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Abstract

Providing realistic, high-resolution and high-fidelity representation
of motions ia essential in the cloth simulation problem. In order to
make high resolution simulations tractable, several algorithms have
been developed that manage cloth-object interactions efficiently
through specialized data structures such as AABB trees. However,
implementation restrictions on single CPU architectures impose
certain limits on quality and performance in high-demanding simu-
lations, motivating the study of new implementation techniques. In
this paper we address several critical issues in high resolution cloth
simulation, enabling us to represent and simulate intricate folds and
wrinkles. We employ AABB hierarchies to optimize detection and
response in cloth-object collisions. By employing a multi-processor
approach on multi-threaded CPU and an emerging multi-core GPU-
CUDA architecture, we quantitatively evaluate the workload and
computational effort of the cloth simulation application. In addition
to this quantitative performance evaluation on multi-processor ar-
chitectures we illustrate the potential of our approach by presenting
a variety of high-quality and high-resolution simulations of cloth
behavior under different cloth-object interactions.
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1 Introduction

Deformable model animation aims at producing realistic motions.
Potential application problems include the simulation of muscle-
body motion, flow of viscous liquids such as oil spill, and
cloth simulation. Modeling cloth behavior has applications in
cinematography [Selle et al. 2009], in the games industry and in
clothing manufacture [Cordier et al. 2003]. Researchers from both
the textile industry and computer graphics have joined efforts on the
search for solutions to achieve high-fidelity cloth simulation [Hu
et al. 2009].

The task is challenging because cloth behavior is very complex and
highly non-linear. Faithful simulations require representing cloth’s
peculiar behavior regarding the variation of folds and wrinkles.
Several approaches exist to handle this issue and a most popular one
is based on physical principles [Hu et al. 2009]. It models cloth as
a mass-spring system with deformable surfaces that are discretized
into a polygonal mesh of nodes (particles, or mass-points). Nodes
are connected by springs that define the elasticity, deformation and
folds of the cloth [Zhibin and Zhanli 2006; Zhou et al. 2005]. The
simulation solution involves defining motion equations over this
deformable model, and performing several iterations to solve them.
Therefore, a high computational time is typically required to ensure
convergence and stability.

A plausible solution to solve the motion equations is to employ

implicit integration methods [Zhou et al. 2005]. Parallelizing
numerical computation in these methods is an attractive approach
to substantially accelerate computation time. However, applying
parallel techniques to cloth animation is challenging, because the
solution has very fine granularity, with some steps in the simulation
depending on results from previous steps.

Another aspect to consider in cloth animation is how to detect and
treat collisions, which occur in two distinct ways: cloth models
collide with objects in the scene, and self-collisions occur when
cloth interacts with its own surface. Detection must occur in real
time and the response must be displayed instantly. This detection
has high computational cost, as a simple piece of cloth may be
modeled by thousands of particles, and the collision detection
algorithm must control a large number of geometric entities such
as nodes, faces and edges. Many publications in the literature
have considered how to accelerate this process [Mezger et al. 2002;
Akenine-Moller et al. 2002; Maciel et al. 2007; Lv et al. 2007].

In this paper we address several cloth simulation issues. First,
we reduce the number of iterations required for collision
treatment through AABB hierarchies. As cloth is modeled
as triangular meshes consisting of particles and springs, this
hierarchical data structure was employed in order to reduce the
number of intersection tests at primitives’ levels. Second, we
quantitatively analyze the computational workload of a cloth
simulation application that employs a multi-processor approach on
a multi-threaded CPU and on an emerging multi-core GPU-CUDA
architecture. The multi-processor GPU-CUDA architecture enables
high-performance since recent GPU models offer extremely high
floating-point arithmetic throughput. Our efficient cloth simulation
implementation relies on high memory bandwidth utilization and
improved floating-point performance in the integration step. As
observed in the experimental section (Section 6) frame rate
generation is improved by up to 2.5. Finally, we report cloth
simulation experiments from both a quantitative and qualitative
perspectives producing high quality simulations for different mesh
sizes and diverse scene settings.

The paper is organized as follows. Section 2 summarizes previous
related work. Section 3 reviews important concepts on geometric
and physical properties employed for cloth modeling. Section 4
describes different approaches to detect and treat collisions.
Section 6 reports experimental results. Finally, conclusions are
presented in Section 7.

2 Previous work

Cloth animation methods relate to the representation of objects and
flexible surfaces. Simulations of cloth behavior may be achieved by
employing geometrical and physical methods. Physical simulations
require numerical methods to solve differential equations, and
implicit integration methods have been proposed to compute
particle positions in the simulation [Baraff and Witkin 1998]. Such
methods are efficient in generating the simulation, albeit requiring
a large number of iterations. Recent contributions employ semi-
implicit integration methods as an alternative [Baraff et al. 2003;
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Bridson et al. 2005; Zhou et al. 2005].

Moreover, there are techniques that reduce the number of algorithm
iterations required for handling collisions. Van Den Berge
employed bounding boxes for subdividing the three-dimensional
space embedding an object [Van Den Bergen 1997]. Bounding
boxes support optimization procedures such as searching, prior to
employing algorithms to detect and resolve collisions. Selle et al.
performed space segmentation using AABB trees, where parts of the
partitioned object are aligned to the coordinate system [Selle et al.
2009]. Volino and Thalmann proposed an algorithm for hierarchical
collision and self-collision detection and techniques to measure
their orientation considering geometrical properties [Volino and
Thalmann 2000]. Other authors employ data structures such as
Quadtrees and Octrees for the same purpose [Gottschalk et al.
1996; Wieland et al. 2001].

3 Cloth Modeling

Computer animation was initially performed on models of rigid
objects, and only later implementations were extended to handle
articulated objects. Nowadays a variety of modeling strategies
exist for both rigid and deformable objects. Animating deformable
objects requires geometric models that accommodate the change of
shape over time. In computer graphics this may be achieved with
numerical methods (finite element or boundary), physical models
of curves, surfaces or deformable solids.

There is a growing interest on physical models capable of
improving realism in depicting deformable objects. This section
describes a strategy that models cloth as polygonal meshes where
mesh vertices and edges are associated with a physical mass-spring
model. Numerical methods are then employed to simulate the cloth
object with a good degree of realism.

3.1 Polygonal meshes

A common solution for modeling cloth is to represent it as a mesh
described by a two-dimensional array of nodes M . Each matrix
element represents the coordinates x,y and z of a point on the cloth
surface. The physical simulation of a flexible mesh considers the
concept of elastic springs joining these nodes.

Such a model assumes forces being applied to mass-points nodes
of the mesh, generating new node positions to ensure its balance
whenever required. Many contributions in cloth animation are
based on this approach, as such meshes are easily manipulated and
very effective for describing deformations [Zhou et al. 2005; Zhibin
and Zhanli 2006; Selle et al. 2009].

The cloth model must be repeatedly evaluated at successive steps
during an animation. Therefore, modeling meshes with too much
detail becomes impractical due to the high computational cost
imposed. Typically, mesh detail is traded-off for simulation
performance, thus penalizing the representation of features typical
of real cloth.

Subdivision meshes may be employed to obtain smoother cloth
behavior at a low-performance penalty. Selle et al. apply
subdivision rules to generate new edges (called bending springs).
Given a simple polygonal mesh, they can improve mesh
detail [Selle et al. 2009]. Figure 1 exemplifies the outcome of a
subdivision and Figure 2 illustrates its application to a cloth model.

3.2 Physical Properties

Realistic animations are defined by dynamic properties that model
the behavior of cloth in terms of how the particles of its describing
mesh interact with external and internal forces. This approach has
been employed in several contributions from the literature [Zhou
et al. 2005; Zhibin and Zhanli 2006; Selle et al. 2009; Hu et al.
2009].

In general, computer animations consider four kinds of forces:
gravity, elasticity, curvature and restrictions. The resulting force
Fr at each grid point is defined by:

Figure 1: Mesh subdivision strategy for increased softness and
realism in cloth modeling.

(b)

Figure 2: Example of mesh subdivision for cloth simulation.
Figure 2(a) shows the polygonal mesh and Figure 2(b) shows a
rendering of the same object.

Fr = Fgravity + Felasticity + Fcurvature + Frestrictions (1)

However, the model is not necessarily restricted to these forces.
For example, to consider wind strength – or any other force of
interest – it is sufficient to include an additional component Fwind

in Equation 1.

Gravity force: This may be computed for each particle using:

Fgravity = m.g (2)

where Fgravity is the resulting force acting upon the body, m is the
particle’s mass and g denotes the acceleration of gravity at Earth’s
surface (approximately 10m/s2).
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Elasticity force: Each particle Pij in matrix Mij connects to its
neighbors by elastic springs, as shown in Figure 3. The force
applied by the elastic spring on a point of mass m obeys Hook’s
law:

Fspring = −km.(P − Pr) (3)

where km is the elastic spring constant (modified to consider
only displacements and not deformations), P denotes the particle’s
coordinates and Pr the particle’s coordinates when at rest. So,
elasticity strength may be defined as the sum of the spring forces
acting on particle P :

Felasticity =
∑

Fspring (4)

Figure 3: Elasticity force at a point Pij is modeled as the sum of
elastic spring forces from its neighbors.

The strength of bending or folding

This force determines the extent to which a surface may be bent
and folded, and is computed to generate the motion of a particle
as a function of the forces acting upon it from its neighbors. This
effect is simulated by placing angular springs among the neighbors
of particle P .

For example, Figure 3 shows the springs formed by P0, P and P4;
P1, P and P5; and so on. While at rest, the three points define
a line, and the angle defined by them is 180

◦
. These springs are

considered to have a customizable elasticity coefficient, called kc.

It is also necessary to consider the opposite forces acting on the
model, such as friction. Friction is the force resisting the relative
motion of solid surfaces and its direction is defined as the opposite
direction of the speed of the object’s movement. Its magnitude
is proportional to the magnitude of the normal force generated
by contact between rough surfaces. The force due to friction is
computed by:

Ffriction = µ.N (5)

where µ is the friction coefficient and N is the normal.

3.3 Integration Methods

Simulation models employ numerical integration techniques to
compute both the physical forces applied to the particles of
the cloth model and the particle’s displacements considering a
determined speed. Common approaches in animation are explicit
integration [Provot 1995; Zhibin and Zhanli 2006; Bayraktar et al.
2007], implicit integration [Baraff and Witkin 1998; House and
Breen 2000; Kang et al. 2000; Baraff et al. 2003] and semi-implicit
integration methods [Müller et al. 2004; S. Alzamora et al. 2008;
Selle et al. 2009].

Each mesh particle is associated with a pair of parametric
coordinates (u,v) on the cloth surface. They are useful to evaluate
the tension and transverse deformation exerted on the cloth at each
instant, and may be employed for texture mapping the cloth model.
Each particle has a variable position in the three-dimensional space.
Implicit Backward Euler integration is employed to integrate forces,
compute the updated particle positions and dynamically simulate

the cloth. The advantage of this method is its improved stability for
cloth simulation. It is defined by Equation 6:

X(t+ ∆t) = X(t) + f(X(t+ ∆t))(∆t) (6)

We substitute f(X(t + ∆t)) by a linear approximation over the
Taylor series basis, defining ∆X as X(t+ ∆t)−X(t):

∆X = f(X(t) + ∆t))(∆t) (7)

Approximating f(X(t) + ∆t)):

∆X = f(X(t) + f
′
(X(t))∆X))(∆t) (8)

Operating and isolating ∆X:

∆X =
(

1

∆t
I − f(X(t))

)−1

f(X(t)) (9)

where I is the identity matrix. Solving Equation 6 requires
computing the linear system described by Equation 9 and solving
the integration in the form X(t+ ∆t) = X(t) + ∆X .

Implicit methods require additional calculations, as defined in
Equation 9, being therefore computationally expensive. In the
simulation, each particle pi+1 depends only on its previous state pi
and on the particles directly connected to it, which enables resorting
to parallelization to reduce computational cost [Hughes et al. 2007].

4 Collision Detection and Response

4.1 Collision Detection

A collision detection algorithm identifies whether two or more
objects from the scene intersect each other. The goal is to avoid
overlap and collision between objects, and generate the folds and
deformations in the cloth. The algorithm must indicate whether
there is a collision, at which time in the animation it will happen
and the position of the objects that will come into contact [van den
Bergen 2003]. Each object in the scene may collide with any other
and an algorithm must compare each pair of objects, primitive-to-
primitive. Therefore, a time varying simulation of cloth composed
of many primitives with deformation properties is very costly.

Bounding volumes [van den Bergen 2003] are spatial data
structures aimed at reducing the number of checks made by the
validation and collision treatment algorithm [Millington 2007]. In
the following we discuss how to accomplish this.

4.1.1 Bounding Volumes

A bounding volume is a closed volume that completely contains
a given object or a part of it. If two objects have bounding
volumes that do not collide the objects within them are not in
contact. Bounding volumes should satisfy the following properties
[Millington 2007]:

• Have the minimum size required to encapsulats the object.

• Require minimum computational time for the overlapping
checks.

• Require low memory usage for representing the data structure.

• Require low computational cost in searching for collisions.

Several bounding volume representations exist [Ericson 2004], we
shall mention three of them in this paper: bounding spheres, axis
aligned bounding boxes (AABB) and oriented bounding boxes
(OOB). A bounding sphere is represented by its center and radius
and, consequently, overlap computation becomes a simple task of
checking whether the distance between the centers of two spheres
is less than the sum of their radiuses. Bounding boxes, on the other
hand, are represented by one central point and a set of distances
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from this point to the edges of the box (half the total length of the
box in the corresponding direction). Bounding boxes can be either
axis aligned or object oriented. The choice of the bounding volume
depends on the shape of the enclosed object, as depicted in Figure
4.

(a) Sphere (b) AABB (c) OBB

Figure 4: Bounding volumes delimiting the object (bird). Figure
4(a) illustrates a bounding sphere representation; similarly, AABB
and OBB volumes are shown in Figures 4(b) and 4(c), respectively.
Ideally a bounding volume for collision detection should adhere to
the object as tightly as possible.

AABBs volumes are three-dimensional rectangular boxes charac-
terized by being aligned to the coordinate system axes. The overlap
test is computationally quick and only requires a direct comparison
of different coordinate values [Ericson 2004]. Usually, an AABB
is represented by the maximum and minimum values for each co-
ordinate axis. Therefore, two AABBs only intersect if, and only
if, there is overlap on the three axes. Algorithm 1 describes the
procedure for testing overlap.

Algorithm 1: Overlap test

Input : AABB A, AABB B
Output: true if an overlap occurs. False otherwise.

begin
for i = 1 to 3 do

if A.maximum[i] < B.minimum[i] or
A.minimum[i] > B.maximum[i] then

return false;

return true
end

4.1.2 Bounding volume hierarchy

A bounding volume hierarchy is a spatial data structure in which
nodes store bounding volumes. The present work employs
hierarchies based on AABBs. The bounding volume is defined by
its center, its axes (oriented in 3D space) and its extension (length
on each axis). Building the AABB requires computing a minimal
and a maximal points from each triangle’s vertex in 3D space
[Ericson 2004]. An AABB hierarchy is obtained by a recursive top-
down subdivision of the represented object. At each recursion step
an AABB is computed for a smaller set of primitives, and the set
of primitives is subdivided with respect to a chosen partition plane
until each subset contains a single primitive element, as illustrated
in Figure 5. Therefore, a set of n primitives has n leaf nodes and
n − 1 internal nodes [Van Den Bergen 1997]. The tree holds a
computational cost of O(nlog(n)) in case of AABBH primitives
are distributed uniformly, which n is the number of primitives in
the model [Van Den Bergen 1997].

After a deformation on the cloth model results from an iteration
step, the AABBH rebalancing property is employed to maintain
primitives at the leaf nodes, thus avoiding a reconstruction of the
tree. Operations are applied only to leaf nodes, at a costO(n). Leaf
nodes are connected into a linked list so that they may be traversed
directly, without visiting non-leaf nodes, similarly to a B+tree data
structure [van den Bergen 2003].

4.1.3 Segment-Triangle Intersection

Computing segment-triangle intersection is important since, once
a a possible collision is detected on a sector, methods for

(a)

(b)

(c)

(d)

Figure 5: Subdivision’s representation of an object with AABB
hierarchy. Figure 5(a) shows the first level of the AABB tree and it
is bounding box. The goal is to divide the major axis of the outcome
bounding box, associated with its orthogonal plan. Figures 5(b)
and 5(c) show the levels 2 and 3, respectively. The final result is
encapsulated by a polygon as shown in Figure 5(d).

collision detection between primitives must be applied. Moller
proposed an efficient algorithm that performs the calculations
in 3D, employing the parametric triangle equations to find the
intersection point [Akenine-Moller et al. 2002]. This method may
be improved by applying the plane parametric equations and a
simple cross product.

Although this variation of Moller’s algorithm does not improve
precision of the collision computation, it reduces the number of
calculations required to determine the collision point. It employs
the barycentric coordinates of the triangle to determine whether an
intersection point belongs to the triangle or whether it is just part of
its containing plane.

Figure 6: Example of segment-triangle intersection.

Let us consider a segment S from point P0 to P1 and a triangle
T with vertices V0, V1 and V2, as in Figure 6. Triangle T is in
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plane P with normal vector ~n = (V1 − V0) × (V2 − V0). To get
an intersection between S and T , we must first get an intersection
between S and P . If S and P do not intersect, then neither do S and
T . However, if an intersection exists between the segment and the
plane, one must determine whether the intersection point belongs
to the triangle in order to get a valid intersection.

4.1.4 Plane-Triangle Intersection

Let us consider a triangle T defined by vertices P0, P1 and P2

contained on a plane p1 with normal vector ~n1, and a plane p2 with
normal vector ~n2. If p1 and p2 are not parallel they intersect on
a line L. If T intersects p2 the intersection will be a line segment
contained in line L. If T and p2 do not intercept each other, then
the three triangle vertices are on the same side of the plane. On the
other hand, if T and P2 do intersect, one of the points in T must be
on one side of the plane and the other two on the opposite one. This
may be verified by inspecting the sign of the distance computed
from the point to the plane. Suppose that P0 is on one side of p2
and that P1 and P2 are on the other side. Then the two segments
P0P1 and P0P2 intersect p2 at two points I1 and I2 which are on
the intersection line of p1 and p2. Segment I1I2 is the intersection
between triangle T and the plane p2 [Akenine-Moller et al. 2002].
Figure 7 illustrates this type of intersection.

Figure 7: Example of plane-triangle intersection.

4.1.5 Triangle-Triangle Intersection

Finally, it is necessary to check the triangle-triangle intersection
to avoid possible penetrations undetected by the segment-triangle
algorithm, thus ensuring the cloth does not enter into any object.
This process is simpler and faster than the segment-triangle
intersection, and consists in finding the triangles’ plane equations
and checking if an intersection exists between them. Consider two
triangles T1 and T2, each of them lying on a plane, p1 and p2,
respectively. Their intersection must be on a line of intersection
L between the two planes. Let the intersection between T1 and
p2 be R1 = I11I12, and the intersection between T2 and p1 be
R2 = I21I22. If either R1 or R2 is empty (that is, one triangle
does not intersect the plane of the other), then T1 and T2 do not
intersect. Otherwise their intersection is equal to the intersection
between the two segments R1 and R2 on line L [Akenine-Moller
et al. 2002]. The overlap test is performed with the six segments
from the triangles and finding one overlapped pair is sufficient to
detect a collision. Figure 8 shows this type of intersection.

4.2 Collision Response

Once a collision has been detected between two particles, their
position must be modified to proceed with the animation. Bridson et
al. proposed a strategy for updating the speed of particles using the
formulae of friction to compute their new position [Bridson et al.
2005]:

Vn = (Cn)2.Pn (10)

Vt = Pv − Vn (11)

Pv = −Vn + µVt (12)

Figure 8: Example of triangle-triangle intersection.

where Vn is the normal’s speed of the collision, Pn is the normal
at the particle, Cn is the surface normal at the collistion point, Vt

is the tangential velocity, µ is the friction coefficient and Pv is the
particle speed.

5 Implementation details

Graphics Processing Units (GPUs) are optimized for
computationally-intensive and highly parallel operations and
as such provide an interesting platform for computationally
demanding applications. The release of software development
kits such as the NVIDIA-CUDA has encouraged their use as a
computational unit to offload the CPU in application domains other
than graphics.

The CUDA programming model consists of both host (CPU and
cache) and device (GPU and video memory) functions. The former
are written in nearly standard C/C++, executed on CPU, and used
to call the latter, written in annotated C and executed on GPU so
as to accelerate highly parallel and computationally intensive tasks.
In the cloth simulation problem, single CPU architectures impose
limits on quality and performance for high demanding simulations.
Resorting to GPU programming is one approach to overcome these
performance limitations.

As discussed in Section 3 cloth is simulated as a network of springs
where each point is connected to a set of neighboring points,
defining a large mass-spring system of connected nodes. It worth
noticing that a large number of mass-spring simulations can be
handled in parallel. Nonetheless, problems involving neighborhood
information do not show good data locality properties and hence
are not easily mapped to massive parallel architectures. To solve
this problem we split the system into particle blocks, as depicted in
Figure 9, which can be dynamically assigned to threads. Zara et al.
proposed a similar strategy but implemented on a PC cluster. As
they shown this strategy is suited to irregular problems where the
computation task can not be split into small and equally weighted
computation processes [Zara et al. 2002].

In our implementation the cloth’s grid vertices are stored in
the video card memory, which can be directly accessed and
modified with CUDA. Hence, one may retrieve information relative
to many particles simultaneously with no need of moving data
between host and device. At a time instant t, positions, velocities
and accelerations of all particles are stored in three different
arrays. Employing a simple GPU matrix data structure allows
this information to be efficiently retrieved, and the forces exerted
by springs on the connected points are computed from Hook’s
law, as discussed in Section 3.2. By splitting each of these
three arrays into several blocks, each block as a shared object,
computation is performed on several particles simultaneously.
These arrays split into shared blocks are processed separately,
and local interactions are processed individually. Block-to-block
interactions are processed by parallel threads, each one dealing with
a pair of blocks, as illustrated in Figure 9.

6 Experiments

Our purpose is to effectively model the dynamic behavior of
the cloth under different scenes and objects. In this section we

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 101



Block 0 Block 1

Block 2 Block 3

Block 6 Block 7

Block 4 Block 5

lo
ca

l i
n
te

ra
ct

io
n
s

block-to-block interactionsmesh subdivision

Figure 9: The particle system split as a particles blocks.

present comprehensive cloth simulation experiments considering
both a quantitative and a qualitative perspectives. The experiments
consider three objects: a cuboid, a sphere and a toroid. We
assess different cloth model sizes and evaluate their visual outcome,
considering two alternative implementations, namely on CPU and
GPU. We also show that using multi-threaded programming on
GPU and CPU increased the speed of the implicit integration
method, and consequently, the whole frame generation rate. All
implementations are in C++ and core implementation adopts
standard POSIX thread library on CPU and NVIDIA CUDA on
GPU. Finally, Paraview [Law et al. 2001] was employed for scene
visualization and animation.

6.1 Experimental Setup

Experiments were performed on a computer Core2Quad 3.0GHz
with 8 GB RAM, video card Quadro FX 3800, 1024 MB, featuring
a 192-core NVIDIA R© CUDATM parallel computing architecture.
Table 1 lists the processor and compiler specifications employed in
the experimental setup.

Processor Type # of # of RAM Compiler
Cores Threads

Intel Core2Quad CPU 4 2 8 GB g++ 4.4.1
3GHz

Intel Core2Quad CPU 4 4 8 GB g++ 4.4.1
3GHz

Intel Core2Quad CPU 4 8 8 GB g++ 4.4.1
3GHz

NVIDIA FX GPU 192 768 1 GB nvcc 3.1
3800

Table 1: Compiler and processor specifications employed in the
experiments.

Table 2 summarizes the three cloth models considered, each with a
different grid resolution, number of particles and number of springs.

Name Resolution # Particles # Springs

Mesh 1 50 x 50 2.500 9.702
Mesh 2 100 x 100 10.000 39.402
Mesh 3 200 x 200 40.000 158.802

Table 2: Experiments performed with three distinct cloth models
(different grid resolution and mesh sizes).

6.2 Qualitative Performance

A qualitative performance analysis is accomplished by generating
several animations and renderings of scenes composed of the cloth
and rigid objects, considering a variety of complex interactions
among cloth and objects. Three scene geometries are considered:
in the first scene a cloth is thrown over the surface of a cube; in
the second the cloth is thrown over the surface of a sphere and
in the third scene it interacts with the surface of a toroid. These
experiments employed cloth models at three different resolutions:

50 x 50, 100 x 100 and 200 x 200. Representative results are
illustrated in Figures 10, 11, 12, 13, 14, 15 and 16. Figures show
that the cloth behavior is adaptable to any object. Better realism and
resolution are achieved when employing larger meshes. Figure 13
illustrates the cloth falling and then crashing into a smooth ball.

Figure 10: Cloth simulation with a mesh with resolution 50 x 50
and 2.500 triangles. This scene illustrates interaction of the cloth
with a cube and the floor.

Figure 11: Cloth simulation with a 100 x 100 resolution mesh and
10.000 triangles, illustrating interaction of the cloth with a cube.

6.3 Quantitative Experiments

In high-resolution cloth simulations employing the implicit
integration method the floating-point operations are the most
expensive computations. In this section we investigate the
performance of the implicit integration step in the proposed solution
by considering different numbers of threads running on CPU and
GPU. Notice that in all cases the algorithms running on the GPU-
CUDA produced identical results to those running on CPU.

Performance is measured as the relative speedup, expressed by
( time CPU
time GPU

). Figure 17 and Table 3 summarize the execution times
of the complete frame generation processes on both GPU and CPU.

The frame generation process demands higher computational
capability as mesh model sizes increase. On GPU the proposed
parallel program achieves higher speedup on larger problem sizes.
In the workload characterization analysis presented in Section 3.3
we highlighted the intense computational demand of the integration
method. GPUs provide optimal arithmetic operation capability
when SIMD operations are fully pipelined – which does not happen
when handling small model sizes. Moreover, on handling larger
mesh sizes one can start additional threads to hide memory access
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Figure 12: Cloth simulation with a 50 x 50 resolution mesh and
2.500 triangles. The sphere has a radius of 6 units and the cloth is
resting on the floor.

Figure 13: Cloth simulation using a mesh model with 10.000
triangles. In this scene the sphere was moved and detached from
the floor.

Figure 14: Cloth simulation using a mesh with 40,000 triangles,
cloth interacting with a sphere.

latency. Therefore, it is reasonable to argue that the proposed GPU
implementation scales well with the problem size.

Figure 15: Cloth simulation using a mesh model with 2.500
triangles, interacting with a toroid.

Figure 16: Cloth simulation with a 100 x 100 resolution mesh and
10.000 triangles, illustrating interaction of the cloth with a toroid.

Nome GPU (s) CPU (s) Speedup

Mesh 1 0.79 0.97 1.24
Mesh 2 4.18 10.45 2.50
Mesh 3 74.84 158.46 2.12

Table 3: Comparison of average execution times on GPU and CPU
for different cloth mesh sizes.

7 Conclusions

For decades simulation of physical objects has been object of
study in computer graphics, resulting in a dramatic evolution of
the techniques employed. Deformable objects such as fabrics,
cloth, or rubber balls may now be effectively modeled with
techniques that incorporate physical properties of object behavior,
described in terms of interaction with external and internal forces.
Simulations attempt to render realistic animations of fabrics and
cloth with appearance and characteristics similar to the real
world. In approaches that adopt computationally intensive implicit
integration methods to solve the simulation model, achieving
realism and high-throughput rates on large models is still an issue.

We addressed this problem in this paper. Collision treatment is
improved by employing AABB hierarchies, and motion generation
is accelerated by employing suitable integration methods efficiently
implemented on multi-threaded CPU and on an emerging multi-
core GPU-CUDA architectures. Our experiments have shown
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Figure 17: Comparing execution times for different numbers of
threads running on CPU and GPU. Figures 17(a), 17(b) and 17(c)
show meshes with resolution 50 x 50, 100 x 100 and 200 x 200,
respectively.

that using threads, both on CPU and GPU, ensures adequate
performance even for larger cloth models. Therefore, it is
reasonable to argue that it is now possible to handle high resolution
cloth simulations in real-time with efficient implementations on
GPU and multi-core architectures.
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