
A Concern Visualization Approach for Improving

MATLAB and Octave Program Comprehension

Ivan de M. Lessa, Glauco de F. Carneiro

Universidade Salvador (UNIFACS)

Salvador/Bahia, Brazil

ivan.lessa@gmail.com,

glauco.carneiro@unifacs.br

Miguel P. Monteiro

Universidade Nova de Lisboa (UNL)

NOVA LINCS

Lisbon, Portugal

mtpm@fct.unl.pt

Fernando Brito e Abreu

Instituto Universitário de Lisboa (ISCTE-IUL)
 ISTAR-IUL

Lisbon, Portugal

fba@iscte-iul.pt

Abstract— The literature has pointed out the need for focusing

efforts to better support comprehension of MATLAB and Octave

programs. Despite being largely used in the industry and

academia in the engineering domain, programs and routines

written in those languages still require efforts to propose

approaches and tools for its understanding. Considering the use

of crosscutting concerns (CCCs) to support the comprehension of

object-oriented programs, there is room of its use in the context

of MATLAB and Octave programs. The literature has purpose

and examples in this direction. Considering this scenario, we

propose the use of visualization enriched with CCCs

representation to support the comprehension of such programs.

This paper discusses the use of a multiple view interactive

environment called OctMiner in the context of two case studies to

characterize how collected information relating to crosscutting

concerns can foster the comprehension of MATLAB and

GNU/Octave programs. As a result of the conducted case studies,

we propose strategies based on OctMiner and tailored to support

different comprehension activities of programs written in

MATLAB and Octave.

Keywords- MATLAB/Octave; software comprehension;

crosscutting concerns; software visualization.

I. INTRODUCTION

MATLAB is a popular interpreted programing language
among students and researchers of physics, biomedical and
telecom engineering, among other areas. It is not uncommon
that a young engineer is fluent in using MATLAB, but hardly
familiar with C, and even less of Fortran [5][18]. MATLAB
has been used to teach linear algebra, numerical analysis, and
statistics. Since the MATLAB language is proprietary, a similar
language, named Octave was developed, and is distributed
under the terms of the GNU General Public License

1
.

 Our literature review reported in [9] indicates a lack of
support for the comprehension of programs coded in these
languages. We tackled this research opportunity by
implementing a MVIE named OctMiner [8], a multiple view
interactive environment (MVIE) that provides resources to
support data analyses and unveiling information that otherwise
would remain unnoticed [1][4].

Two case studies were conducted with the tool, to support
the comprehension of MATLAB/Octave programs. The former

1
 http://www.gnu.org/software/octave/

aimed at identifying crosscutting concerns (CCCs) [7]
following previous research on the issue [2][10]. The latter
aimed at assessing to which extent a concern-oriented use of
OctMiner could help programmers understand the solutions
proposed in StackOverflow

2
 , a popular question-and-answer

site for professional programmers.

This paper consolidates the insights acquired during
preliminary research, namely when we used OctMiner to
identify symptoms of scattering and tangling [8]. In previous
work, we outlined a strategy, comprising a sequence of steps to
configure and use OctMiner [9]. In this paper, we propose a
new strategy for the configuration and usage of OctMiner for
the comprehension of routines whose main characteristics are
not familiar to the user. This is a scenario in which the user
does not possess prior knowledge on the repository of
MATLAB/Octave routines to be analyzed. We figured out the
importance of this scenario during our efforts to derive the first
strategy [9].

The research questions (RQ) raised in this research are:
RQ1 – What are the concepts and/or entities in
MATLAB/Octave programs whose comprehension can benefit
from the support of OctMiner? RQ2 – To which extent
OctMiner can provide support for the comprehension of
MATLAB/Octave programs? We implemented OctMiner to
answer these research questions following an iterative and
incremental approach, driven by the insights acquired from the
conducted case studies and the strategies proposed for its
usage.

This paper is organized as follows. Section II describes the
context of this work (part i of Figure 1); Section III presents
the visualization environment called OctMiner (part iii of
Figure 1); Section IV characterizes the use of OctMiner
through two case studies (part iv of Figure 1); Section V
presents strategies to tailor OctMiner to best fit programmers’
needs (part v of Figure 1); Section VI presents conclusions and
future work along with the analysis and answers of the research
questions (part vi of Figure 1).

2
 www.stackoverflow.com

Figure 1. Steps of our Research

II. CONTEXT

In this section we present relevant concepts and approaches
to better contextualize our work.

A. Software Visualization and MVIEs

Visualization is a means of providing perceivable cues to

several aspects of the data under analysis to unveil patterns

and behaviors that would otherwise remain “under the radar”

[17]. Card et al. [1] proposed a well-known reference model

for information visualization. Following this approach, the

creation of views goes through a sequence of steps: pre-

processing and data transformations, visual mapping and view

creation. Carneiro and Mendonça [3] extended this model to

adapt it to the context of MVIEs and emphasizing the

visualization process as highly interactive. Nunes et al. [13]

proposed a toolkit implemented as a Java Eclipse plugin from

which MVIEs could be developed. The plugin provides a basic

structure that allows the creation and inclusion of new

resources and functionalities to develop MVIEs. This MVIE

was originally developed to support the comprehension of

Java source code bases. The extension points of the MVIE

Eclipse plugin enable the attachment of new plugins to the

MVIE. Each of the extension points provides an interface with

methods and their respective signatures. The goal of the toolkit

is to provide an infrastructure to develop MVIEs for different

domains.

In the case of OctMiner, we needed to access and

transform raw data – the Abstract Syntax Tree (AST) of

MATLAB/Octave programs – to a format compatible with the

visual data structure. It is worth noticing that due to the

similarities between these two languages, it is possible to

interpret MATLAB programs in the interpreter of the

GNU/Octave with no major problems.

B. Crosscutting Concerns

The present work is based on the idea initially proposed by

Monteiro et al [12], for which we next provide a short

summary. A concern is anything a developer wants to consider

as a conceptual unit, including domain-specific features, non-

functional requirements, and design patterns [19][16]. Ideally,

any decomposition unit of a software system –function, in the

case of MATLAB – would enclose code relating to a single

concern. However, in many cases, a single function encloses

code conceptually related to multiple concerns, which means

that some concerns are not modularized and cut across the

modular boundaries of that software system.

It is known that a number of common concerns

occurrences over the modular structure of software systems,

namely persistence, transaction management, security and

caching. These “unmodularized“ concerns are known as

crosscutting concerns [7].

The phenomenon of CCCs in object-oriented systems is

well studied [16]. However, the nature, characteristics and

revealing symptoms of CCCs in MATLAB and Octave

systems did not yet receive equal attention. Monteiro et al.

[12] considered the importance of CCCs in the context of

MATLAB/Octave program.

Monteiro et al [12] propose an approach to automatically

obtain indicators of the presence of CCCs in

MATLAB/Octave code, by analysis of a few metrics relating

to occurrence of function names and how those names – here,

also referred as “tokens” – are distributed across the

MATLAB/Octave files. For each separate MATLAB file,

several metrics are computed, including count of occurrences

of a function name in that file as well as the number of

different functions. For an entire subject repository of

functions – possibly comprising many toolboxes – a few

aggregate statistics are computed from these counts. Monteiro

et al [12] also proposed an illustrating list of CCCs in

MATLAB/Octave systems. The CCCs are grouped in several

categories. They also propose sets of tokens whose occurrence

can be used as indicators of the presence of a given CCC in

the MATLAB/Octave system – see Table 1. For more details,

see [12].

III. THE OCTMINER MVIE

Based on the approach presented in the previous section,

the OctMiner MVIE for MATLAB and Octave programs

supports the identification of CCCs through the use of

multiple views [8]. The main motivation for representing

concerns manifested in MATLAB/Octave code in a MVIE is

the enhancement of the comprehension activities. To this end,

a novel mapping was derived from information obtainable

from the AST, based on two primary dimensions:

MATLAB/Octave files and function names.

We developed OctMiner using the Toolkit proposed in

[13]. The toolkit can be extended through the use of plugins.

The MVIE toolkit enables this to tailor the MVIE for the

analysis of data from different domains, e.g., the data gathered

from MATLAB/Octave programs. Figure 2 depicts the main

four elements of OctMiner: the Eclipse IDE RAP/RCP (Rich

Clients and Rich Ajax Applications), the Octclipse plugin, the

Octave interpreter and the MVIE toolkit proposed in [13]. The

Octclipse plugin provides a Matlab/Octave development

environment built on top of Eclipse's Dynamic Languages

Toolkit. This environment enables programmers to create

Octave scripts (*.m files), edit them in a multi featured text

editor, run the Octave interpreter and see results displayed in

the IDE's console. OctMiner is available at [15].

Table 1. Examples of Tokens per Category of Concern

CCC Category Examples of Tokens

Messages and monitoring

plottools, semilogx, semilogy, loglog,

plotyy, plot3, grid, title, xlabel, ylabel,
zlabel, axis, axes, hold, legend, subplot,

scatter, ishold, newplot, figure, cla, clf,

reset, close, plot, polar,error, display,zoom,
assert, disp;

I/O data

imwrite, imread, imformats, hgsave,

saveas, hgload,save, loade, diary,
fwrite,fileformats, movie,image, fread,

fscan;

Verification of function

arguments and return values

nargchk, nargin, nargout, varargin,
vararout;

Data type verification

and specialization

int8, int16, int32, int64, quantize,

quantizier, fi, isscalar, isstruct, isfield,
iscell, isempty;

System

pause, print, printop, wait, last, mex,

inmen, batch, pack, pcode, echo, input,
syntax, run, tic, start;

Memory

allocation/deallocation
clear, delete, zeros, persistent, global;

Parallelization
parfor,spmd, gpuDevice, feval, demote,

taskStartup, cancel, submit, resume;

Dynamic properties eval, evalc, evalin, inline.

We implemented an Analyzer module to import and

convert data from the original data repository to be

represented in the multiple views. To this end, we performed a

mapping between the real and visual attributes as presented in

the following paragraphs.

Different comprehension activities can be supported by the

visual metaphors provided by OctMiner. They can be set and

tailored according to the degree of detail in the comprehension

task. For this purpose, OctMiner provides three types of

semantic zoom to apply new representation (visual attributes)

of real attributes [17]. The first type focuses on the file

repository level. It has a result a high level visual

representation – called “group All” – where the views portray

information relating to the entire repository of

MATLAB/Octave files under analysis. This level is indicated

for a panoramic view of files. In this level the files can be

ordered by the number of tokens, as well as the number of

different groups of tokens manifested in each of them. The

second type of semantic zoom provides the transition for the

file level. It provides detailed information regarding a specific

MATLAB/Octave file and their respective count and group of

tokens. The third type focuses on the token – called “group

Token”. This level provides representation of more than one

view for each token.

Figures 3, 4 and 5 illustrate the mapping between real and

visual attributes in the design of visual metaphors in

OctMiner. In the following paragraphs we will describe how

we performed this mapping.

Figure 3 uses the treemap visual metaphor. Examples of

real attributes used in these figures are MATLAB/Octave

function (token) and how many times this function is

manifested in a file or repository. These real attributes are

represented with the following visual attributes: the name of

each token and the size of each rectangle respectively.

Examples of token names are “pi”, “floor”, “quantizier” and

“x”. In the same figure, these tokens are manifested in

“file1.m”, “file2.m” and “file3.m”. The category of each CCC

as described in Table 1 is another real attribute that is mapped

to the visual attribute color. In Figure 3, the groups “All”

provides a visual representation of different tokens manifested

in the three files that hypothetically comprises the repository,

where the colors represent the category that each token

belongs to and the size of each rectangle is related to how

many times this token is used in the file. The group “Token”

from the same figure focuses on the representation of how the

tokens are manifested in the entire repository. The group

“File” conveys the same real attributes now focusing on a

specific file.

Figure 4 uses the grid as a visual metaphor. In this figure,

it is possible to select the group “All” to see the list of all files

from the repository under analysis, by order of quantity of

tokens found in each file. In the group “Token”, the view

aggregates in a single block the counts of all tokens found in

the files from the repository. When viewing single files, we

can see which tokens manifested in a file, how many times

they occur and to which category this token belongs to

considering the color of each rectangle.

Figure 2. OctMiner Architectural Overview [8]

Figure 3. Details of the Design of the TreeMap view for OctMiner.

An illustration of the List view is the visual metaphor

selected represented in Figure 5. In this example, this view is

used to present a listing of all files from the repository under

analysis, when group “All” is selected. When group “Token”

is selected, a list of the tokens found is presented. These can

either refer to counts from the entire repository (group

“Token”) or from a single, specific file (group “File”). The

ordering of files and tokens depend on how they are actually

organized in the system using OctMiner.
OctMiner can be configured to expose symptoms of CCCs

in MATLAB/Octave routines. As can be seen in the following
paragraph, the configuration consists of editing a XML file as
follows. <GroupName> defines the group to which the
function belongs to, whereas <function> contains the list of
functions to be represented in the views. Table 2 shows a
mapping of categories of CCCs to colors, which result from the
XML specifications. These colors and category names are used
in the two case studies described next.

<group>

 <GroupName title="GroupName" color="color">

 <function>;Function1;Function2;</function>

 </GroupName>

</group>

Figure 4. Details of the Design of the Grid view for OctMiner.

Figure 5. Details of the Design of the List View for OctMiner.

Table 2. Categories and their Colors in OctMiner [8]

Category Color Name Color

Array and Matrix

Creation and
Concatenatios

Concrete

Set Operations Green

Indexing MethodBorder

Parse Strings Size

Logical Operations Blue

Advanced Software
Development

Class

Mathematics Abstract

IV. CASE STUDIES

A. The First

The first study investigated the following questions: to

which extent OctMiner provides effective support to identify

potential symptoms of CCCs in Matlab programs? And to

which extension these symptoms support the comprehension

of the analyzed programs? The study aimed at analyzing 22

MATLAB image processing routines. The goal was the

identification of scattering and tangling in these routines

supported by OctMiner. Scattering [7][16] is the degree to

which a concern is spread over different modules or other

units of decomposition. Tangling [7] is the degree to which

concerns are intertwined to each other in the same functions.

Both scattering and tangling are indicators of the presence of

CCCs in program code. The term token refers to function

names found in MATLAB/Octave systems.

Figure 6. Steps of the First Study

The study explores the potential of these tokens to be
indicators of the scattering and tangling symptoms. The
approach is as follows: sets of tokens can be associated to a
given concern, which ideally would be modularized into its
own file, with no additional concerns. When the concern is not
modularized, its code is scattered across multiple files and its
associated tokens are found in such files – an indicator of
scattering. Often, such files also betray the presence of tokens
categorized under multiple concerns – an indicator of tangling.

The steps followed the sequence represented in Figure 6.
The study starts with the planning of the study and preparation
of the activities to be carried out (Figure 6 – A). Next, we
select and identify the MATLAB/Octave repository (Figure 6
– B) and the tokens are set (Figure 6 – C) in the XML file.
After this configuration, OctMiner is ready to be used (Figure
6 – D) and planned activities should be performed. Finally,
analysis of results is carried out (Figure 6 – E) and conclusions
related to the research questions are established. These steps
are next described in detail.

To explore the above approach, participants performed the
following activities: i) Identify tokens most commonly used in
the 22 routines; ii) Characterize the location among files of the
most commonly used tokens to assess the symptoms of
scattering; iii) Characterize the relationship between the most
commonly used tokens and other tokens in the files to assess
the symptoms of tangling; iv) Determine the category
(concern) to which the most commonly used tokens belong; v)
Using the category of each token, identify the main
functionalities (concerns) of the program. Using this approach,
it was possible to identify the tokens most commonly used in
the routines under analysis and whether these tokens present
evidences of scattering. This study was the starting point for
the use of OctMiner in comprehension activities. We identified
the following limitations in this study: considering that the
routines were already analyzed by OctMiner, any new
modification in the original routines will not be reflected in the
views until a new analysis is performed having as a source the
routines recently modified; the user can only select the
predefined color in OctMiner, Presently it is not possible in this
version to define new colors: the need to configure the XML
file with the tokens is therefore a limitation. To address it, in

future we plan to provide a XML file with a large number of
MATLAB and Octave functions and their respective
categories. The results of this study are presented in [8].

B. The Second

The second study assessed OctMiner and brought insights
on how to improve and mature the tool [9]. In the study,
OctMiner was configured with the aim to address some of the
issues brought by MATLAB/Octave programmers. To this end,
an analysis of the most common issues raised by the
StackOverflow community was performed (Figure 7 – F).
Questions posted about MATLAB/Octave were classified
(Figure 7 – G). A repository of StackOverflow posts was
selected (Figure 7 – H), according to which a number of
functions (preset tokens) was configured in the XML file
(Figure 7 – I). Next, the study was carried out as planned
(Figure 7 – J). Details of the process are shown next.

The second study comprised the following research
questions: a) To which extent OctMiner provides effective
support to clarify programmers’ issues, based on answers
posted at StackOverflow? b) To which extent does the CCCs
exposed through OctMiner support the clarification of
programmers’ issues? The primary goal of this study was to
demonstrate the effectiveness of OctMiner’s visualization of
target functions in exposing the kind of functions suggested in
StackOverflow posts. The views provided by OctMiner help
programmers to understand the context of use of a function in
routines from the repository of MATLAB code.

We searched for the issues raised most often about
MATLAB and Octave as well as the corresponding better
ranked answers. We used the StackExchange Data Explorer
tool [6] to perform a search. We applied the following query
and as a result obtained the top 200 questions related with
keywords “MATLAB” and “Octave”:

SELECT TOP 200 a.creationdate, q.owneruserid, q.title

FROM users u, posts a, (SELECT id, owneruserid, title, tags,

creationdate FROM posts WHERE tags LIKE '%<KEY_WORD>%') q WHERE q.id

= a.parentid and a.owneruserid=u.id

ORDER BY a.creationdate desc

We classified the questions in the following categories 0:
(a) Programming language basic issues – 146 questions; (b)
Common mistakes in MATLAB and Octave – 51 questions; (c)
Using MATLAB and Octave functions to perform specific
work such as numerical calculation and image processing – 98
questions; (d) Using MATLAB and Octave functions to plot
data on the screen – 69 questions; (e) Questions that do not fit
into any of the others above – 56 questions. Considering the top
200 questions/issues retrieved by the query, we verified that
there were overlapping among them, so several
questions/issues were classified in more than one category.

Category “a” has the highest count, which indicates a lack
of basic knowledge of the two languages. We considered this
fact as the starting point to select the following question: “I
want to create a vector without the number 1”. The answer

with most votes was “I would use setdiff”. The answer was

illustrated as follows “setdiff(-5:5,1)”.

Figure 7. Steps of the Second Study

We selected 22 MATLAB routines to illustrate the use of

the setdiff function, the target function of the selected issue
raised. We selected these routines by searching through the
StackOverFlow repository using string “MATLAB

setdiff”. We also registered settdiff function and all
other functions identified in the 22 routines in the OctMiner
configuration XML file. More details regarding the XML file
can be obtained at OctMiner page. Table 1 shows the
categories and their respective colors as used in OctMiner.

C. Focusing OctMiner on the setdiff Function

Based on the experience acquired, we proposed a set of
steps – see Table 3 – focusing on the comprehension of

function setdiff supported by OctMiner to clarify the issue
raised at StackOverFlow. Details on how the steps were
executed can be obtained in [9].

The steps listed in Table 3 are illustrated from Figure 8 to
Figure 11 to illustrate one of the following two types of
OctMiner configuration used in the studies. Type I, presented
in Figure 8 and Figure 9, focuses on the program file/function
dimension. Each rectangle from the Grid view (part D of
Figures 8-11) represents a file along with the number of
function categories found there. Each rectangle from the List
view (part E) represents the complete name and path of each
program file. In the case of the TreeMap view (part G) all
rectangles together convey a panoramic visual representation of
the files. Configuration type II (Figure 10 and Figure 11) is
focused on the functions. Each rectangle from the Grid view
(part D) represents a function together with their number of
occurrences in the repository, in which multiple occurrences in
the same file are counted. Each rectangle from the List view
(part E) represents the complete name of function from the
repository. The next step is the configuration of OctMiner to
present the visual scenario of Figure 10 that applies the
configuration type II focusing on functions. The List view (part
E of Figure 10) enables checking the exact name of the
function and also the category to which the function belongs by

looking at the color of the rectangles. The green color indicates

that setdiff belongs to category "Set Operations". The user
can access and read the code of specific routines (Part C) and
analyze the various ways in which the function is used.

Table 3. Proposed Steps in OctMiner [9]

Steps

Select a question: to clarify an issue raised.

Identify the setdiff function in the repository: the

programmer should configure OctMiner to visually identify

occurrences of the setdiff function in the repository routines and

the way they are used.

Identify the category that the function belongs to: the

programmer should configure OctMiner to spot other functions that

belong to the same category of setdiff to help in the

comprehension tasks.

Identify similar functions from the repository that can replace

setdiff: configure OctMiner to support the identification of

similar functions that can replace the target function.

Verify if the gathered information was enough to answer the

question: the user can now be more confident and can agree why

the answer was the one with most votes.

Figure 8. OctMiner Panoramic Views for the Initial Analysis [9]

Figure 9. Using Filters to Identify setdiff Function Occurrences [9]

The aforementioned conclusions can be confirmed from the

replies registered at StackOverFlow. The user now can be more

confident to understand the answers provided by the repository

considering both the target and similar functions, their utility,

as well as the way they can be used to solve the stated problem.

Figure 10. Functions Visual Representation from the Repository [9]

Figure 11. Visual Representation of Functions in OctMiner [9]

Even though this example is simple, it illustrates the benefits

from using OctMiner to support comprehension. The combined

use of the configuration types I and II can be an effective way

for the comprehension of particularities of MATLAB and

Octave programming that would be difficult to notice through

non-visual, non-interactive approaches.

In the second study, one of the potential threats related to

external validity (to which extent results can be generalized) is

that just one question from StackOverflow was evaluated in

OctMiner. The environment might not easily fit other issues

registered at StackOverflow. However, we do not expect that

the case studies presented in this paper should to be

generalizable to all types of issues and questions from

StackOverflow. The purpose of both studies was to provide

insights about the potential of OctMiner as support for the

comprehension of MATLAB/Octave programs. The first study

had the goal to use OctMiner to support the detection and

characterization of CCCs [12] as well as to characterize the use

of OctMiner and improvement opportunities of its use. The

second study explored two configuration types to use OctMiner

for supporting comprehension of issues posted at

StackOverflow.

V. COMPRENHENSION STRATEGIES BASED ON OCTMINER

The experience acquired from the two studies enabled us to
propose a set of usage strategies based on OctMiner for
comprehension purposes. The set has a comprehension
question that drives the strategy steps as a starting point. The

question of the first study was related to tangling and
scattering, using a set of tokens from programs of a repository
as a basis. The second study focused on questions posted at
StackOverflow by programmers. Table 4 presents the steps
proposed from evidences collected from the two conducted
case studies.

A. An Alternative Strategy

We noticed that the strategy presented in Table 4 stems

from a limitation. In comprehension tasks of MATLAB/Octave

systems, we observed that it does not necessarily originate from

a directly visible item or entity. For example, we may need to

perform a task such as identifying the main functionalities of a

repository without having previous information about it. This is

an opportunity to use OctMiner for the support of different

comprehension scenarios and to progress successfully from any

of them.

The aim of this strategy presented in Table 5 is to guide the

user having as a starting point a given MATLAB/Octave

repository. Considering that the user is not familiar with the

routines from the repository, the views provided by OctMiner

should assist him/her by providing useful insights.

To validate the second strategy proposed, steps 1-6 also

listed in Table 5 are carried out.

1) Locate MATLAB/Octave repositories for analysis:

The repository used was randomly selected and comprises

17 MATLAB routines for image processing. They originate

from a larger repository collected from MATLAB toolboxes

freely available on the Web.

2) Identify functions from the repository and the

categories to which they belong, according to information

available in the official documentation

After identifying the repository, the routines must be

examined and each function classified. For the repository used,

41 functions were identified, on the basis of the official

catalogue from MATLAB Functions [8].

3) Classify functions from the repository in OctMiner

configuration file (XML)

Using the XML file, each function is classified according to

its respective category.

4) Propose list of environment exploration activities

The activities proposed in this section are meant to guide the

user of OctMiner through the discovery of relevant

information, using the visualizations. These activities are

sufficiently general to be suitable for any kind of

MATLAB/Octave repository.

The activities are as follows

i. Find a MATLAB/Octave repository: following the

second strategy, the first step to perform the analysis is to

identify the repository we want to analyse visually;

ii. Identify the categories used most often, which may

provide insights on the domain of application of the system

under analysis.

iii. Locate the functions used most often: this information

may assist the user in identifying the most important

functionalities in the repository.

iv. Check whether the functions used most often belong

to the same category: if yes, check whether they implement

equivalent or complementary functionalities. A similar step

was carried out in the second preliminary study (section IV.A),

from which we noticed some equivalence of function;

v. Identify the largest count of different functions in a

single category: at this point, the user should check whether

distinct functions from the same category are auxiliary

functions. A similar activity was also carried out in the second

study, which yielded information on auxiliary functions.

vi. Analyse results: see what information can be derived

from the visualizations used while conducting the activities.

Table 4 . A Proposed Set of Usage Strategies [9]

Suggested Steps

1 - Select a question: the programmer needs to identify an

issue relevant for his daily activities. Answers to the question

should be available considering that the functions used in the

code should be registered in the OctMiner configuration file.

A repository of questions and answers, such as

StackOverFlow, may be used for this purpose, as illustrated in

the second study.

2 – Identify a target function: it should be the function that

plays a relevant role in the code of the primary solution to the

selected question. In repositories such as the StackOverFlow,

the best ranked answers usually indicate the relevant function

to solve the problem.

3 – Locate repositories that use the target function: since

OctMiner aims at assisting the comprehension of a given

target function, it is desirable that routines using the target

function provide good examples and be the subject of

analysis.

4 – Identify the functions and their respective categories

available in the official documentation: alternative functions

used in the repository selected in Item 3 must also be

identified. MATLAB and Octave functions are categorized in

the official language site of MATLAB and Octave.

5 – Register the target function as well as other function from

the repository in the OctMiner configuration file: the

functions should be registered in OctMiner configuration file

using their specific group, identified according to Item 4.

6 – Create a To-Do list for identification through

visualization: activities that the user must perform should be

described so that the study is conducted as well as possible

within OctMiner. In the example from the second preliminary

study, the user is directed through four comprehension tasks

centred on the setdiff function.

7 – Implementation of the proposed activities: the user must

run OctMiner according to the activities set out in Item 6.

8 - Answer the original question: to prove the effectiveness of

the tool, the user should be able to answer the question that

started the process in Item 1.

Table 5. An Alternative Strategy

Suggested Steps

1. Identify MATLAB/Octave repositories for analysis: select a

repository that includes a consistent domain of application. For

instance, we can envision domains such as for signal processing,

parallelization of a given application, benchmarking.

2. Identify functions in the repository as well as the categories to

which they belong, following official documentation: identify the

functions used in the selected repository. To this end, use the list of

functions available in the MATLAB official documentation -

MATLAB Functions (2014) and Octave Functions (2014).

3. Classify the functions from the repository in the OctMiner

configuration file (XML). For this file to work correctly, the

various functions should be classified according to the concern

which they are most closely associated, on the basis of the

identification from step 2.

4. Propose list of exploration activities; some activities were

defined to enable the user to discover relevant repository

information.

5. Carry out exploration activities: the user runs OctMiner and

performs the activities defined in step 4.

6. Analysis of activities: the user presents the results obtained by

carrying out the activities set at step 5.

5) Perform the activities for environment exploration

OctMiner was executed in both first and second studies,

taking advantage of available resources to identify the items

mentioned in the activities. Some interesting points were

noticed, as described next.

6) Analysis of activities

In activity 1, the MATLAB repository yielded a large

number of functions to be catalogued. While consulting the

official documentation [11], we followed the strategy of

cataloguing each function according to its primary category,

since subcategories varied too much to group them in the

configuration file. No difficulties were felt, but several

different ways to perform the configuration were apparent, e.g.,

use the various sub-categories in the XML file. This indicates

how flexible the tool is.

Though the sub-categories were not used in activity ii, the

visualizations provide a general idea of the kind of repository

which is under analysis.

Figure 12. The Most Often Used Categories in TreeMap

In Figure 12, TreeMap highlights the three most frequent

categories found in the system. This way, the user can infer that

the repository separates three of its categories into groups of

routines. This suggests a well modularized system structure.

To locate the functions used most often, activity iii uses the

“by function” view of OctMiner. It revealed that the functions

used most often are cos and sin (the two green rectangles at the

top) as illustrated in Figure 13. Table 6 presents the most

referenced functions from the repository.

Figure 13. The Most Often Referenced Functions

Figure 14. Highlighting of Functions in Image Processing Repository

Table 6. Most referenced functions in the imaging repository

Number of

Occurrences
Function Category

14 cos Mathematics

12 sin Mathematics

9 error

Programming

Scripts and

Functions

9 axis Graphics

9 size
Language

Fundamentals

9 class

Advanced

Software

Development

9 strcmp
Language

Fundamentals

8 figure Graphics

In the Grid view from Figure 13, we learn that cos is used

14 times and that sin is used 12 times across the entire

repository.

Activity iv aims to replicate the insight revealed in the

second preliminary study. When the functions used most often

belong to the same category, this may be an indicator of use of

equivalent and/or complementary functions. In this case, we

observed that functions sin and cos are complementary but can

also be used together in a single expression. As expected, they

are used to calculate sines and cosines.

Finally, activity v illustrated in provides indications that

several distinct functions from the same category, spread

throughout the repository, are auxiliary functions, e.g., function

max (which computes the highest value from an array) or min

(which returns the lowest), or plot (which presents values in a

2D perspective).

Regarding the research questions (RQs) for this work, we

have the following considerations. RQ1 – What are the

concepts and/or entities in MATLAB/Octave programs whose

comprehension can benefit from the support of OctMiner? The

results of the conducted case studies and the strategies to use

OctMiner provided initial evidences that performing

comprehension activities based on crosscutting concerns

(CCCs), tokens/functions, files and the repositories from

which they belong can be fostered by the OctMiner usage.

RQ2 – To which extent OctMiner can provide support for the

comprehension of MATLAB/Octave programs? The use of

strategies such as those discussed in this paper can lead

programmers to better contextualize their knowledge

regarding the MATLAB/Octave programs as long as they use

the concepts of CCCs and tokens/functions.

We recognize that OctMiner may not be able to provide

support for all kinds of comprehension tasks. To better

characterize and validate its range of applicability, we are

planning new studies to have better knowledge regarding these

limitations. Another potential threat to validity is that both the

design and the execution of the study were performed by the

same person. To overcome this issue, further independent

experiments should be carried out to better compare results.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents the following contributions: a) the
provision of an environment called OctMiner for the
comprehension of MATLAB/Octave routines supported by
multiple views; b) Details of the design of the visual metaphors
provided by OctMiner to convey real attributes of
MATLAB/Octave routines; b) Evidences of the effectiveness
of OctMiner to support the identification of symptoms of code
tangling and code scattering as discussed in the first study; c)
Evidences of the effectiveness of OctMiner to understand the
solutions proposed in a popular question-and-answer site for
professional programmers, regarding MATLAB and Octave
languages as discussed in the second study; d) a set of usage
strategies of OctMiner for different comprehension purposes.

A previous paper by the same authors describing the
architecture of OctMiner along with an illustrative example of
its main functionalities in a real scenario of program
comprehension was presented at ITNG’2015 [8] . A
preliminary strategy based on OctMiner was presented at
SEKE’2015 [10]. At ICCSA’2015 [9], we presented the

validation case studies in detail. In the current paper, we
consolidate the execution of all the steps planned in Figure 1
and present a set of usage strategies with their respective
examples of use.

We now plan to conduct a controlled experiment where
undergraduate engineering students will perform
comprehension activities with and without the support of
OctMiner. We also plan to include new visual metaphors to
explicitly represent the relationship and dependency among the
tokens based on its usage in the routines. The version of
OctMiner used in this paper is able to represent the intensity of
use of a set of tokens, but not possible dependencies among
themselves throughout the code.

The authors would like to thank the Brazilian Coordination
for the Improvement of Higher Education Personnel (CAPES)
for their financial support for this project.

REFERENCES

[1] Card, S. K., Mackinlay, J. and Shneiderman, B. Readings in Information
Visualization Using Vision to Think. San Francisco, CA, Morgan
Kaufmann, 1999.

[2] Cardoso, J.; Fernandes, J; Monteiro, M.; Carvalho, T; Nobre, R.
Enriching MATLAB with aspect-oriented features for developing
embedded systems. Journal of Systems Architecture 59 (2013) p. 412–
428.

[3] Carneiro, G.; Mendonça, M.. SourceMiner: Towards an Extensible
Multi-perspective Software Visualization Environment. In: Slimane
Hammoudi;José Cordeiro;Leszek A. Maciaszek; Joaquim Filipe. (Org.).
Enterprise Information Systems. 1ed.: Springer International Publishing,
2014, v. 190, p. 242-263.

[4] Carneiro, G., Silva, M., Mara, L., Figueiredo, E., Sant’Anna, C., Garcia,
A., Mendonça, M., 2010. Identifying code smells with multiple concern
views. In: XXIV BrazilianSymp. on Software Engineering (SBES
2010), IEEE Comp. Soc., Washington, DC, USA, pp. 128–137.

[5] Chaves, J.; Nehrbass, J.; Guilfoos, B.; Gardiner, J.; Ahalt, S.;
Krishnamurthy, A.; Unpingco, J., Chalker, A.; Warnock, A.; Samsi, S.
Octave and Python: High-Level Scripting Languages Productivity and
Performance Evaluation. In Proc. of the HPCMP Users Group
Conference (HPCMP-UGC '06).

[6] Data Explorer - StackExchange. Available at
http://data.stackexchange.com/.

[7] Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda; Lopes, C.; Longtier,
J.M.; Irwin, J. Aspect-Oriented Programming. In: 11th European
Conference on Object-Oriented Programming (ECOOP), 1997,
Jyväskylä, Finland (pp.220-241).

[8] Lessa, I.; Carneiro, G.; Monteiro, M.; Abreu, F. A Multiple View
Interactive Environment to Support MATLAB and GNU/Octave
Program Comprehension. In: International Conference on Information
Technology:New Generations (ITNG), 2015, Las Vegas/EUA.

[9] Lessa, I.; Carneiro, G.; Monteiro, M.; Abreu, F. On the Use of a
Multiple View Interactive Environment for MATLAB and Octave
Program Comprehension. ICCSA (4) 2015: 640-654.

[10] Lessa, I.; Carneiro, G.; Monteiro, M.; Abreu, F. Scaffolding MATLAB
and Octave Software Comprehension Through Visualization. SEKE
2015.

[11] MATLAB Programming Language. Available at
www.mathworks.com/products/matlab.

[12] Monteiro, M.; Cardoso, J.; Posea, S. Identification and characterization
of crosscutting concerns in MATLAB systems. In Conference on
Compilers, Programming Languages, Related Technologies and
Applications (CoRTA 2010), Braga, Portugal (pp. 9-10).

[13] Nunes, A.; Carneiro, G.; David, J. Towards the Development of a
Framework for Multiple View Interactive Enviironments. In:
International Conference on Information Technology:New Generations
(ITNG), 2014, Las Vegas/EUA. p. 23-30.

[14] Octave Programming Language. Available at
www.gnu.org/software/octave/.

[15] OctMiner Website. Available at www.sourceminer.org/OctMiner

[16] Robillard, M; Murphy, G. Representing Concerns in Source Code. ACM
TOSEM, 2007.

[17] Spence, R. Information Visualization: An Introduction. Springer; 3rd ed.
2014 edition.

[18] Stenroos, M.; Mäntynen, V.; Nenonen, J. A MATLAB library for
solving quasi-static volume conduction problems using the boundary
element method. - Computer methods and programs in biomedicine,
2007.

[19] Tarr, P.; Ossher, H.; Harrison, W.; Jr., N. Degrees of Separation: Multi-
Dimensional Separation of Concerns. ICSE, 1999.

