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Abstract

We provide four new schedulability tests for a
scheduling model according to which there is a high
priority task concurrently executed with a set of EDF-
scheduled tasks. All tests are proved correct and have
their performance evaluated by simulation.

1. Introduction

In this paper we address the schedulability analysis
problem. More specifically, we are interested in veri-
fying whether a given uniprocessor real-time system,
composed of a set ofn sporadic, independent tasks
with implicit deadlines, equipped with a scheduling al-
gorithm, meet all deadlines. In terms of schedulability
analysis, classical results for the assumed task model
are known [1]. For example, if tasks are scheduled
by the Earliest Deadline First (EDF) algorithm, all
deadlines are met if and only if the task set does not
require more than 100% of processing resources. When
the Rate Monotonic (RM) algorithm is considered,
no deadline is missed provided that no more than
n(2

1

n − 1) of the processor is used. Although using
EDF provides higher system utilization, there are some
situations when it is advantageous to use fixed-priority
scheduling algorithms such as RM.

For example, interrupt and exception handlers or
other checking routines, called hereurgent routines, are
usually short piece of codes that need to be executed
at high frequency in real-time operating systems. It is
recommended that they execute at the highest prior-
ity level so as to minimize internal latencies. Those
requirements fit well in the fixed-priority scheduling
model, where the highest priority is assigned to urgent
routines. Doing so, however, reduces the achievable

system utilization. On the other hand, using a dynamic-
priority scheduling algorithm such as EDF does not
offer guarantees that urgent routines are always exe-
cuted at with highest priority making them subject to
preemption and execution delays.

In this paper we provide the means of analyzing
EDF-scheduled systems that implements urgent rou-
tines as the highest priority task. More specifically, the
assumed scheduling model has two fixed priorities. The
highest priority is reserved to execute urgent routines
whereas all other system tasks are scheduled by EDF
within the lowest priority level. Fig. 1 illustrates this
scheme showing the schedule for three periodically
activated tasks. Task activation instants are indicated
by vertical arrows and their execution is represented
by white boxes. As can be noted, all tasks finish their
execution before its next activation time, considered
here as deadlines. If this task set were scheduled in a
purely fixed-priority fashion, the lowest priority task
would miss its deadline.

h
ig

h
p

ri
o

ri
ty

E
D

F
sc

h
ed

u
le

d

0 1 2 3 4 5 6

Figure 1. EDF-scheduled tasks suffering interfer-
ence due to the execution of a high priority task.

To the best of our knowledge, Jaffay and Stone
[2] were the first ones to address the schedulability
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analysis problem considering the model described in
Fig. 1. They developed anexact schedulability testfor
this model. That is, their test is capable of precisely
identifying both schedulable and non-schedulable sys-
tems. Later on, Gonzalez and Palencia [3] have also
presented an exact test for a more general framework
according to which the scheduler handles several pri-
ority levels. Within each level tasks can be scheduled
either in a fixed-priority fashion or by EDF. However,
both tests run in exponential time, as it is common for
exact tests in EDF-scheduled systems [4], [5].

Unlike these schemes, we are interested in schedu-
lability tests with low computational complexity for
the model depicted in Fig. 1. Four such tests are
derived. They providesufficientschedulability condi-
tions, which means that all non-schedulable systems
are identified but some schedulable systems may be
not. However, experiments carried out on synthetic
generated systems indicate that the proposed tests
perform very well for systems that use up to 95% of
processor. We also show in this paper that checking
schedulability for the model described in Fig. 1 can
be done via well known schedulability tests for fixed-
priority systems [1], [6], [7] applied to two tasks, one
being the urgent routines and the other representing all
EDF-scheduled tasks.

After introducing the computation model and nota-
tion in Section 2, the proposed schedulability tests are
described in Section 3 and evaluated by simulation in
Section 4. Out final comments are given in Section 5.

2. Notation and System Model

We consider a set of tasksΓ = {τ1, τ2, . . . , τn}
to be scheduled on a single processor according to
EDF and assume that there is a high priority task,
τ0, that may interfere in the execution of any task
in Γ. Task τ0 represents urgent routines that require
minimum latencies. Examples of urgent routines are
error checking, interrupt handlers, etc. Tasks inΓ are
assumed to be fully preemptable and all tasks are
independent of one another.

Any task τi in the system is denoted by a tuple
(Ci, Ti), where Ci 6 Ti represents its maximum
required computation time andTi is its minimum inter-
arrival time, also called period. We denoteU(τi) =

Ci

Ti

the utilization of a taskτi and the utilization of a
task setΓ is denotedU(Γ) =

∑

τi∈Γ U(τi). If a task
τi arrives at timet, the system must schedule it for
execution so thatCi processor units are allocated to
τi within [t, t + Ti). That is, we assume an implicit-
deadline task model.

We also assume that the period ofτ0 is not greater
than the period of any other task inΓ. This assumption
is not necessary for all derived tests and it mostly
comes from the optimality of the Rate-Monotonic pri-
ority assignment [1]. Asτ0 represents urgent routines,
which usually require a low activation period, this
assumption does not restrict the applicability of results
presented in this paper.

3. Schedulability tests

We now start deriving the new sufficient schedu-
lability tests. Theorems 1, 2, 3 show three of them
by establishing a bound on processor utilization above
which the system is considered not schedulable. The
fourth test explores the result stated in Theorem 4
and use response-time analysis to derive schedulability
conditions for the setΓ.

Theorem 1 (Test 1):Let Γ = {τ1, τ2, . . . , τn} be a
set of tasks scheduled by EDF and letτ0 be the highest
priority task. There is no deadline miss provided that
Eq. (1) holds.

(

T0

minτi∈Γ(Ti)
+ 1

)

U(τ0) + U(Γ) 6 1 (1)

Proof: From the assumed model,τ0 does not miss
its deadline and so assume that some taskτi ∈ Γ
misses its deadline at some timed. Let r < d be its
release time. Also, consider the last timet < d so
that the processor is not idle within[t, d) but is idle
just beforet. If such a time does not exist, lett = 0.
Note thatt 6 r andd− r = Ti. To simplify notation,
let ∆ = r − t. Let us compute the maximum demand
within [t, d) from those tasks that may interfere in the
execution ofτi. As for tasks inΓ, we must account
for the execution of tasks whose jobs have deadlines
less than or equal tod. Also, sinceτ0 interferes in
the execution of any task inΓ, its activation within
[t, d) must be accounted for. It is known thatτ0
does not arrive more than

⌈

Ti+∆
T0

⌉

times during[t, d).
Computing the total demand and considering thatτi
misses its deadline yields

⌈

Ti +∆

T0

⌉

C0 +
∑

τj∈Γ

⌊

Ti +∆

Tj

⌋

Cj > Ti +∆

(

Ti +∆

T0
+ 1

)

C0 + U(Γ)(Ti +∆) > Ti +∆

U(τ0) +
U(τ0)T0

Ti +∆
+ U(Γ) > 1

(

T0

Ti

+ 1

)

U(τ0) + U(Γ) > 1 (2)



Condition (2) must hold for any taskτi ∈ Γ that misses
its deadline. This implies that Eq. (1) is a sufficient
schedulability test, as required.

The second schedulability test takes advantage of
periods that are multiple of the period of the highest
priority task. It is required thatT0 6 minτi∈Γ(Ti).

Theorem 2 (Test 2):Let Γ = {τ1, τ2, . . . , τn} be a
set of tasks scheduled by EDF and letτ0 be the highest
priority task in the system such thatT0 6 minτi∈Γ(Ti).
There is no deadline miss provided Eq. (3) holds.

U(τ0) +
∑

τi∈Γ

Ti
⌊

Ti

T0

⌋

T0

U(τi) 6 1 (3)

Proof: As τ0 cannot miss its deadline, let us focus
on tasks inΓ. Consider a task setΓ′ obtained fromΓ
as follows. For each taskτi = (Ci, Ti) ∈ Γ there is a
task τ ′i = (C′

i, T0) in Γ′, where

C′

i =
Ci

⌊

Ti

T0

⌋ , and so U(Γ′) =
∑

τi∈Γ

Ti
⌊

Ti

T0

⌋

T0

U(τi)

Now consider schedulingτ0 andΓ′ with τ0 being the
highest priority task andΓ′ being scheduled by EDF.
The worst-case response time of any taskτ ′i is equal to
C +

∑

τj∈Γ′ C
′

j . This means thatτ ′i meets its deadline
if C+

∑

τj∈Γ′ C
′

j 6 T0, which in turn is equivalent to
U(τ0) + U(Γ′) 6 1. Thus, the schedulability ofΓ′ is
ensured by Eq. (3).

In any time intervalL > T0 the processing demand
of Γ′ is given by Eq. (4) whereas the maximum
demand due to tasks inΓ equals

∑

τj∈Γ

⌊

L
Tj

⌋

Cj .

∑

τj∈Γ′

⌊

L

T0

⌋

C′

j . (4)

As
⌊

L
T0

⌋

=
⌊

L
Tj

Tj

T0

⌋

rewriting Eq. (4), we have that

∑

τj∈Γ′

⌊

L

Tj

Tj

T0

⌋

C′

j >
∑

τj∈Γ′

⌊

L

Tj

⌋ ⌊

Tj

T0

⌋

C′

j

∑

τj∈Γ′

⌊

L

Tj

Tj

T0

⌋

C′

j >
∑

τj∈Γ

⌊

L

Tj

⌋

Cj (5)

It follows from Eq. (5) that the processing demand
due to tasks inΓ is not greater than that of tasks
in Γ′. As both task sets are scheduled according to
EDF, the schedulability ofΓ′ implies the schedulability
of Γ. Therefore, Eq. (3) is a sufficient schedulability
condition.

The third schedulability test of interest is given by
Theorem 3 and also requires thatT0 is not greater than
the periods of tasks inΓ.

Theorem 3 (Test 3):Let Γ = {τ1, τ2, . . . , τn} be a
set of tasks scheduled by EDF and letτ0 be the highest

priority task in the system such thatT0 6 minτi∈Γ(Ti).
There is no deadline miss provided that Eq. (6) holds.





U(Γ)
⌊

minτi∈Γ(Ti)

T0

⌋ + 1



U(τ0) + U(Γ) 6 1 (6)

Proof: Let tϕ be the available time to execute the
tasks inΓ within a time intervalL. From Theorem 8
in [8] it is known that if ∀L > minτi∈Γ(Ti) Eq. (7)
holds, then every tasks inΓ meet their deadlines.

L
∑

τi∈Γ

U(τi) 6 tϕ ⇒ U(Γ) 6
tϕ

L
(7)

The minimum values oftϕ take place whenτ0 is peri-
odically activated. Also, the values ofL for minimizing
the right-hand side of Eq. (7) occur when the start and
ending of the intervalL coincide with the activation
and finishing ofτ0, respectively. This is because ifL
is further increased byε, 0 < ε 6 T0 − C0, the value
of tϕ is also increased byε. In turn, if the value of
L is decreased by a positive amountε < C0, tϕ is
kept constant. In other words, the values ofL to be
considered is given byL = (k + j)T0 + C0, where

k =
⌊

minτi∈Γ(Ti)

T0

⌋

and j ∈ Z+. In this case, for each

time interval of sizeT0, there are(T0 − C0) time
units available for executing tasks inΓ, which leads
to tϕ = (k + j)(T0 − C0). Rewriting Eq. (7),

U(Γ) 6
(k + j)(T0 − C0)

(k + j)T0 + C0
=

(k + j)(T0 − U(τ0)T )

(k + j)T0 + U(τ0)T0

U(Γ) 6
1− U(τ0)

1 + U(τ0)
k+j

(8)

The right-hand side of Eq. (8) is an increasing function
of j. Letting j = 0 makes Eq. (8) become Eq. (6), as
required.

As can be noted, all the above schedulability tests
run inO(n) and are based on the processor utilization
required by the whole task set. We use a different
strategy to derive the fourth schedulability test. First,
we show that checking the schedulability of a task
τi ∈ Γ taking into considetation thgatτ0 is executed at
the highest priority level can be done via checking the
schedulability of a system composed of only two tasks,
τ0 and a virtual-taskτ ′i . This latter task is to model the
amount of computation resources required by tasks in
Γ. This result is stated in Theorem 4. Second, we apply
response-time analysis to test the schedulability ofn

virtual two-task systems. If all of them are schedulable,
systemΓ ∪ {τ0} is also guaranteed to be schedulable.

Theorem 4:Let Γ = {τ1, τ2, . . . , τn} be a set of
tasks scheduled by EDF and letτ0 be the highest
priority task executed by the system. No taskτi ∈ Γ



misses its deadline provided taskτ ′i = (U(Γ)Ti, Ti)
does not miss its deadline when scheduled withτ0
running at the highest priority level.

Proof: We show the theorem by demonstrating
that a deadline miss ofτi necessarily leads to a
deadline miss ofτ ′i .

Assume thatτi misses its deadline at some timed.
Also, without loss of generality, assume that no task
misses its deadline befored. Let t < d be the last time
at which the processor is idle. If such a time does
not exist, lett = 0. The maximum processing demand
within interval [t, d) due to tasks scheduled by EDF is
given by

C =

n
∑

i=1

⌊

d− t

Ti

⌋

Ci

Now define taskτ = (C, d − t). It is clear that ifτ
andτ0 are scheduled in a fixed-priority manner withτ0
being the highest priority,τ also misses its deadline.
This is because the system{τ0, τ} demands the same
amount of computing resources within interval[t, d)
as the demand of{τ0} ∪ Γ. We also observe that

U(τ) =

∑n

i=1

⌊

d−t
Ti

⌋

Ci

d− t
6

U(Γ)(d− t)

d− t
= U(Γ)

and thatd is a deadline of bothτi andτ ′i . As U(τ) 6
U(Γ) = U(τ ′i), the demand ofτ ′i during interval[t, d)
cannot be smaller than that ofτ , andτ ′i only executes
whenτ0 does not, we conclude thatτ ′i must also miss
its deadline at or befored when scheduled together
with τ0 as the highest priority task.

Theorem 4 implies that testing the schedulability
of another system, created fromΓ, suffices to deter-
mine that tasks in the original system may miss their
deadlines. This provides interesting ways of checking
the schedulability of task sets by checking the schedu-
lability of only two tasks using well known results.
For example, Liu and Layland’s schedulability test [1]
could be used in the form

U(τ0) + U(Γ) 6 2(
√
2− 1) (9)

Another option is by Biniet. al [7],

(U(τ0) + 1)(U(Γ) + 1) 6 2 (10)

In both cases, the tests are applied as if the system was
composed of only two tasks, one of which consuming
U(Γ) of processor. These tests are only sufficient. It
is possible to use exact schedulability tests, though.
For this purpose, we apply the well known response-
time analysis [6]. Although this is a pseudo-polynomial
time procedure, it is known that it usually has a very
fast convergence time. Being it applied to a system

composed of only two tasks, it is indeed a very efficient
schedulability test. In summary, the fourth proposed
test is given by computing for each taskτi ∈ Γ, the
worst-case response time forτ ′i = (C′

i, T
′

i ), where
C′

i = U(Γ)Ti and T ′

i = Ti. This is an iterative
procedure specified as

Rk
i = C′

i +

⌈

Rk−1
i

T0

⌉

C0

with R0 = C′

i. The procedure stops wheneverRk
i =

Rk−1
i or Rk

i > T ′

i . In this latter case,τ ′i is considered
non-schedulable at the second priority level when
subject to the interference due toτ0.

τ0

τ1

τ2

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 2. Illustration that Test 4 is sufficient but
not exact. The original task set, τ0 = (1, 2), τ1 =
(0.5, 3), τ2 = (0.8, 4), is schedulable while task
set τ0 = (1, 2), τ ′1 = (1.1, 3) is not, where C′

1 =
T1U({τ1, τ2}).

It is important to stress that although response time
analysis provides an exact schedulability test for the
transformed system{τ0, τ ′i}, its result serves only as
a sufficient condition for task set{τ0} ∪ Γ. This is
because the non-schedulability of{τ0, τ ′i} does not
imply the non-schedulability of{τ0} ∪ Γ. To see this
considerτ0 = (1, 2), τ1 = (0.5, 3) and τ2 = (0.8, 4).
As can be noted, task set{τ0, τ ′1} is not schedulable,
where τ ′1 = (1.1, 3). However, the original system
{τ0, τ1, τ2} is schedulable, as shown in Fig. 2.

4. Assessment

In order to compare the performance of the derived
schedulability tests we generated66, 000 task sets with
n = 2, 4, 8, 16, 32, 64 tasks each. The values for the
task set utilization were varying between70% and
100%. For each value of task set utilization1, 000
tasks sets were generated. All these synthetic task sets
were generated according to a random task generator
described elsewhere [9], a procedure that ensures the
uniformity of task set utilization. Task periods were
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Figure 3. Comparison between the proposed schedulability tests.

generated according to a log-uniform integer distri-
bution in the interval[10, 1000], as recommended by
other authors [5].

Fig. 3 depicts the behavior of the proposed schedu-
lability tests in terms ofsuccess ratio, that is, the
percentage of task sets accepted as schedulable. For
the sake of comparison the performance of the test
given by Eq. (10) was also plotted. Eq. (9) was not
considered since it leads to a bound of0.83, which is
not better than most values found by the other tests.

As can be seen in the figure, the larger the task
set, the better the performance of the schedulability
tests. This is because the generated task utilization
of each task tends to be lower whenn increases.
In particular, the lower the utilization of the highest
priority task, the lower its interference in the execution
of the other tasks. On average, Eq. (10) behaves worse
than Tests 1, 2, 3 and 4. Also, Tests 1 and 3 have
similar performance. Note that these tests use a relation
between the periods of two tasks only whereas Test 2

inflates the utilization of the task set considering all
tasks. As for Test 4, it can be seen that it usually
gives better results than the other tests. However, we
observe that Tests 1, 2, 3 and 4 do not dominate one
another. This motivates combining the proposed tests.
Two such combinations are plotted in the graphs, Tests
1, 2 and 3 (plotted as Test 1-3), and Tests 1, 2, 3 and
4 (plotted as Test 1-4). That is, a task set is considered
schedulable when it passes through at least one of the
tests considered in the combination. Doing so one can
get the best out of each schedulability test.

We also compared the proposed tests against an
exact one, but with exponential runtime. To to so
we chose schedulability test proposed by Burnset
al. [5]. Although this test was derived in the context
of multiprocessor systems, it can be applied for the
uniprocessor scheduling model considered in this pa-
per. Fig. 4 summarizes the obtained results. Itsy-axis
represents the percentage of feasible task sets that are
considered schedulable by the proposed tests. As can
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Figure 4. Performance comparison of the proposed sufficient tests against an exact schedulability test.

be seen in the figure, the higher the value ofn the
more precise is the performance of the proposed tests,
which is in line with the results shown in Fig. 3. The
exception is forn = 2 and Test 1-4 because Test 4
works as an exact test when the system has only two
tasks. It can be also seen that up to values of utilization
around 0.95, the performance of the proposed tests
is comparable to that of an exact test forn > 32
tasks. This is a very good result since the exact test is
exponential.

5. Conclusion

We have derived four new sufficient schedulability
tests for uniprocessor real-time systems. The consid-
ered system is composed of tasks scheduled by EDF
which suffer interference of the execution of a high
priority task. Experiment results have indicated that
the proposed tests have good performance. Schedulable
systems that use up to around 95% of processor are
identified as such. As the system model considered
here is found in practice when urgent routines are
not to be delayed by application tasks, the proposed
tests have relevance from both theoretical and practical
perspective.
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