
Charack: tool for real-time generation of pseudo-infinite virtual worlds for

3D games

Fernando Bevilacqua

Cesar Tadeu Pozzer

Marcos Cordeiro d Ornellas

UFSM, Programa de Pós-graduação em Informática, Brazil

Figure 1: Coastlines and islands procedurally generated by Charack

Abstract

In MMO games the player’s experience is mainly influenced by the
size and details of the virtual world. Technically the bigger the
world is, the bigger is the time the player takes to explore all the
places. This work presents a tool (named Charack) able to gener-
ate pseudo-infinite virtual worlds with different types of terrains.
Using a combination of algorithms and content management meth-
ods, Charack is able to create beaches, islands, bays and coastlines
that imitates real world landscapes. The tool clearly distinguish the
generation of each type of content. The contribution of the tool is
the ability to generate arbitrarily large pieces of land (or landscape)
focusing on detailed coastline generation, by means of using proce-
dural algorithms.

Keywords:: MMO, virtual worlds, terrain generation, 3D games,
noise, procedural generation, multifractal

Author’s Contact:

{fernando,pozzer,ornellas}@inf.ufsm.br

1 Introduction

The computer games market has been evolving considerably over
the years. Since the first console, the hardware performance has
increased and new graphic technologies were developed, resulting
in a wide range of themes and game styles. In the multiplayer
games, players interact with other human beings and also with
NPCs, which are represented by virtual characters. That kind of
game is popular and the social interaction between players is a mat-
ter of research [Griffiths et al. 2003; Ducheneaut et al. 2006]. In the
category of multiplayer games there are the massively multiplayer
on-line (MMO) ones, which are on-line games featuring large num-
ber of players interacting with each other in a huge virtual world.

An MMO can feature millions of players, such as EverQuest [Sony
Entertainment 2007] and World of Warcraft [Blizzard Entertain-
ment 2007], the latter with more than 6 million subscribers [Clark
2006]. A persistent virtual world is an important topic to keep the
game fun and attractive to the player. The bigger is the world to be
explored, technically the bigger is the time the player has to spend
in order to explore all the places. As a result of such huge virtual
worlds, their creation and subsequent upgrade are a complex task.
EverQuest and World of Warcraft present a virtual world with a
wide diversity of geographical features such as mountains, valleys,
forests, fields, caves, etc, and most of them have specific names and
are related to the game story. The manual creation of those vir-
tual worlds requires a team able to design heightmaps, adorn land-

scapes, ensure usability of the map (avoid unreachable places, for
instance), create interesting places for players, etc. To help on that
task, the development of a tool able to generate complex virtual
worlds is useful to speed up the development of 3D games such as
MMOs.

The solution proposed in this work is the development of a tool,
called Charack1, able to generate complex virtual worlds in real-
time using noise-based techniques for terrain generation. Charack
was designed to allow developers to use its features in order to gen-
erate 3D terrains for games, particularly MMOs, with minimal hu-
man intervention in the generation process. The content genera-
tion is made on demand. As the user moves along the world, the
elements inside the user’s view are processed and stored into the
memory and the ones away from the user’s view are removed. Even
though the generation of all elements is based on random numbers,
if the player visits an specific point A, then walks for miles generat-
ing a completely different set of landscapes, and returns to point A,
the same previously seen landscape will be shown again. Charack
handles separately the content generation of continents, topography
and coastlines, so each of those elements can be independently ad-
justed in order to produce highly customized results.

This paper is organized as follows. Section 2 describes related
work concerning the generation of finite or infinite virtual worlds.
Section 3 presents the tool structure and the techniques used in
the content generation process. Section 5 describes and illustrates
the results that Charack produced. Finally section 6 presents a
conclusion and ideas for future work.

2 Related works

There are several related works concerning the generation of finite
or infinite virtual worlds. One of them creates an infinite city that is
presented to the user on demand as it walks on the ground [Greuter
et al. 2005]. The world were divided into a grid composed of several
squares, called cells. The location of each cell is used with a global
seed as an input for a hash function [Wang 2000]. The result of this
function is used as a seed for a pseudo random number generator
and it defines all the characteristics of the buildings within a cell.
As a consequence of that approach the contents of a cell is always
the same, no matter if the user moves and that cell is removed from
the memory. That work was the ground zero for Charack develop-
ment, however the original idea was changed in order to make the
tool suitable to generate more types of terrains (mountains, plains,
continents, etc.), not only streets and buildings. The approach of
content generation made on demand was maintained, but the cells
organization was removed.

1Charack is available at http://code.google.com/p/charack

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

81



Figure 2: Results of the planet map creator used by Charack

The use of a procedurally generated world approach [Linda 2007]
is very close to the concept of content generation aimed for
Charack. In that work, a spherical planet is created as a result of
a recursive division of a geometric shape, then noise functions are
applied to the mesh to generate the heightmap. There is no distinc-
tion between the content generation approach for continents and the
content generation for the terrain within the continents. As a result
the continents are created by flooding the heightmap with a wa-
ter plane, which will produce the coastlines based on the sea level
height and the amount of ripples in the topography. The content
itself is not generated on demand. Charack was created from an
evolution of that idea, but with limitations. The world created by
Charack handles differently the content generation of continents,
coastlines and the heightmap and it also generates the content on
demand, however it does not use a spherical approach.

Another related work was a tool used to build the SkyCastle mul-
tiplayer game engine [Häggström 2006; Häggström 2009]. For the
heightmap generation, parameterized procedures and fractal based
systems are combined in a layered approach: starting with a base
map, the application merges a new map with the base one in each
iteration. The new maps are pre-calculated and generated using Per-
lin noise [Perlin 1985]. To texturize the landscape and to adorn it
with plants, several techniques are used [Cohen et al. 2003; Prze-
myslaw and Lindenmayer 1990; Lintermann and Deussen 1998;
Weber and Penn 1995]. Charack uses a similar noise approach in
order to create the terrain height, however it was not initially de-
signed to generate extra content such as trees and plants.

The generation of a virtual world as a result of recursive subdivi-
sions of a quadtree [Dollins 2002] is very similar to the Charack
proposal. In that work, a world with huge proportions is created
and its content is generated on demand as the user moves. The
heightmap is created in a parameterized and multi-resolution way,
so the closer the user is of place, the greater is the amount of detail
there. There is also no distinction in the content generation process
of continents, coastlines and land. The proposed heightmap gen-
eration is used by Charack, however continents and the coastlines
generation process are completely different.

Another approach uses fractals affected by erosion for real-time,
procedural generation of terrains [Olsen 2004]. For the erosion
simulation, thermal [Musgrave et al. 1989] and hydraulic methods
are used. Charack has no feature connected with the weather in-
fluence, even though it produces some sort of very basic erosion
simulation when all sharp edges of the heightmap are removed by
a smoothing algorithm.

The planet map creator based on the generation of a spheric world
using a recursive subdivision of a tetrahedron is another approach
concerning procedural content generation [Mogensen 2009]. All
the generated information is part of a complete virtual world featur-
ing highly customizable continents and oceans created as a result of
a projection of pixels onto a sphere, a method similar to ray trac-
ing [Whitted 1980]. That planet map creator is used by Charack
as a starting point on the continent generation process. Figure 2
illustrates the planet map creator results.

Figure 3: Charack’s basic structure

3 Tool organization

3.1 Basic structure

Analyzing the related works, virtual worlds are generated through
several approaches, but none of them handles differently the con-
tent generation for continents, coastlines and topography. Although
there are variations in how the heightmap is created, the generation
of continents is a result of a water flooding plane. This method al-
lows the developers to focus on the content generation for the land,
however it has a simple approach concerning continents and coast-
lines. The main idea and contribution of Charack is the content
generation handled differently for each world element (continent,
coastline, etc.), with an aggressive and specific approach for each
one. This is a new approach for the content generation process,
which is different from the the related works that focuses on con-
tent generation as a unified process. The term pseudo infinite used
in the paper title is necessary due to physical limitations in comput-
ers hardware: an unsigned integer, for instance, can store a certain
amount of data; if there were no physical limitations, the tool would
be able to generate, in fact, an infinite world.

In order to create a virtual world that reaches the presented pro-
posal, a top-down plan is used for the content generation. The
Charack data flow begins in a macro view of the world, which are
the continents, evolving to a micro view of the planet, which are the
content generation for each vertex that will be drawn in the screen.
Figure 3 shows Charack basic structure.

3.1.1 Maps generator

At the top of the chain is the map generator, which creates the con-
tinents that exist throughout the virtual world. This module is an
encapsulation of the solution created by [Mogensen 2009]. When
the tool is initiated, it uses a user defined seed to generate all the
continents. Once the continents are generated, all the information
related to terrain types (land, water and coast) are stored in a matrix
called macro-matrix (MM), which is used by all the other algo-
rithms.

3.1.2 Slice manager

Below the MM and the map generator is the slice manager (SM). It
extracts a portion of the virtual world (the user’s view described as
a regular mesh) and provide the rendering engine with information
about the heightmap. In order to obtain the required information to
create the heightmap, the slice manager uses the coastline generator
(CG), which uses the height generator (HG) and the data stored in
the MM.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

82



Figure 4: Mapping the MM to the virtual world: each MM vertex
represents several vertices in the virtual world

In the context of the SM, there is no information about land or wa-
ter, only a set of vertexes and their height values. Using the position
of the user as a guide, the SM slices the virtual world and, for each
collected vertex, it queries the CG in order to find out the height
value for that vertex.

3.1.3 Height generator

The height generator (HG) defines the height value for each ver-
tex in the virtual world. To ensure that the developers can create
a customizable heightmap based on their needs, new functions to
generate content can be added to the tool in a simple way.

3.1.4 Coastline generator

The coastline generator (CG) will map each vertex of the slice man-
ager to the MM in order to find out the terrain type of that vertex.
If the vertex being analyzed is mapped to a location in the MM that
is described as water, then the CG assigns a height value equals to
sea level for that vertex and returns it to the SM. If the vertex is
mapped to a place described as (simple) land, then the CG will use
the information provided by the HG in order to set the height value
for that vertex. Finally, if the vertex is mapped to a place described
as coast, then the CG uses its own structure (together with the MM)
to set the height value for the that vertex.

The resulting virtual world technically has height and width defined
by the maximum size of a signed integer, however it is physically
impossible to generate a MM with such proportions. Since the MM
is smaller than the virtual world, an MM’s entry (i, j) represents
several vertices in the virtual world. Figure 4 illustrates the MM
mapping process.

The smaller is the MM size, the more vertices in the virtual world
will be represented by the same entry in the MM. If the virtual world
had 1000x1000 as its size and the MM had 10x10 as its size, for
instance, it means that each entry of the MM represents 100 vertices
in the virtual world. If one of these entries is described in the MM as
coast, then there is an area of 100x100 vertices in the virtual world
that must be a coast. When any of those vertices in that particular
area of the virtual world is analyzed by the CG, it will work on it
and return it with different values, which will result in a coastline
for that area, not an area entirely filled with land or water.

3.1.5 Rendering engine

The rendering engine draws the created heightmap in the screen.
The result is rendered as a triangles mesh that is texturized accord-
ing to the height value of each vertex in the mesh.

Figure 5: Regular mesh describing the virtual world. At the right
a wireframe rendering

4 Implementation

The main problem concerning Charack’s implementation was the
content generation performed on demand. Based on the fact the
user can only see what is inside the visible area, all the content gen-
eration algorithms need to take into account only the information
that is available in the user’s view. Even though this approach is
efficient for resources management (process only the visible ele-
ments), it increases the complexity of the content generation algo-
rithms.

The algorithm that generates mountains, for instance, has no way to
determine where the mountain ends, because the world outside the
user’s view technically does not exist yet, it will be generated as the
user moves. One approach to solve that problem would be the use of
a function that describes the mountain backbone, but this function
should not rely on begin/end points, because they could not exist in
a certain time. If that function does not need any begin/end points,
at least it would have to rely on the position of the user in the virtual
world. If the function must be aware of some special points, those
points have to be previously processed, which would break the on
demand content generation concept.

In addition the algorithms are drastically affected by the fact that the
information they receive in a certain time may disappear altogether
in the next iteration, since the user can move and change the visible
content. Using the example of the mountain generation, a mountain
could present an abrupt end, because the points being used for the
content generation left the user’s view.

To circumvent these problems the content generation was divided
into three main stages: infinite terrain, continents and height gen-
eration. The on demand content generation affects differently each
of these stages and the problems and solutions related to each stage
are described in the following sections.

4.1 Infinite terrain

The main idea for the content generation is to allow the user look
at new content each time a significant movement is performed. As
the user walks, the tool must be able to identify where the observer
is located in the world in order to generate the content around that
position. To solve this problem, the player is able to look at the
screen and see a slice of the virtual world, however it has no explicit
divisions such as cells. The slice is described as a regular mesh as
figure 5 shows.

In order to texturize the sliced data a set of images is interpolated
and managed by the shading language GLSL [OpenGL 2007]. The
height value of the vertex defines the interpolation weight of each
texture. As a consequence, a sand texture has higher weight for
vertices featuring a low height value, for instance. Figure 6 shows
all the available textures.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

83



Figure 6: Set of image used for terrain texturization

Figure 7: Random planets generated with different seeds. (a) and
(b) maps featuring height value information; (c) map featuring only
information about what is water/land

4.2 Height generation

The main idea for the terrain height generation is the use of a para-
metric function that informs the height value of each vertex. The
function is seeded with the point location in the world. As a con-
sequence, the function is able to describe all the height information
in the world with no limitation concerning the world size. The pro-
cessing time is related to the size of the user’s view because the
function uses the point information to calculate its height value.
The height values are generated with a Perlin noise function.

4.3 Continents

The generation of continents and oceans has been proposed in or-
der to break the monotony of a landscape composed only by land
and to increase the similarity of the virtual world with real world
landscapes. The solution for the continents generation consists in
pre-process the land areas and store that information for later cal-
culations. With that approach, the on demand content generation
has been partially broken, since the continents are generated before
all the other content, but it ensures a better control over water/land
areas.

The continents generation is based on the planet map creator de-
scribed in section 2. That planet generator was used because it
has several parameterization options, such as the possibility to use
a seed to manage all the random calculations. Figure 7 (a), (b) and
(c) illustrates the results obtained with the planet generator.

4.3.1 Problems with continent generation

As previously explained in section 3.1, each entry of the MM is
mapped to several vertices in the virtual world. A direct conse-
quence of that mapping process is the generation of large areas fea-
turing straight land lines, as illustrated by figure 8. If there were
no hardware limitation and if it were possible to generate a MM
featuring the exact size of the virtual world, the matrix would con-
tain the necessary resolution for the tool to accurately determine
whether a vertex is land or not land, in a ratio of 1:1 (one MM
entry is mapped to one world vertex). This approach, however, is
not suitable because a matrix with such proportions consumes many
resources and processing time. Although the tool allows customiza-
tion of the MM size, tests showed that a MM featuring 800x800
as its size has enough information to be processed by all the other
algorithms.

All images showing Charack results were generated from a world
with 3x3 million vertices and a MM with size of 800x800. It
means that each MM entry represents 3750 vertices in the virtual
world. Figure 8 illustrates the results obtained by the tool when no
algorithm is used to generate extra content to fill the empty spaces
in the virtual world. This figure illustrates a place in the virtual
world that represents the transition between two different points of
the MM (a land point and a water point). To explain what is hap-

Figure 8: The result of no algorithm to generate extra content to
fill the discrepancies in the MM mapping process

pening, assume the tool is drawing the world at position (x, y,

z), which is the mapping result of an entry (i, j) in the MM,
which is described as land; as the tool increases the coordinate in
order to draw the landscape, each new position is mapped to the
MM. If the result of the mapping process of the new coordinate, (x
+ 1, y, z)) for instance, is still the entry (i, j) in the MM,
then the tool will again draw a land vertex on the screen. Assum-
ing that only at point (x + 10, y, z) the vertices start being
mapped to a different entry in the MM, such as (i + 1, j) (as-
suming it is described as land), then all points before the position
(x + 10, y, z) are drawn as water and all vertices after that
location are drawn as land.

Figure 8 shows clearly when the world coordinates start being
mapped to a different entry in the MM, which is when the tool
replaces the land rendering with the water rendering. As a con-
sequence of no algorithm being applied to generate content for that
transition area, the user will move along the coastline and will see
only straight lines.

4.3.2 Coastline disturbance

The mapping process of the vertices of the virtual world to the MM
produces very unrealistic landscapes. A real world beach has a nat-
ural curvature and is not likely to have a length of 20 Km in a per-
fectly straight configuration. Although the objective of this work
is not to create photo-realistic landscapes, such unreal beaches are
not acceptable. To circumvent this problem, a coastline disturbance
is applied to the locations where the mapping process is made be-
tween two MM points, one of them described as land and the other
one described as water. The algorithm is described below.

The MM has a complete description of what is land and what is wa-
ter in the virtual world. Each of its entries has a descriptor, which
tells the other algorithms what type of terrain one vertex of the vir-
tual world is after it is mapped to the MM. Charack features three
types of terrain: water, land (continent) and offshore (land in con-
tact with water). After the continents are pre-processed and stored
in the MM, it only contains information about land (continents) and
water.

From that moment, the first step of the coastline disturbance algo-
rithm is performed. Using the current MM as its input, the algo-
rithm scan each MM’s entries updating the descriptor of all entries
that represents coasts. A entry is classified as coast when at least
one of its neighbors is water. After the algorithm ends, the MM
contains the three types of terrain described before (water, land and
offshore). The next step to apply disturbance to the coastline is
the content generation based on the descriptor of each MM entry.
When the tool is creating content to be drawn on the screen, each
vertex being drawn is tested against its descriptor in the MM. If the
vertex is mapped to a land entry in the MM, then the function will
set a height value for that point. If the vertex is mapped to a water
entry in the MM, then the function will set the sea level height to
that point. Finally if the vertex is mapped to a offshore entry in the
MM, then the function will disturb the land/water information of

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

84



Figure 9: Coastline disturbance algorithm

Figure 10: Small heightmap generated by the coastline disturbance
algorithm

that vertex, which will result on a non-straight coastline. Figure 9
illustrates the algorithm.

The MM entries A and B have a descriptor indicating that they are
classified as a coast. Plan M describes the MM and plan V describes
the result of the mapping process between them. It is not described
in the figure, but each block of plan V is composed of several ver-
tices, while each block of plan M represents only one MM entry. The
MM entry C is mapped to a massive block of land in the plan V, as
its descriptor tells the tool that it is a entry described as land. The
entry A would also be mapped to a massive block of land, but with
the intervention of the coastline disturbance algorithm it is mapped
to a different configuration. During the content generation for the
vertices that are inside the block RA, the coastline disturbance al-
gorithm alters the land/water information for each vertex, so that
the block will not be composed of land or water vertices only, but a
combination of them instead.

The implementation of that process is based on a noise function
and random numbers with a parametric function deciding what is
land and what is water for all vertices described as a coast in the
MM. Using the vertex position in the block RA, the function maps
that information into a spectrum of values created by a Perlin noise
function. What the parametric function does is check if the hash of
the vertex being analyzed is inside or outside of the spectrum. The
process can be illustrated as a height test of a value against a small
heightmap (which is created as a result of the noise spectrum): if the
return of the noise function for that vertex is greater than a certain
value (which is the granularity of the block being analyzed), then it
is classified as land, otherwise it is classified as water. The higher is
the granularity of the block, the greater is the amount of land on that
location. Figure 10 illustrates the small heightmap generated by the
coastline disturbance algorithm when block RA is being processed.

4.3.3 Beaches

The coastline disturbance algorithm minimizes the problem of un-
realistic coastlines, but the outcome is not quite good enough.
When Charack is rendering a slice of the world, for each vertex
described as land a height value is set it; the same applies to the
vertices that are described as water, but in that case the height value

Figure 11: Beach generation algorithm

is always the same (the sea level). As a direct result of that ap-
proach if the tool is rendering a set of vertices which belongs to a
mountain and the next vertices are described as water at the MM,
the landscape will features a ”step”. It happens because the moun-
tain backbone was generated very close to the water, which means
that its rendering is abruptly interrupted when Charack finds ver-
tices described as water. Although there are cliffs in the real world,
they are not present in all coasts. To solve this problem, a special
algorithm is applied in order to create beaches in certain locations
of the world, which makes the generated landscape looks more re-
alistic.

The beach generation algorithm is performed right before the con-
tent is rendered on the screen. After Charack maps the vertices to
the MM and after the coastline disturbance algorithm is performed,
the result is a heightmap ready to be rendered. The heightmap is
treated by the beach creator algorithm before being drawn on the
screen, as figure 11. The procedure scans all the vertices in the
map and for each one its distance to a near water vertex is checked.
The vertices around the target are mapped directly to the MM, so
the only information that is used from the heightmap is the vertex
location in the world (which is necessary to map it to the MM). The
checking process is performed in four directions (right, left, up and
down) and it ends when a water vertex is found or when N vertices
were analyzed. After that, the four distances are added and used to
calculate the height of the beach. The possible results are:

• If the vertex has 4N as its distance (Figure 11, point B), it
means the tool has iterated through the four possible direc-
tions and found no water. In this case, the height value for the
vertex remains the same. It happens to all the vertices that are
within the continent or on the coast but away from the water:
they do not belong to the beach area and their height value is
defined by the height generator;

• If the vertex has a value smaller than 4N as its distance (Fig-
ure 11, point A), then its height value will be recalculated,
because the vertex is located at the beach. The greater is the
distance from that vertex to the water vertex, the greater is the
height value that will be applied. The height variation is cal-
culated within a range of [T,B], where T is the maximum
height and B is a minimum height value of all vertices in the
beach. The result of that approach is a beach featuring higher
height values near the continent and lower height values near
the water.

Figure 12 shows the results of the beach generator algorithm.

4.3.4 Island generator and beach disturber

The coastline disturbance and the beach generation algorithms
make Charack able to generate more realistic landscapes. The final
result, however, presents a well defined pattern, which is unusual to
happen in the real world, where the lines and landscapes are more
likely to follow a random patterns. If the player walks in the virtual
world only through the coast, he would see beaches with the same
configuration and no islands along the path. To avoid that problem,

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

85



Figure 12: Results of the beach generator algorithm

Figure 13: Results of the beach disturber algorithm

two new algorithms are applied to the coastline vertices: beach dis-
turber and island generator.

The beach disturber disturbs the distance used to calculate the wa-
ter vertices neighboring a certain vertex. Instead of using N as value
to calculate the distance from the vertex to the water, the beach dis-
turber uses the vertex position as a seed and generates a new value
that will be used as the distance. Using this technique, the beach
disturber is able to change the size and shape of the beaches, so
that certain regions may have a greater amount of sand than others.
Figure 13 shows the beach disturber results.

The island generator creates land portions in some MM entries.
After the MM is created and all the descriptors are configured,
the generator iterates through all entries described as coast and for
some of them it sets a flag describing that region as a place that
features islands. Each vertex mapped to that special regions of the
MM has its position used as a hash that is tested against a spectrum
created by a noise function. According to the test result, the vertex
is classified as land, so a group of vertices classified as land will
produce an island. The noise spectrum used for that are different
from that one used in the coastline disturbance algorithm, since the
expected outcome are small portions of land (islands). Figure 14
shows the island generator results.

5 Results

This section aims to evaluate each of the techniques used in the
content generation process, explaining the obtained results for each
approach. It is important to highlight that Charack’s purpose is not
the generation of real or photo-realistic content, but elements that
can be used to create a 3D game scene. A result is classified as
graphically acceptable if it can be integrated into a game and not
surprise the player in a negative way, such as a pyramidal mountain
instead of a smooth mountain.

Figure 14: Island generated by the island generator (beach area
has been influenced by the beach disturber)

Figure 15: Continents and oceans generated by Charack

5.1 Continents evaluation

The time spent for the continent generation is directly proportional
to the size of the specified MM. The reduction of the MM size
to 800x800 yielded significant performance improvements. As
a consequence, the smaller is the MM size, the more linear and
square are the coastlines of each continent. To avoid that problem,
it is possible to adjust the coastline disturbance algorithm in order to
make it produce more aggressive changes in the coastlines. Figure
15 shows the continents and oceans generated by the Charack.

5.2 Terrain height evaluation

The terrain height generated by Charack is fully customizable. The
tool has a built-in terrain height generator based on Perlin noise,
however it was designed for testing purposes only. The main focus
of the present work are the continents and the coastline generation,
so any activity related to terrain height generation was very super-
ficial and presents no contribution. Figure 16 shows the terrain
height created by the built-in generator.

5.3 Coastline evaluation

The coastline generation is composed of two main elements, a
global and a local one. The global one only uses data available
in the MM in order to create the coastlines, as described in section
4.3.1. The final result for that approach is a unreal straight coast-
line. Figure 17 shows two completely straight coastlines which has
no content generation algorithm applied to them.

After the coastline disturbance algorithm was introduced, Charack
started producing more acceptable landscapes. Figures 18 and
21 show small bays in some places of the coast. It happened be-
cause at those locations the coastline disturbance algorithm created
pieces of land towards the ocean and at the same time the beach dis-
turber reduced the amount of sand on the newly created land pieces.
Charack is also able to create gulfs, which are large bays, but it is
not possible to predict the exact location where those bays will hap-

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

86



Figure 16: Terrain heightmap created by Charack’s built-in gener-
ator

Figure 17: The interception of two coastlines with no extra content
being applied to them

pen because it depends on a set of specific values (location, beach
size, etc).

Figures 19 and 20 show the final result obtained with the combi-
nation of all the previously described algorithms: coastline distur-
bance, beach disturber and island generator.

5.4 Performance evaluation

All tests were performed running Charack on Windows Vista on a
Intel(R) Core(TM)2 Duo 1.66Gz, with 2Gb RAM and a graphics
card NVidia 8600 GT, using Microsoft Visual C++ 2008 Express
Edition to compile the source code. Figure 22 shows the time that
Charack takes to process each step on the virtual world generation:
height calculation for each vertex, coastline generation, beach gen-
eration and the rendering process. The X axis shows the world slice
size in vertexes, e.g. 200 means a regular mesh of 200x200 ver-
texes. The Y axis shows the time in miliseconds that Charack takes
to generate the respective world slice.

Figure 18: Small bay featuring rocks

Figure 19: Coastline featuring almost no beach area

Figure 20: Coastline featuring beaches with different sizes

Figure 21: Result of the coastline disturbance algorithm

Figure 22: Time that Charack takes to process each step on the
virtual world generation

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

87



If the world slice visible to the user has a size of 100x100 pixels,
then Charack takes about 200 ms to generate a complete land-
scape (the sum of times for all steps). This process is not executed
for each rendered frame, it is only performed when the user moves
too far from his initial position, what makes Charack remove the
old content from the memory and replace it with new data. If a
slice with size 300x300 pixels is used, then Charack takes about
1000 ms to generate the landscape. Most of the time is spent on
the beach creation because Charack has to analyze each vertex on
the screen and its four neighbours to decide if it is a beach point or
not.

The coastline generation is not significantly affected by the slice
size because the algorithm does not analyze an arbitrary amount
of vertexes to generate the content. It uses a combination of noise
functions and MM meta data in order to generate the required in-
formation.

According to the chart the slowest step performed by Charack is the
beach generation. The second slowest step is the coastline genera-
tion, closely followed by the height generation for each vertex.

6 Conclusion and future work

The automated creation of virtual worlds is one of the available
methods that can help developers to create games featuring detailed
environments in less time and using fewer resources. Unlike the
purely non-automated approaches where a game designer has to
design the entirely world, an automated approach is able to generate
a complete world with almost no human interference. There are
several researches on that subject using different approaches and
focusing on a wide range of results.

This paper presented a tool able to generate pseudo-virtual worlds
featuring different continents, coastlines and landscapes. Using a
combination of algorithms and methods for content management,
the tool is able to create beaches, islands, bays and coastlines simi-
lar to the ones found in the real world.

One of the Charack’s contributions is the ability to generate arbi-
trarily large pieces of land focusing on coastline generation. The
development of the present work aimed to handle separately the
content generation for all elements in the world (continents, ter-
rains, etc.). The main point in the work is the coastline generation,
not the content inside the continents. The final virtual world can
be huge: a player with a 100 vertices per second speed in a virtual
world generated with the maximum value allowed by a integer will
take about 1 year and 3 months to across the whole world.

One suggestion of future work is the enhancement of the height
generator, which currently produces a very simple result. Another
suggestion is the addition of new types to the MM’s descriptors,
such as deserts, forests and cities. All the new content can be cre-
ated tweaking Charack’s content generator algorithm in order to
produce variations in the current results, such as lowering the height
values of all vertices in an area described as a desert, or increasing
them in a volcanic area. Another suggestion is to port all the content
generation algorithms to the CUBA platform [nVidia 2009]. The
generation of each world vertex can be calculated separately, so the
CUBA parallelism capabilities can be fully used. It will drastically
improve Charack’s performance and it will allow the generation of
a bigger world slice to be displayed in the screen. Another sugges-
tion is the addition of rivers, which can be done with a new MM
descriptor and some changes in the content generation algorithm.

References

BLIZZARD ENTERTAINMENT, 2007. World of warcraft. Available
at: http://www.blizzard.com.

CLARK, N. L. 2006. Addiction and the Structural Characteristics
of Massively Multiplayer Online Games. Master’s thesis, Uni-
versity of Hawai, Hawai.

COHEN, M., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003.
Wang tiles for image and texture generation. In Siggraph 03
Conference proceedings.

DOLLINS, S. C. 2002. Modeling for the Plausible Emulation of
Large Worlds. PhD thesis, Brown University, United States of
America.

DUCHENEAUT, N., YEE, N., NICKELL, E., AND MOORE, R. J.
2006. Alone together exploring the social dynamics of massively
multiplayer online games. In CHI 2006 Proceedings.

GREUTER, S., PARKER, J., STEWART, N., AND LEACH, G., 2005.
Realtime procedural generation of ’pseudo infinite’ cities.

GRIFFITHS, M. D., DAVIES, M. N., AND CHAPPELL, D., 2003.
Breaking the stereotype the case of online gaming.

HÄGGSTRÖM, H. 2006. Real-time generation and rendering of
realistic landscapes. Master’s thesis, University of Helsinki,
Finlândia.

HÄGGSTRÖM, H., 2009. Skycastle - free multiplayer game engine
focusing on player creativity and world simulation. Available at:
http://www.skycastle.org/.

LINDA, O. 2007. Generation of planetary models by means of
fractal algorithms. Tech. rep., Czech Technical University.

LINTERMANN, B., AND DEUSSEN, O., 1998. A modelling method
and user interface for creating plants. Computer Graphics Fo-
rum.

MOGENSEN, T. ., 2009. Instant planet generator. Available at:
http://www.eldritch.org/erskin/roleplaying/planet.php.

MUSGRAVE, F. K., KOLB, C. E., AND MACE, R. S., 1989. The
synthesis and rendering of eroded fractal terrains. Computer
Graphics, Volume 23, Number 3, July 1989, pages 41 to 50.

NVIDIA, 2009. Cuda. Available at: http://www.nvidia.com/cuda.

OLSEN, J., 2004. Realtime synthesis of eroded fractal terrain for
use in computer games.

OPENGL, 2007. Opengl shading language. Available at:
http://www.opengl.org/documentation/glsl/.

PERLIN, K. 1985. An image synthesizer. In SIGGRAPH, 287–296.

PRZEMYSLAW, P., AND LINDENMAYER, A., 1990. The algorith-
mic beauty of plants. Springer-Verlag.

SONY ENTERTAINMENT, 2007. Everquest. Available at:
http://everquest2.station.sony.com/.

WANG, T., 2000. Integer hash function. Available at:
http://www.concentric.net/ Ttwang/tech/inthash.htm.

WEBER, J., AND PENN, J., 1995. Creation and rendering of real-
istic trees.

WHITTED, T. 1980. An improved illumination model for shaded
display. Communications of the ACM 23, 6 (June), 343–349.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

88


