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Abstract—A fundamental challenge in multi- and many-core
systems is the correct execution of concurrent access to shared
data. A common drawback from existing synchronization mecha-
nisms is the loss of data locality as the shared data is transferred
between the accessing cores. In real-time systems, this is especially
important as knowledge about data access times is crucial to
establish bounds on execution times and guarantee the meeting
of deadlines.

We propose in this paper a refinement of our previously
sketched approach of Migration-Based Synchronization (MBS)
as well as its first practical implementation. The core concept
of MBS is the replacement of data migration with control-
flow migration to achieve synchronized memory accesses with
guaranteed data locality. This leads to both shorter and more
predictable execution times for critical sections. As MBS can be
used as a substitute for classical locks, it can be employed in
legacy applications without code alterations.

We further examine how the gained data locality improves
the results of worst-case timing analyses and results in tighter
bounds on execution and response time. We reason about the
similarity of MBS to existing synchronization approaches and
how it enables us to reuse existing analysis techniques.

Finally, we evaluate our prototype implementation, showing
that MBS can exploit data locality with similar overheads as
traditional locking mechanisms.

Index Terms—multi-core systems, data locality, thread syn-
chronization, control-flow migration, real-time systems, timing
analysis

I. INTRODUCTION

With ongoing improvements in chip production, it is only
a matter of time until the many-core age also begins in the
embedded domain. Some existing platforms already head in
this direction (6 core TriCore [1], 8 core RISCV GAPuino [2],
36 core ARM Marvell OCTEON [3]) and the usage of
such platforms in systems, which are subject to timeliness
constraints, is also only a question of time. This development
will lead to scenarios where also in embedded systems cores
are available in abundance, meaning that not all cores are
required to guarantee timely and efficient system execution.
We propose that this allows us to rethink common design
concepts, in the case of this paper, thread synchronization.

The additional computing power that comes with additional
cores is, however, not for free, but rather comes with the
price of increasing architectural complexity. Modern platforms
come with a variety of memory hierarchies, leading to different
access times from different cores. This hierarchy ranges from
fast core-local memories to equally accessible global memory
regions. Access to global memory is, however, often sped up
via core-local caches with various coherency guarantees.

In general, it is difficult (up to impossible) to predict cache
behavior, and more complex cache and memory hierarchies
only aggravate the problem. From a timing analysis perspec-
tive, this leads to overly pessimistic results, which negatively
impact schedulability and system design. Measurement-based
analysis techniques mitigate the problem partly but only yield
reliable results if the scenarios covered in the measurements
are representative and complete. Complex interferences be-
tween processors due to, for example, memory coherency,
complicate such assessments of measurement quality.

In systems with completely independent threads or only a
few inter-thread dependencies, these difficulties related to the
memory hierarchy can potentially be avoided by partitioning
the system into multiple, independent single-core systems.
With rising complexity of the applications, however, this
approach becomes infeasible, inevitably leading to the sharing
of data across multiple cores.

A variety of, both general-purpose and specialized, proto-
cols exists to enable synchronization between different ac-
cesses to shared data and guarantee correct system behavior.
The employed techniques range from the use of locks over
message passing to the wait-free design of algorithms. Their
usage further hinders the predictability of the system behavior,
as analyses now also need to consider possible access patterns
to shared resources and provide bounds for interferences.

Except for the special case of non-cached global memory
accesses, sharing data between cores always entails migration
of at least part of the shared data between cores. This data
migration is the source of the aforementioned interference cost,
which is hard to predict because of the uncertainty which
part of the data is already cached locally and which has to
be migrated. In contrast to the migration of application data,
control-flow migration is highly predictable when the exact
point of execution is known beforehand [4], as the currently
used thread-local data is not used by other threads and is
determinable by static analysis. For lock acquisition, those
points are easily identifiable in the code.

When designing security-relevant or real-time systems, typ-
ical optimization goals are throughput and predictability. Of-
tentimes, these goals are in conflict with each other. A simple
example for such a conflict is the use of caches for shared
data: Temporarily storing shared data in core-local caches
reduces access times and leads to a speed-up in execution
time compared to storing it in non-cached global memory. On
the other hand, caching data shared between different cores
complicates the prediction of access times (Will the access
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result in a hit or miss in the core-local cache?) and thus timing
analyses, leading to results far more pessimistic than the actual
executions.

In this paper, we sharpen our previously proposed concept
of Migration-Based Synchronization (MBS) [5] to increase the
predictability of the system behavior. As a side-effect, MBS
can also lead to an increase in throughput, by ensuring and
exploiting data locality wherever possible.

The first step towards this goal is to exploit the abundance
of cores to use some cores exclusively as central servers (i.e.,
“synchronization cores”) for the operation with a single shared
resource. With such a strict separation, all threads sharing a
resource benefit from data locality while accessing the shared
resource, facilitating the analysis of such critical sections, as
knowledge about the state of the core-local memory of the
synchronization cores can be utilized. Thus, in this paper, we
propose to replace the migration of shared resources with the
migration of control flow to obtain a more easily predictable
system. We strive to design MBS in such a way that it is
transparently replaceable with traditional locks. In this sense,
MBS is the natural adaption of existing lock-based multi-core
synchronization protocols to an abundance of cores in modern
platforms. On top, depending on the nature of the overall
application and the usage pattern of shared resources, MBS
is even able to outperform existing approaches.

In short, we provide the following contributions:
• We present a refinement of our previously proposed,

control-flow-based synchronization technique MBS.
• We provide the first implementation of that technique in

the real-time operating system Zephyr.
• We evaluate the functionality and effectiveness of our

prototype on real hardware.
• We discuss the influence of MBS on timing analysis

supported by timing analysis experiments.
The rest of the paper is structured as follows. Section II

presents an overview of the necessary background and related
work. The general concept of MBS and its effect on timing
analysis as well as a prototype implementation are introduced
in Section III. Section IV presents experimental results eval-
uating the overheads of MBS and the potential improvements
in timing analysis. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

Synchronizing concurring threads through means of shared
memory or message passing is a long researched topic [6]. As
the interaction of threads over shared resources greatly influ-
ences their timing behavior, synchronization mechanisms are
also a highly researched topic in the real-time community (an
overview can be found in [7]). In particular, shared resources
can lead to priority inversion, meaning ready-to-run higher
priority threads cannot execute because of blocked resources
held by lower priority threads [8]. In other words, priority
inversions are any deviation from the expected schedule in
contrast to normally expected interference by higher priority
threads [9].

Very similar to our proposed approach are the seminal multi-
core versions of the priority-ceiling protocol by Rajkumar et
al., which exist in a shared-memory [10] and a message-
passing [11] version, also referred to as MPCP and DPCP,
respectively [7]. MPCP tries to benefit from data locality
by distinguishing between local resources only used on one
core and global resources. Consequently, local resources reside
in core-local memory, while global resources are placed in
global memory. DPCP takes a different approach to exploiting
data locality by utilizing special synchronization processors,
on which global resources are executed. While a thread is
executing on a synchronization processor, its host processor
is free to use for other treads. In its most basic version, all
global critical sections are assigned to a single synchronization
processor and the synchronization processor only executes
critical sections. In the generalized version of the protocol,
multiple synchronization processors are allowed. Additionally,
non-critical sections may be executed on synchronization
processors (but will be preempted by critical sections).

We argue that contemporary and future processors call for
a solution somewhere between MPCP and DPCP. MBS can
therefore be understood as the natural extension under the
assumption of the availability of many cores. The abundance
of cores facilitates the exploitation of data locality in three
ways (see Section III). First, it allows the usage of many
synchronization cores, ideally one per shared resource. Sec-
ond, synchronization cores can also be exclusively used for
critical sections. As a third consequence, there are no core-
local resources, all resources are made global.

Oyama et al. [12] propose a similar form of control-flow
migration where concurrent accesses to a resource are executed
on a single core, the owner or lock holder. The owner can,
however, change over the course of execution, yielding no
guaranteed cache locality.

A similar form of synchronization mechanism closely re-
lated to control-flow migration is delegation-based synchro-
nization, where some form of centralized server is responsible
for the execution of the critical section. As the execution of the
critical section is handed over, these approaches can be viewed
as a form of partial control-flow migration. Examples include
remote-core locking [13] and ffwd [14], as well as approaches
centered on data structures like Flat combining [15] and
Actors [16].

The concept of data locality is utilized in a similar fashion
by a scheduling algorithm proposed by Boyd-Wickizer et
al. [17], which revolves around bringing threads to the data
they need to operate on. The respective data objects are
identified via source-code annotations. MBS, on the other
hand, is transparent for the application as it simply replaces
existing locks. Additionally, their approach does not consider
timeliness constraints.

If timeliness is important, response-time analysis is the
usual tool to guarantee timely execution of all threads. In the
presence of shared resources, response time is a combination
of the thread’s execution time, preemption by higher priority
threads, and blocking time spent waiting for shared resources



to be available (that is, blocking time due to priority inversion).
An example of such a formula can be found in [8], in this case
for partitioned, fixed-priority scheduling:

ri = ei + bli + bri +
∑

P (Th)=P (Ti)∧h<i

dri + brh
ph

e · eh (1)

It consists of the following elements:
• ri: response time of task i
• ei: worst-case execution time of task i
• pi: period of task i
• bli: priority-inversion blocking time caused by a task on

the same core
• bri : priority-inversion blocking time caused by a task on

a remote core
• P (Ti): current processor of Ti
The blocking-time parts of the formula (bli, b

r
i ) are highly

dependent on the maximum number of times a thread can have
to wait and can be derived by blocking-bound analysis [8], [9],
[18], which yields upper bounds on the maximum a thread
can be blocked due to waiting for a resource. The complexity
of such analyses depends both on the used synchronization
protocol and the resource access structure of the application.
If critical sections are nested, the problem is NP-hard [19].

Detrimental to all those timing analyses are the effects
of memory-related interferences, mostly through caches, as
the timing difference between a cache miss and a cache
hit has a significant impact on the timing behavior of a
program. The ability to predict such accesses correctly thus
determines the accuracy of timing analyses. Especially data
caches are, however, highly unpredictable [20], which gave
rise to a wide field of research [21] still actively worked
on today [22]. The problem is aggravated through inter-core
interferences in multi-core shared-memory environments [23].
More complex hardware features in modern processors further
hamper predictability [24]. Hybrid measurement-based ap-
proaches can overcome this problem, the quality of results is,
however, highly dependent on the measurement data [24]. The
guaranteed data locality of critical sections in MBS, therefore,
facilitates timing analyses and helps to derive tight bounds on
worst-case execution time (WCET) and worst-case response
time (WCRT).

A different kind of memory-related overheads in the context
of migration are the direct costs associated with the transfer of
data. The magnitude of these migration costs depends on the
specific hardware platform and memory hierarchy and may or
may not be significantly large [25], [26]. In any case, these
costs can be mitigated, for example, through hardware-based
mechanisms [27]. Such approaches can be combined with
MBS to increase data locality and predictability with regard
to thread-related data.

III. DESIGN AND IMPLEMENTATION

This section discusses the design and implementation of
MBS. MBS operates under several assumptions that target
real-time systems. First, the set of locks is statically known,

SC SC

SC SC

Fig. 1. Cache effects of locks (top) and MBS (bottom) when entering (left)
and leaving (right) a critical section. Locks lead to poor data locality because
shared data is not yet in the cache when entering and forbidden to access
when leaving a critical section. MBS, in contrast, migrates the control flow
to the known data location, keeping caches hot.

which is needed for static analysis, and also for the selection of
synchronization cores. Second, the system uses coarse-grained
locking to protect its data structures from concurrent accesses.

A. Synchronization by Migration

Central to the concept of MBS is to consider a processor
core as a resource that is shared between threads, but the
scheduler assigns this resource to at most one thread at any
moment in time. MBS exploits this exclusive assignment
for thread synchronization, and considers a processor core
a synchronization object (i.e., a “synchronization core”). A
synchronization core is a resource that is granted sequentially
to threads that request this resource, and there is no forced
withdrawal of this resource. The acquisition of this resource
is the migration of the current control flow to this core, and
to release it, the control flow migrates back. This migration
can be implemented at library or operating system level and
hidden behind a traditional lock()/unlock() interface.

In addition to the provision of mutual exclusion, MBS
affects the shared data protected by this synchronization
scheme. This data is only accessed from critical sections,
which are always executed on the synchronization core. In
consequence, this data can be placed in the core-local memory
(i.e., first-level caches or scratchpads) of the synchronization
core, and the data can permanently remain there since no other
core accesses it—and only control flows that access this data
migrate to this core. Thus, control flow is moved to data,
rather than vice versa. In consequence, data accesses in critical
sections benefit from guaranteed data locality.

Figure 1 summarizes data locality of locks and MBS when
entering or leaving a critical section. When a lock-based
system enters a critical section, the wanted shared data is likely
not in its local cache. Hence, caches are cold. When leaving
the critical section, the shared data is still in the cache, but
access is forbidden. Again, the cache contains data that is not
used in the near future. With MBS, in contrast, shared data is
at a well-known location and only a part of the thread-related



data (i.e., thread control block and top of stack) needs to be
copied between cores. In consequence, caches are mostly hot.

The principal concept of MBS is independent of the
scheduling policy used for the application cores. Whether
using fixed or dynamic priorities, whether using partitioned
or global scheduling, the cache locality of shared date on
the synchronization cores can always be exploited. Only the
degree to which cache-locality on the application core after a
critical section can be used in timing analyses depends on the
scheduling policy, with partitioned fixed-priority scheduling
being the easiest to predict.

B. Synchronization Cores

For MBS, a synchronization core is a processor core that
constitutes an exclusive resource. Access is granted sequen-
tially by a core-local scheduler which considers the system-
wide resource-acquisition policy (e.g., FIFO or priority-based).

To ensure mutual exclusion, synchronization cores operate
without preemption and all critical sections have a run-to-
completion semantics. In particular, the synchronization core
may not participate in any other migration scheme, such
as load balancing. However, these restrictions only apply to
synchronization cores. Other cores (i.e., “application cores”)
may still support preemption or load balancing.

While in a critical section, the original core of a thread
becomes available. Multiple options exist for this original
core. First, the original core may be granted to another ready
thread. However, this thread necessarily has a lower priority,
which makes this option functionally different to a lock-
based system. Second, a thread may leave a priority-based
reservation that prevents other threads from running. We call
this variant MBS+R. Third, the core may enter a low-power
sleep state to save power. In particular in power-constrained
systems, this strategy helps to maintain a global power budget.
However, this strategy can only be efficient if the caches do
not lose their data when sleeping.

C. Data Pinning

Several options exist to place shared data in the local mem-
ory of synchronization cores, depending on the hardware. First,
data can be placed in a cache implicitly by simply accessing
it, and the first memory access loads the data into the cache.
However, with this implicit scheme, data may be evicted, in
particular, if the working-set size of a thread in the critical
section exceeds the cache’s capacity. Second, some hardware
architectures support explicit cache management via cache-line
pinning. Then, the data is loaded and pinned during system
initialization, and no eviction can occur. Only thread-related
data may be evicted, but the shared data remains certainly
cached. Third, some hardware primarily targeting hard real-
time systems provide core-local scratchpad memory, where
the software controls the contents of the local memory, and
the hardware does not provide cache coherence. Like explicit
cache management, the system can place the shared data
in the local scratchpad memory during system initialization.
The lack of cache coherence is no problem with MBS since

shared data is only accessed from the synchronization core. In
addition, implicit eviction can be avoided since the scratchpad
is software-controlled.

D. Overheads

The overheads of MBS are two-fold. First, there is a dy-
namic overhead due to thread migration. A similar lock-based
system, however, would also have synchronization overheads,
in particular when blocking a processor core leads loss of
cache state; and the copy operations of shared data as shown
in Figure 1. Second, there is a static overhead of dedicating
a processor core for synchronization. This core and its local
memory are no longer freely available to the application.
However, this overhead is counteracted by improved data
locality, which leads to lower and more predictable execution
times, whereas lock-based systems suffer from locality-related
interferences and overly pessimistic analyses. The detailed
influence of MBS on the execution time is discussed in
Sections III-E and III-F.

In summary, MBS trades notoriously difficult to predict
cache-related interferences for well-predictable control-flow
migration. The trade-off is that the thread, parts of its stack
(i.e., thread-local data), and other potentially used global data,
has to be migrated to the synchronization core for each critical
section. The amount of data that needs to be transferred can be
determined exactly via static analysis, as long as the migration
points are known [4]. For MBS, all migration points are calls
to lock() and unlock() functions.

E. Effects on WCET Analysis

MBS has the potential to affect both WCET and WCRT
analysis positively. With MBS, there is no need to model cache
interference between cores as all accesses to shared data are
isolated to dedicated cores. Bus interference remains but can
be handled through other means such as timing arbitration [28]
or hardware support [29]. For the critical sections of threads,
the cache analysis becomes much easier as the shared data
already resides in the caches of the synchronization cores1. As
a result, tighter WCET bounds for the critical sections can be
obtained. Whether these theoretically possible benefits can be
found in practical WCET analysis, depends on the capabilities
of the used tools and techniques.

In measurement-based timing analysis, the tighter execution
times achieved by the use of MBS can be observed directly
in the measurements. The simple nature of this technique
allows it to be employed in basically every system with its
disadvantage of the uncertainty if the worst case was actually
captured in the measurements.

More reliable results can be obtained with the use of hybrid
analysis techniques which combine measured timing data with
static analysis techniques [24]. As the timing behavior is
determined via measurements, the reduced execution times

1In the extreme case where the shared data is too large to fit in the core-
local memory, there exists at least the potential to improve cache analysis by
having more knowledge about the state of the caches.



that come with MBS again directly affect the analysis results
yielding tighter WCET bounds.

For pure static analyses, the effect of MBS visible in the
analysis results highly depends on the underlying hardware
model the analysis tool provides for the platform. Only if it
captures the caching behavior and does not make overly pes-
simistic assumptions elsewhere (for example, bus arbitration),
the positive effects of MBS are reflected in the WCET bounds.

F. Effects on Response-Time Analysis

Response-Time analysis benefits in two ways from MBS:
indirectly from the tighter WCET bounds, and directly through
easier blocking bound analyses. The execution time of critical
sections is included many times in response-time calculations,
as it contributes directly to thread WCETs (e) and, by that,
also to the blocking times (bl, br). As MBS enables tighter
WCET bounds due to the known cache state, bounds on the
response time also become tighter.

This improvement is only achieved as a trade-off with the
newly introduced control-flow migration overhead, as, under
MBS, a certain amount of data (necessary stack-local data,
thread-control block) has to be transferred to the synchroniza-
tion cores. Similar effects occur in suspending locks as the
thread state has to be stored to and restored from memory
before and after the suspension. In MBS, this store and restore
simply happens in the memory of another core instead of
the own core. With regard to response time, the overhead
introduced by migration can be precisely bounded, as the data
to be transferred can be statically determined. Response-time
Analysis thus improves, as uncertain cache states are traded
with known cache states and predictable migration overhead.

Blocking-bound analyses already exist for various synchro-
nization mechanisms. Schedules produced by the use of MBS
are essentially equivalent to lock-based approaches. But as
critical sections execute non-preemptively, the behavior of
MBS also resembles priority-ceiling approaches [30]. The
main difference is the possibility for other (MBS) or at least
higher priority (MBS+R) threads to execute during the exe-
cution of a critical section. From this point of view, MBS+R
behaves like stack-based priority-ceiling protocols [31]: Dur-
ing the execution of a critical section, only unrelated higher
priority threads are allowed to run. MBS differs as it enables
the execution of the critical section and unrelated higher
priority threads in parallel. Therefore, MBS will never lead
to worse response times than traditional locking mechanisms.
Due to these similarities, we hope to be able to reuse known
analysis techniques for existing synchronization approaches.

One of the major problems in bounding the blocking time,
unbounded priority inversion, is avoided by design in MBS,
as the scheduler on the synchronization cores grant access
to resources non-preemptively and in accordance with the
priorities of the waiting threads. Additionally, MBS effectively
decouples processor assignment and resource assignment. An
independent thread with medium priority cannot interfere with
the execution of critical sections of a lower priority thread
and in turn negatively affect a high priority thread waiting on

the resource the lower priority thread currently holds. As a
consequence, a thread can be blocked at most one time by
either a higher or lower priority thread for each of its critical
sections, which can be efficiently bounded by the longest
critical-section execution time of all users of a resource.

G. Lock Nesting

Nested locks are considered difficult for timing analy-
sis [19], primarily due to the effect of transitive blocking,
where a thread holding resource RA and waiting for another
resource RB potentially delays other threads that want to
acquire resource RA. Thus, the contention for resource RB

affects all threads working with RA. In addition to timing
analysis, lock nesting is prone to deadlocks. However, if
a sound worst-case blocking-bound analysis yields a finite
duration, deadlocks are not possible. Solutions for lock nesting
in real-time systems are either to forbid nesting entirely, to
group locks that may nest to a single lock [7], or to analyze
transitive blocking [18].

Since MBS can result in the same schedule as using locks,
existing approaches can be reused. First, systems that disallow
lock nesting and systems that replace nested locks with group
locks are trivially supported. Second, it is compatible with
blocking-bound analysis techniques like [18], where locks are
granted in FIFO order. Third, priority-based approaches are
supported by executing idle threads with elevated priorities.

H. Integration in Zephyr

For demonstration, we have integrated MBS in Zephyr [32],
an embedded operating system for the Internet of Things (IoT)
that has recently started to support multi-core processors. We
implement MBS in Zephyr on a Raspberry 3B+, a typical
platform for IoT systems with soft real-time requirements.

Our integration of MBS into Zephyr is relatively straight-
forward. In particular, the scheduler requires some adaptions
for synchronization cores (in our case, only one core). If a
thread acquires an “MBS mutex” (which can coexist with
ordinary mutexes), it is placed in a dedicated waiting queue for
the corresponding synchronization core. The scheduler on the
synchronization core then dequeues the thread and executes
it normally. Migration back is implemented by placing the
thread back in the ordinary ready list (i.e., the ready list for
application cores). A second implementation variant, MBS+R,
leaves a reservation on the core by marking it as “blocked due
to a thread that is currently migrated”. While this flag is set, the
idle thread is scheduled, until the thread completes its critical
section and migrates back.

In Zephyr, the scheduler and its data structures are protected
by a global spin-lock with interrupt suppression. This global
lock cannot be implemented in MBS because it protects the
scheduler which implements MBS. Timing analysis of this
global lock can therefore not benefit from MBS. However,
a scheduler lock is a common implementation technique for
embedded multi-core systems. System-wide timing analyses
therefore either have to analyze its blocking time, or alterna-
tively use wait-free techniques that are unaffected by blocking.
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Fig. 2. Latency distributions of critical & non-critical sections combined.

IV. EVALUATION

This section evaluates our implementation of MBS in the
context of a soft and hard real-time systems. We evaluate
execution times experimentally and we also apply static and
hybrid timing analysis.

For the first part of the evaluation, we use a Raspberry Pi
3B+ running a modified Zephyr OS that supports MBS. The
processor has four cores with 32 KiB of core-local L1 data
cache each, and 512 KiB of shared L2 cache. We select one
core as a dedicated synchronization core, and three application
cores remain. Cache pinning is implicit—data is loaded to the
cache on first access and evicted automatically. This strategy
allows us to also evaluate scenarios where the shared data
exceeds the L1 cache capacity, where eviction is inevitable.

We use a family of microbenchmarks that allow for precise
control of the thread-local working set size and the shared data
size. These benchmarks access a local and a shared buffer,
where the local buffer has size λ and is not synchronized,
and the shared buffer of size σ requires mutual exclusion.
Each benchmark cycle iterates over both buffers alternatingly.
Elements in each buffer are modified sequentially, modifying
each cache line once per benchmark cycle.

We compare the following synchronization variants. First, a
MBS version without original core reservations that uses four
application threads. Second, a MBS+R variant with original
core reservation uses only three application threads. In addi-
tion, standard Zephyr spinlock and mutex implementa-
tions serve as a baseline, both with four threads.

In the second part, we use an Infineon TriCore TC397
as evaluation platform, which features a complex memory
hierarchy. It provides one level of core-local 16 KiB caches
for access to global memory as well as separate core-local
scratchpad memories. We use this as an exemplary prototype
to examine the influence of MBS on worst-case analyses.

A. Measurement-based Performance Evaluation

Figure 2 summarizes the latency of a full benchmark cycle
for each microbenchmark version. We vary the sizes λ and
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Fig. 4. Reduction in shared L2 cache accesses as data remains in the core-
local L1 cache.

σ so that the buffer is either too small, too large, or roughly
fitting the core-local L1 cache. Further data structure sizes
are omitted to maintain readability, but the corresponding
experiments confirm the results discussed in the following.
Each sub-plot in Figure 2 visualizes the latency distribution
for a combination of buffer sizes. In total, the performance of
MBS, locks, and mutexes is of similar magnitude. However,
MBS has benefits over locks and mutexes. First, the MBS
variants have a lower latency variation than locks and mutexes.
Second, the observed worst-case latency and 99 % tail latency
are reduced by MBS, which is relevant for soft real-time
systems. Third, when the shared buffer fits the core-local L1
cache, MBS is faster than locks and mutexes.

Figure 3 visualizes the latency of only the critical sections
in the same experiment as Figure 2. It shows clearly that, if
the shared data fits the L1 cache, MBS is faster. This result
indicates that, as expected, the improved cache locality results
in faster critical section execution time. If, however, the shared
data is too large for the L1 cache, MBS has little benefit since
it cannot exploit the cache optimally.



Figure 4 summarises the cache locality of our experiments.
It visualizes the number of L2 cache accesses inside critical
sections. Since this cache is shared, it is only accessed if the
core-local L1 cache does not contain the requested data. The
graph shows that MBS significantly reduces the number of L2
accesses—most data accesses are handled by the L1 cache of
the synchronization core. Again, this requrires that the shared
data fits into the L1 cache. If the shared data is too large, the
number of L1 misses is similar for all examined variants.

B. WCET Analysis
As described in Section III-E, MBS influences different

timing analysis techniques differently. Therefore, we conduct
access-latency experiments to data in global and local memory
on the TriCore platform and compare the WCET bounds of
multiple analysis tools. The size of the shared data either fits
well in the cache, fits exactly in the cache or is too large
for the cache. Timing analysis is performed by tracing as an
example of measurement-based approaches, TimeWeaver [24]
as a hybrid analysis tool, and aiT [33]2 as a purely static
WCET tool. We additionally use aiT in a variant, where all
accesses are assumed to result in cache hits. While this is not
a valid WCET analysis technique, it allows us insight into the
improvements possible with the known cache locality of MBS.

With hardware tracing, we can directly observe the effects
of data locality in the measurement results. Figure 5 shows
the expected increase in execution time once the shared
data does not fit completely into the cache (32 KiB). Using
the larger core-local memory, no such increase occurs (see
Figure 5). Additionally, the access times are generally shorter.
These results showcase the potential which lies in the optimal
utilization of the memory hierarchy for access to shared data.
With measurement-based timing analysis, we can benefit from
tighter bounds on execution time by employing MBS.

Similar results arise with the use of the TimeWeaver tool.
The WCET bounds follow the trend of the measurement
data in Figure 5, although overestimations exist in the cache
scenario. In the case of purely core-local accesses, however,
the bounds are much closer to the measured data. Hybrid
analysis techniques can, thus, also profit from MBS. To which
degree depends on the model of the hardware platform.

This brings us to the bounds obtained by static analysis
based on sophisticated hardware models. In Figure 5, we
can also see the differences between the aiT results with
(pessimistic) normal and always-hit cache behavior, affirming
the potential improvements by data locality. Unsurprisingly,
both variants yield the same results in Figure 5, as no caches
are involved in the data accesses. The results are, however,
pessimistic overestimations, which we cannot explain through
the memory hierarchy. It is possible that the behavior of the
core-local accesses is correctly captured, but the tight access
bounds are overshadowed by pessimistic assumptions in other
parts of the analysis. These results underline that the accuracy
of the hardware model highly influences how strongly the
positive effects of MBS are visible.

2Version: 21.04
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Fig. 5. WCET estimates for accesses to globally shared data and core-local
data with different analysis techniques.

C. Discussion

The experiments show that, performance-wise, the costs of
locking and the costs of thread migration are similar. However,
soft real-time systems can utilize MBS to achieve a more
constant performance. Hard real-time systems, in comparison,
rely on static analysis tools that have to support the knowledge
on data locality.

V. CONCLUSION

This paper has presented Migration-Based Synchronization
(MBS), a sweet spot in multi-core real-time system design
that simplifies synchronization, cache analyses, and blocking-
bound analyses, for both hard and soft real-time systems.
In particular, MBS achieves a system design where shared
data has statically known locations in the memory hierarchy.
Besides analysis simplification, MBS also reduces the exe-
cution time (in particular, for the worst case) by improving
data locality. Thus, hard real-time systems can benefit from
a simplified and improved cache-locality analysis, reduced
critical section WCET, and in consequence, reduced blocking
bounds. Soft real-time systems also benefit from reduced
cache-related interferences and lower latency variation.

Our evaluation confirms the reduction of (core-local) L1
cache misses, which reduces latency variation. MBS mainly
benefits if the shared data fits in the core-local cache of the
synchronization core. Both soft and hard real-time systems
benefit from known cache hits.

When considering future many-core real-time systems, the
cost of MBS scales better than traditional approaches. The
main cost (i.e., a dedicated synchronization core) becomes
increasingly acceptable, considering that the benefits are im-
proved analysability and reduced latencies. In comparison,
existing approaches have to pessimistically assume increased
cache-related interferences and transitive blocking times.

Future work will further combine MBS with WCET anal-
ysis tools for hard real-time systems. We intend to provide



tools that map resources to synchronization cores, optimally
selecting either locks or MBS. This trade-off is necessary
because current-generation hardware still has a relatively small
number of cores. In addition, the migration costs, the capacity
of core-local caches, and data structure sizes need consid-
eration. Another approach is the run-time transition between
MBS and locks, for example, in mixed-criticality systems. In
such a scenario, a processor core may be used for arbitrary
application-specific workload in the normal case but used as
a synchronization core if it is needed. These optimizations
are only possible because MBS does not require code-level
application changes—instead, migration can be hidden behind
a traditional lock()/unlock() interface.
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