mapping describing how to present, in a user interface widget, each business
concept.

The Service component provides tools and services to register and convert infor-
mation from the Interface to other components of the framework. Thus, it acts like a fa-
cade, isolating the user interface aspects of the EIS. For instance, the Interface component
depends on the Service component to map user interface data to and from persistent data,
as well as to evaluate business rules. The separation of the Interface component makes it
easier to change the user interface without affecting the core of the EIS. This component
need services provided from Business Rule Component to validate User information and
services provided from Metadata Component used in ORM. The Service component pro-
vides services to manipulate the entity instance. These services are creating, read, update
and delete.

The Business Rule component is responsible for managing a centralized business
rules repository, which is stored in a database. To access the database, the Business Rule
uses the Persistence component services provided in its interface. The main responsibili-
ties of the Business Rule component is to translate the OCL rules definitions to platform
specific code, and to provide runtime facilities for evaluating and enforcing these rules.

The Persistence component maps the EIS conceptual model to the operational
data model of the underlying DBMS and manages the evolution of the database schema
according to the EIS conceptual metadata. This component also manages all the access to
persistent data, isolating the other framework components from changes in the database
technology. This component requires services provided in Metadata component that are
used to set up and adjust stored procedures parameters. This component also provides
services to create and evolve database schema. This component requires the same func-
tionalities used in ORM provided in the Service Component.

2.1. Using the Framework to Build an EIS
The first step to build an EIS using our framework is registering Business Entities Meta-
data. Entity Metadata is divided in three types: representation, presentation and rules.
After register these information, tables and stored procedures (used by Persistence com-
ponent PC) are generate automatically to store, manipulate and validate the Entity data
(used by Rules component RC). After that, the software to manipulate Entity information
is ready to use.

When a program is executed, the Interface component obtains, from Metadata
component (MC) the relative Meta information from the Business Entity. This Meta in-



formation is used to assembly the User Interface (UI) that manipulates Entity instances.
Create, read, update and delete are functions provided by UI. The Entity instance obtained
by UI is passed to Service Component (SC). For example, if the user chooses the Create
operation in UI the Service component pass this instance to Rule component for valida-
tion. If ok, the SC obtains the metadata from MC and does the Object Relational Mapping
(ORM); the SC pass the mapped data to PC that call the specifics stored procedures from
the manipulated Entity.

3. Conceptual Modeling of EIS Database and Business Rules
The Business Rules (BR) of an EIS can be considered as statements that define or con-
straint any business aspect [Group 2000]. These rules formalize the business concepts,
the relationships among these concepts, and the constraints that must be enforced to guar-
antee the integrity and consistency of business data and processes.

Since BR constraint business operations, they are also known as application do-
main rules [Morgan 2001]. The implementation of application programs allows EIS users
to perform business processes and to manipulate business information according to the
BR. Therefore, one can think of BR as abstract expressions that define and constraints the
EIS, directing it to fulfill the underlying business domain information needs. From this
perspective, business rules can be classified in four categories [Gottesdiener 1997]:

1. definitions (of business terms);
2. facts (that connect terms);
3. constraints (on terms and/or facts); and
4. derivations (which infer new terms and/or facts from those already known).

The first two categories contain structural rules, which are well supported by cur-
rent modeling tools (UML, or the relational data model, for instance). Thus, our work
focuses on the other two rules categories: constraints and derivations (which we call,
respectively, validation and derivation rules). We refer to the set of rules in these two
categories as action rules.

Traditionally, BR are represented and implemented as code embedded into the
application programs or into the database schema. Thus, business rules are second class
citizens, subordinated to databases or application programs. Rules are analyzed, designed
and implemented as a dependent concept, considering an implementation perspective of
the system.

This approach has several drawbacks, mainly on the portability and maintainabil-
ity of the EIS, due to the tight coupling between the definitions of what the system must
do (specified by the BR) and how the system works (coded in the application programs
and database constraints) [Date 2000].

To minimize these difficulties, EIS BR should be abstractly and independently
represented, and should contain no implementation detail (platform or technological defi-
nitions, for instance). Defining rules in such a way is possible, but it demands an adequate
infrastructure to manage the independent rules.

In our approach all BR properties are stored in a single Enterprise Information
System Business Rule (EIS-BR) repository, implemented as a rules database. Thus, a



database management system (DBMS) enforces security and provides accessibility for
authorized users to access the BR repository. Only authorized staff has access to the
centralized repository of rules definitions.

To conceptually represent the structural aspects of the EIS domain, such as busi-
ness concepts, instances, relations, and static constraints, we implemented an object-
oriented variation of the classic Entity-Relationship (ER) Conceptual Data Model. Using
this model we can automatically generate the EIS database schema, using well-known
ER to SQL mapping algorithms. However, the ER model provides appropriate support
only to structural constraints; action rules, assertions and derivation rules are not directly
supported by this model.

To define and evaluate these types of rules, which are not naturally represented
with ER modeling primitives, we chose a language specifically designed to express rules
within an object-oriented model. The OCL (Object Constraint Language) expressions
allow the designer to define:

1. Invariant conditions (which must be satisfied in all system states);
2. Query expressions (covering all the model elements); and
3. Constraints on operations that change system´s state (e.g., pre-conditions).

Combining the expressive power of the ER conceptual data model with OCL dy-
namic constraints expressions allows our framework to specify both structural and behav-
ioral constraints in a high level, abstract model of the EIS. In the example illustrated in
Figure 2, an ER model represents a simplified enterprise domain. This simple conceptual
model contains structural constraints, such as the following cardinality (or multiplicity)
constraints: Rule 1) ”An Employee must work in a single Department”; and Rule 2) ”An
Employee can manage at most one Department”.

However, the constraint expressivity of this simple model is limited, since only
structural constraints can be represented. For example, suppose that the following busi-
ness rule most be enforced: Rule 3) ”An Employee can manage only the Department in
which he works”. This business rule is not represented in Figure 2, and due to ER expres-
sive power limitations, it can not be stated without modifying the EIS model structure.

Our solution to this problem is to use OCL for representing rules that cannot be
expressed using ER modeling primitives, such as validation and derivation rules. The
business rule mentioned above could be formally represented in OCL as the query ex-
pression shown in Code 1.

In this approach, rules are specified as an independent aspect, i.e., rules are first
class citizen in the EIS conceptual model. The separation of rules, data and functions is
not complete, since rules have influence on data and functions; however, there is no sub-
ordination of rules specification with regard to data or functions specifications. Moreover,
rules are formally expressed, but without dependency of implementation technologies or
specific platforms.

4. Code Generation Mechanisms
The model-driven engineering approach on which our framework is based demands au-
tomatic code generation facilities from the abstract conceptual EIS model. In this work



Figure 2. A Simplified Conceptual Model for an EIS.

we focus on two main aspects concerning this code generation: EIS database definition
and manipulation (Section 4.1) and business rules implementation (Section 4.2). User
interface and application programs rely on the database and rules code, but due to space
limitations are not discussed in this paper.

4.1. Schema generation and manipulation

A database schema transformation tool in the Persistence component generates a SQL
schema for an EIS database through automatic translation of the EIS conceptual meta-
data. The specific operational data model of the DBMS defines the details of the mapping
process, since there are variations of SQL features supported on different database man-
agement systems.

As we have said, the conceptual model used in our framework is based on the
Entity-Relationship model. Our transformation tool is capable of generating SQL struc-
tures corresponding to the conceptual primitives of the source model, such as strong
and weak entities, specialization hierarchies, relationship aggregation, and composite at-
tributes.

There are several tools that perform the same kind of transformation, generating a
SQL database schema from an ER conceptual schema. The new idea in our framework is
to use behavior information that is also captured in our conceptual model (via action rules)
to automatically generate stored procedures that provide basic CRUD (Create, Read, Up-
date, Delete) operations on entity instances. Every conceptual entity type has a set of
built-in procedures to perform these CRUD operations on its instances. The application
functions benefit from this feature.

To illustrate the database schema transformation tool operation, consider the
schema shown in Figure 2. The purpose of this example is to show the result of database
schema transformations to generate an operational data definition for the conceptual
schema presented in Figure 2.



1 context Employee::validate_Employee(
2 employee_id : Integer ) : Boolean
3 body:
4 let
5 idDeptEmpWork : Integer = Employee.allInstances()->
6 select (id = employee_id).departament_work.id,
7

8 idDeptEmpManage: Integer = Employee.allInstances()->
9 select (id = employee_id).departament_manage.id,

10

11 rv_Employee: Boolean =
12 (
13 if(idDeptEmpManage <> null and
14 idDeptEmpWork <> idDeptEmpManage)
15 then true
16 else false
17 endif
18 )
19

20 in
21 result = rv_Employee

Code 1: A Business Rule expressed in OCL.

In a typical database environment, the application developer (or the database ad-
ministrator) has to translate the conceptual schema into the operational schema. This
translation is supported by database schema transformation tools in the main DBMS. Our
tool also makes this translation automatically, generating the SQL schema shown in Fig-
ure 3.

Figure 3. SQL Schema generated from the Conceptual Schema in Figure 2.

The main advantages of our approach when comparing to conventional DBMS
tools are: a) the generated schema is integrated with other generated aspects of the EIS
software (rules and application functions); and b) data manipulation stored procedures
are automatically incorporated to the database schema, providing an important facility to
upper level application and user interface code.

The transformation tool generates the SQL-DDL schema and also the stored pro-
cedures (SQL-DML) to manipulate instances of all entities and relationships of the con-
ceptual schema (which are all converted to SQL tables). Figure 4 shows the stored proce-
dures created to manipulate the database schema in Figure 3. Only the signature of each
stored procedures is shown due to space limitations, but our tool automatically generates
the full procedure code for each basic data manipulation operation: select, insert, update



and delete.

Figure 4. Stored Procedures automatically generated from the schema in Figure
2.

These automatically available stored procedures are used as basic building blocks
for the construction of the EIS specific applications. All the persistence aspects of the ap-
plication programs are encapsulated into these procedures. Thus, our framework enforces
the data independence principle.

Figure 5 shows the ER Transformation package, which contains the main func-
tions of the Persistence component. In this figure, the Metadata component is represented
as a class of the package, but as we have already discussed, it is an independent compo-
nent of the framework.

The DBMappingLibrary class obtains mapping information necessary to trans-
formation process from ER to target DBMS. The Generation Processor is a class that
contains all essential methods for generating SQL-DDL schema and stored procedures.
The Evolution Processor is a class that treats the database evolution manipulation process.

4.2. Code generation for business rules
In order to transform OCL business rules into SQL, the mappings between elements of
these languages must be described. In [Demuth and Hussmann 1999] some patterns for
invariants transformations are defined, specifying their general structure, attribute access
and navigation across associations. These ideas were used in our work to develop trans-
formation patterns according to our EIS conceptual metadata.



Figure 5. The Persistence component of the framework.

In our approach, all mappings are defined in a XML (Extensible Markup Lan-
guage) [(W3C) 2009] file, based on the Dresden OCL Toolkit [Group 2008]. The XML
file contains information to guide the rule transformation process. After defining the map-
pings, the next step is to parse the OCL expressions in order to validate them according
to the OCL Grammar and to build an Abstract Syntax Tree (AST) with its elements.

The rule transformation process requires that all previous steps have been per-
formed successfully. To transform the OCL expression into SQL code the following com-
ponents are mandatory:

• A XML file containing mappings from OCL to the specific SQL dialect;
• AST and metadata structure, containing information about model elements.

Figure 6 shows the OCL Transformation package, which contains the main func-
tions of the Business Rules component. In this figure, the Metadata component is the
same used in ER transformations. The MappingLibrary class uses the external xerces.jar
[Group 2008] component, which is responsible for reading a XML file containing map-
pings from OCL to the target platform.

The Translator is an interface that contains all the essential methods for executing
transformations between models. It uses the OCL Parser external component, which is
responsible for parsing OCL expressions.

The following sequence of activities must be performed to transform an OCL
expression into SQL code:

1. Get mappings between OCL and SQL: it is necessary to retrieve all mappings
that are defined in the XML file. Each mapping indicates how to generate code
in a specific target language (in our case, the PostgreSQL procedural language -
plPgSQL was adopted).

2. Get rule elements: the AST previously built contains all tokens in the OCL rule.
Thus, we can use this activity to visit any node in the AST and to make it available
for further activities. This step makes it easier to access important parts of the rule,
such as its parameters.

3. Get business entities metadata: as we have explained, the metadata structure repre-
sents model elements (like entities, their attributes and relationships). Each busi-
ness rule must have a rule context, which can be an entity or an attribute. It is



necessary to get the rule context related metadata to understand the entity struc-
ture (attribute composition and relationships). This knowledge is necessary to
navigate through the specific rule context within the model.

4. Translate rule parameters: when an OCL rule have entry parameters, it is nec-
essary to translate their types to corresponding SQL data types, according to the
mappings defined in the XML file. All parameters have the same name as the
respective attributes in the metadata model, but they can be changed in this step
according to the needs of the transformation process.

5. Translate rule expressions: this is the most critical activity for the rule transfor-
mation process. In this step we walk through the AST visiting each node and,
according to its type, it is possible to know which mapping pattern, defined in the
XML file, should be applied to generate the SQL code.

Figure 6. The Business Rule component of the framework.

The generated rule should be executed when predefined operations are done in
application programs. Following the active database principle, our mechanism is sensi-
tive to operations that modify the state of the EIS database: insert, update and delete.
When these operations occur within an application program, the rule evaluation process
is triggered.

As an example of rule code generation for stored procedures, consider the business
rule modeled in Section 3: ”An Employee can manage only the Department in which
he works”. This business rule was modeled in OCL, as shown in Code 1. After being
processed by the transformation tool, the code in Code 2 was generated.

Our framework implementation maps the OCL business rules to stored procedures
in a specific SQL dialect. Nevertheless, this is only a mapping decision. It is possible to
adjust the mapping procedure to translate from OCL to a programming language, for
instance.



1 CREATE OR REPLACE FUNCTION validate_Employee(
2 employee_ssn INTEGER
3 )RETURNS BOOL AS $$
4 DECLARE
5 idDeptEmpWork INTEGER;
6 idDeptEmpManage INTEGER;
7 rv_Employee BOOL;
8

9 BEGIN
10 SELECT INTO idDeptEmpWork Department.id
11 FROM Employee JOIN department_work ON Employee.pk =
12 department_work.pkEmployee JOIN Department ON
13 department_work.pkDepartment = Department.pk
14 WHERE Employee.ssn = employee_ssn;
15

16 SELECT INTO idDeptEmpManage Department.id
17 FROM Employee JOIN department_manage ON Employee.pk =
18 department_manage.pkEmployee JOIN Department ON
19 department_manage.pkDepartment = Department.pk
20 WHERE Employee.ssn = employee_ssn;
21

22 IF (idDeptEmpManage IS NOT NULL AND
23 idDeptEmpWork <> idDeptEmpManage)
24 THEN RETURN FALSE;
25 ELSE
26 RETURN TRUE;
27 END IF;
28 END;
29 $$ LANGUAGE plpgsql;

Code 2: Transformation of the OCL Business Rule of Figure 3 into SQL

5. Evolution of the EIS Conceptual Model

When the business context changes, it is necessary to evolve the EIS conceptual model to
incorporate the new business concepts. In our approach for database schema evolution,
the Persistence component database transformation tool receives a modified version of the
EIS metadata. For each modified entity type, the component analysis all modifications,
comparing the given entity with the correspondent entity stored in the current metadata
database.

Modifications on the conceptual model lead to a set of schema evolution opera-
tions that must be propagated to the operational model (including both SQL-DDL and
stored procedures code).

After verifying the consistency of the new version of the entity type, the database
evolution tool automatically modifies the SQL-DDL, the stored procedures, and all the
entity type instances stored in the database. Therefore, after the modification of a con-
ceptual entity type, the whole schema is ready to be used to manipulate the entity type
instances.

The design of the schema evolution mechanism defines all allowed modifications
on a conceptual schema. Some modification operations can be executed directly on most
Database Management Systems (DBMS); other operations are specific to our schema
evolution mechanism.

For example, changing the domain of an integer attribute to alphanumeric is al-
lowed by most DBMS, but not the contrary, because there may exist alphanumeric at-
tribute values in the database instances that cannot be converted to integer. However, if



all values in the current database state could be converted to the integer domain, the con-
version operation could be allowed. This can only be decided at runtime, since it depends
on the current state of the database instances.

Changing an attribute domain is relatively simple, but our component supports
complex schema evolution operations, such as changing the state of entity type from
strong to weak (i.e., creating an identification dependency with another entity type). The
component validates the modifications in the conceptual model and propagates the permit-
ted operations to the operational schema, assuring the EIS database consistency. There-
fore, the component avoids directly modification of the operational database schema by
users or developers. Modifications are performed in the conceptual level and automati-
cally propagated to the operational database schema.

The examples below use the EIS conceptual model shown in Figure 2. First, we
will remove the manage relationship between entities Employee and Department. In order
to remove this relationship, the following schema evolution operations are necessary:

1. Drop all stored procedures that manipulate the manage relationship instances.
2. Drop table manage.
3. Remove relationship manage from the conceptual model.

The second example shows how the mechanism works when an attribute is added
to an entity. We will add the type attribute into the entity Employee. This attribute has two
possible values: manager and employee. Mandatory operations to include this attribute
are:

1. Create attribute type on the Employee entity in the conceptual model.
2. Drop stored procedures that manipulate the entity Employee.
3. Create type attribute on the table Employee.
4. Create a constraint that checks if an Employee is manager or employee.
5. Assign the value ’employee’ to attribute type in all instances of Employee.
6. Create all stored procedures to manipulate the entity Employee.

Figure 7 shows the conceptual schema after all these modifications. Operation 1
makes the conceptual model update. Operations 2, 3, 4 and 6 update the physical schema
and operation 5 propagates modifications to instances in the database.

Figure 8 shows the corresponding operational (SQL) schema re-generated from
the updated conceptual schema.

In this example, after modifying the conceptual schema, we can note that a busi-
ness rule specified in the schema before the modification (”An Employee can manage
only the Department in which he works”) is no longer necessary. The modified schema
now is capable of structurally enforcing this business rule. Therefore, database schema
evolution and business rules evolution have to be mutually consistent.

The obsolete rule must be eliminated, and it is now necessary to create other busi-
ness rules to assure database consistency. For example: ”A department cannot have more
than one employee whose type is manager”. This new business rule can be easily modeled
in OCL and implemented as stored procedures using our approach.



Figure 7. Conceptual schema after schema evolution.

Figure 8. Operational (SQL) schema after schema evolution.

6. Conclusions and Related Work
The framework presented in this paper was implemented on a research project developed
from 2005 to 2008 with financial support from the Brazilian National Council for Sci-
entific and Technological Development (CNPq). The final objective of this project is to
build a complete framework to create and evolve Enterprise Information Systems (EIS)
for agricultural business domains.

In our framework, application programs, database schemata and business rules
are conceptually described in a single conceptual (metadata) model and automatically
implemented as separated but interdependent aspects.

The software mechanism of the framework is implemented in Java and has ap-
proximately 67 thousand lines of code. The conceptual schema of the EIS developed
as a proof of concept contains over 200 business entities from the agricultural business
domain.

The EIS rules repository contains almost 150 business rules specified and imple-
mented in the EIS software. Among these rules there are about 85 structural (validation)
rules and 55 action and derivation rules.

The generated operational database schema contains over 560 tables and three
thousand stored procedures, including those used for data manipulation and business



rules.

Several tools use similar approaches to generate parts of the EIS soft-
ware from model transformations [Objects 2008, Andromda 2008, Eclipse 2008,
OpenArchitectureWare 2008, Borland 2008]. Many of them generate the database
schema from the conceptual model, but they do not generate stored procedures or
other manipulation facilities for the conceptual entities, neither they provide an in-
tegrated framework for EIS software development. Other approaches, like JPA
[Biswas and Ort 2006], provide database mechanisms to generate automatically tables
and manipulation facilities using annotations and EJB-QL (Enterprise Java Bean Query
Language), but this approach provides no facilities to make changes in a conceptual
model, for example, support to complex schema evolution operations, such as changing
the type of an entity from strong to weak.

In AndroMDA, for instance, it is possible to transform business rules expressed in
OCL into other languages, such as HQL (Hibernate Query Language) [Team 2009] and
EJB-QL. Our translation mechanism differs from AndroMDA in the choice of the trans-
formation paradigm: while our transformation is based on a high level platform indepen-
dent language, AndroMDA transformations are based on strings and regular expressions.

In the database evolution context, works like [Comyn-Wattiau et al. 2003] suggest
the support to bidirectional changes on system models. Our architecture proposes that
changes should be made only on the conceptual model, with automatic propagation of
changes to the operational model. The idea is that changes to the operational schemata
should be prohibited, for the same reason that changes in the source code are allowed, but
changing the machine code is not recommended.

Some works, like [Franconi et al. 2000], allow having several complete versions
of the logical schema in the system, but our approach keeps only the last version of the
schema. For large EIS, keeping several versions of the database is impracticable due
the large amount of storage capacity needed and the low benefits associated with this
practice. In other contexts, such as CAD software, the need for full versioning may be
compensatory.

In the business rules context, several works investigated the automatic conversion
of rules expressed in high level languages to software source code. The implementation
in [Milanovic et al. 2008], for instance, shares rules between two rule languages from dif-
ferent domains: OCL together with UML and SWRL (Semantic Web Rule Language). In
[Brambilla and Cabot 2006] there is a description of an OCL to SQL transformation and
its tuning for web applications. [Cabot and Teniente 2006] proposes a method for chang-
ing integrity constraint representations by changing its context, but without changing the
constraint meaning.

Our solution is based on the Dresden OCL Toolkit, a modular software platform
for OCL, providing facilities for the specification and evaluation of OCL constraints. The
toolkit performs parsing and type-checking of OCL constraints and generates Java and
SQL code [Group 2008].

We have reused many ideas from this toolkit, but we had to modify and adapt
several features to fulfill the requirements of our mechanisms. One important modification
is related to the target language. Our mechanism generates stored procedures to convert



target business rules from OCL to SQL code while the original toolkit generates SQL
code in form of database views [Heidenreich et al. 2008].

The main advantages of our approach are the portability and the maintainability of
the EIS, besides the automatic code generation, which reduces the programming efforts
for building the EIS software.

The portability is improved because the business rules are represented with an
abstract declarative language (OCL), which is an OMG standard, just like UML. The
rules are defined in OCL (a platform independent model) and automatically converted to
a specific platform using a software translator.

Our approach improves the availability of the business rules, since there is a single
repository where all the EIS rules are stored. This repository is managed by a DBMS that
offers browsing and querying facilities, besides security and access control capabilities.
In traditional EIS, the rules are hard-wired in either the application program code or in
the database schema as integrity constraints.

By applying the classic separation of concerns principle, the separation of business
rules, application code, and database schemata improves the software maintainability.
Rules are documented in a single model, and are not mixed with the application code. This
centralized organization improves the code organization and makes it easier to evaluate
the impact of changes on business rules.

As future works, it would be interesting to use metamodeling concepts of model-
driven development to adapt the framework presented in this paper, allowing to use dif-
ferent conceptual models, like UML or ORM, for example. In business rule component,
code generation performance can be improved. Besides, a workflow engine can be de-
veloped to control access and business rules changes, and also manage their evaluation
during IS execution.

References
Andromda (2008). Andromda Framework. http://www.andromda.org/, Acessed

July 2009.

Biswas, R. and Ort, E. (2006). The Java Persistence API - A Simpler Program-
ming Model for Entity Persistence. http://java.sun.com/developer/
technicalArticles/J2EE/jpa/, Acessed July 2009.

Borland (2008). Together. http://www.borland.com/br/products/
together, Acessed July 2009.

Brambilla, M. and Cabot, J. (2006). Constraint tuning and management for web ap-
plications. In ICWE ’06: Proceedings of the 6th international conference on Web
engineering, pages 345–352, New York, NY, USA. ACM.

Cabot, J. and Teniente, E. (2006). Transforming ocl constraints: a context change ap-
proach. In SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing,
pages 1196–1201, New York, NY, USA. ACM.

Comyn-Wattiau, I., Akoka, J., and Lammari, N. (2003). A framework for database evo-
lution management. In ETAPS’03: Proceedings of the European Joint Conferences on
Theory and Practice of Software, pages 105 – 113. ETAPS’03.



Date, C. J. (2000). What, not How - The Business Rules Approach to Application Devel-
opment. Addison-Wesley.

Debevoise, T. (2007). Business Process Management with a Business Rules Approach:
Implementing the Service Oriented Architecture. BookSurge Publishing.

Demuth, B. and Hussmann, H. (1999). Using uml/ocl constraints for relational database
design. In UML, pages 598–613.

Eclipse (2008). M2M. http://www.eclipse.org/m2m, Acessed July 2009.

Franconi, E., Gr, F., and M, F. (2000). A semantic approach for schema evolution and
versioning in object-oriented databases. In In Proc. of the 1st International Conf. on
Computational Logic (CL 2000), DOOD stream, pages 1048–1062. Springer-Verlag.

Gottesdiener, E. (1997). Business rules show power and promise. In Application Pro-
gramming Trends, vol. 4, n. 3.

Group, S. T. (2008). Dresden ocl toolkit. Technische Universitat Dresden. Available at
http://dresden-ocl.sf.net.

Group, T. B. R. (2000). Defining business rules - what are they really? Avaiable at
http://www.businessrulesgroup.org/first_paper/br01c1.htm.

Heidenreich, F., Wende, C., and Demuth, B. (2008). A framework for generating query
language code from ocl invariants. ECEASST, Vol. 9.

Milanovic, M., Gasevic, D., Giurca, A., Wagner, G., and Devedzic, V. (2008). Sharing
ocl constraints by using web rules. ECEASST, 9.

Morgan, T. (2001). Business Rules and Information Systems: Aligning IT with Business
Goals. Addison-Wesley Longman Publishing Co., Inc.

Objects, I. (2008). ArcStyler Interactive Objects. http://www.arcstyler.com,
Acessed July 2009.

OpenArchitectureWare (2008). The leading platform for professional model-driven soft-
ware development. http://www.openarchitectureware.org, Acessed July
2009.

Schmidt, D. C. (2006). Model-driven engineering. In Computer, vol. 39, no. 2, pages
25–31. doi:10.1109/MC.2006.58.

Team, H. P. (2009). Hibernate query language. http://www.hibernate.org/
hibdocs/reference/en/html/queryhql.html, Acessed July 2009.

(W3C), T. W. W. W. C. (2009). Extensible markup language (xml). Avaiable at
http://www.w3.org/XML/. Accessed May 2009.


