
A Method for Generating Emergent Behaviors using Machine
Learning to Strategy Games

Alex F. V. Machado Esteban W. Clua Bianca Zadrozny

Universidade Federal Fluminense, Instituto de Computação. Niterói/RJ, Brasil

Figure 1: Darwin Kombat, strategy game simulator developed for the Machine Learning experiments.

Abstract

This work proposes the use of machine learning for the
creation of a basic library of experiences, which will be
used for the generation of emergent behaviors for
characters in a strategy game. In order to create a high
diversification of the agents’ story elements, the
characteristics of the agents are manipulated based on
their adaptation to the environment and interaction
with enemies. We start by defining important
requirements that should be observed when modeling
the instances. Then, we propose a new architecture
paradigm and suggest what would be the most
appropriate classification algorithm for this
architecture. Results are obtained with an
implementation of a prototype strategy game, called
Darwin Kombat, which validated the definition of the
best classifier.

Keywords: Machine learning, emergent systems,
strategy games.

Authors’ contact:
alexcataguases@hotmail.com

{esteban,bianca}@ic.uff.br

1. Introduction

Machine learning studies the development of
techniques and algorithms that allow computers to
learn how to perform tasks based on empirical data.
One of the most commonly studied tasks in machine
learning is classification, which consists in mapping an
instance represented by a set of attributes into a class.
The learning is usually done using as input a database
of labeled instances also called an instance base [15].

For digital games there are many benefits and
reasons for using these techniques, such as adapting the
game to player actions or determining solutions for

problems that are difficult to predict in the
development process. As application examples, we can
cite: the adaptation of a computer character strategy
when playing against the human player character based
on its actions in a fight or shooting game; the definition
of the best profile for a football player that will be
acquired by a trainer which is computer-controlled, so
that the team performance can be in improved in a
management simulation game; the adaptation of the
race strategy of a vehicle to an unknown race circuit so
as to minimize fuel usage, time and accident risk in a
racer style game; among others.

In digital games, the learning process can be done
in two different ways, based on adaptive behaviors
[10]: online and offline learning. The online approach
shows more efficiency, since it implies in deciding
how the behavior of an agent must change, in response
to captured information from the world. The offline
solution is applied in more specific and well delimited
environments.

Among the most commonly used machine learning
techniques, we can highlight neural networks, genetic
algorithms, Bayesian algorithms and decision trees.
Typically game engines do not include imple-
mentations of such techniques, suggesting that
developers should use separate software packages. For
solving video game problems, there are few solutions
that incorporate the requirements usually demanded.
One of these packages is WEKA [17], which includes
many different machine learning algorithms

In general, the use of machine learning in digital
game development is either avoided or reduced
because it is considered of high risk. However this is
probably due to the fact that neural networks, which is
a hard to deploy technology, is the usual choice [16].

An exceptional commercial case that uses
classification approaches based on machine learning

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 17

strategies is the game Black and White [8][10]. In this
game, the data modeling is made based on
instantiations and learning rules are generated from the
induction of decision trees. An indirect adaptation,
classified as online learning, is done for determining
which objects are appropriated for feeding a creature.
With this strategy, this character is induced to choose
only the options that are good for his knowledge base.

Another important reference is the game Treasure
Hunt [14],which uses machine learning, decision trees
and Naive Bayes, applied to an NPC that will help the
player on his mission objectives achievements.

The main contribution and purpose of this work
consists on modeling the problems that use instance
bases focused on the classification problem, which
differs from solutions that are usually presented
[1][16], often related to neural network or genetic
algorithms approaches.

2. C4.5, Naive Bayes and M5P

Classifiers usually take as input a data set, and generate
as output a mathematical expression, rule set or a
decision tree that embodies the knowledge contained
within the data. The knowledge extracted can be used
either directly by the system or it can be applied to new
instances, not classified yet. Among many different
existing classifier learning methods, we chose to work
with the following:

• C4.5 decision tree learner, since it is one of
the most traditional learning algorithms based
on decision trees [15];

• Naïve Bayes, since it is one of the most
practical and well known probabilistic
methods, at least when it comes to
computational efficiency [15];

• M5P decision tree learner, since it allows real
numbers for the class, which turned out to be
more appropriate for our problem.

Each one of the algorithms works in a different

way. C4.5 infers a decision tree from the data, allowing
the tree to grow until if fits the training data as well as
possible. Then the algorithm prunes the decision tree
by eliminating branches that are not expected to be
useful for new examples [15].

Naive Bayes is a probabilistic learner which
calculates the probability of each class given the values
of the attributes, by assuming that the attributes are
independent of each other given the class. By using
this assumption, it can run very efficiently compared to
other probabilistic learners and still give accurate
results in many real problems [15].

M5P [8] is a reconstruction of Quinlan’s M5
algorithm [7] which has been designed for the
induction of trees of regression models. M5P generates

a conventional decision tree with linear regression
model at the leaves. Its main steps include the
induction algorithm that is used to build the decision
tree, the pruning which is done regressively from the
leaves and the smoothing procedure that is used to
avoid abrupt discontinuities between subtrees. This
method generates models that are compact and
relatively understandable.

The Naive Bayes algorithm produces probability
tables as output, which can be incorporated into
executing systems in real time. In a similar manner,
C4.5 produces decision trees that can be translated into
rules and also incorporated in real time. M5P can be
seen as a hybrid model since it is a combination of
decision tree with a linear function that allows it to
predict real values.

3. Creating an Intelligent Agent with
Learning for Games

A rational intelligent agent or simply intelligent agent
is a system designed to achieve a certain goal and
which is capable of perceiving its environment through
sensors and acting upon its environment through
actuators. Intelligent agents who can also learn, that is,
change their behavior over time according to the
results of their actions are known as Agents with
Learning [6]. Learning makes agents autonomous in
the sense that they are able to adapt to new situations
for which they have not been explicitly designed.

Intelligent agents are present in different aspects of
electronic game development, from the systems that
calibrate game level according to user performance up
to simple NPCs.

Modeling a system using the intelligent agent with
learning architecture eases system development as
whole. For this reason, here we have opted to use this
architecture integrated with a machine learning
module.

When defining the instance base for the machine
learning module, we followed some pre-processing
guidelines which are listed below [5]:

• Ordinal qualitative attributes should be

represented as numerical attributes instead of
categorical attributes. This allows the
algorithm to take advantage of the value
order, and as a consequence, less data will
generally be needed to learn a concept
satisfactorily. Example: the attribute
water_temperature {cold, warm, hot, very
hot} should be transformed to
water_temperature_numeric, with values
between 0 and 3.

• Restriction guarantees should be given to
avoid inconsistent data. We prevent the
insertion into the instance base of instances

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 18

that have inconsistent or out-of-bounds
values. Example: the agent_points with value
in 100 in a stage where it could reach at most
10 points.

• Aiming for dimensionality reduction. The
instance base should only have the attributes
that are deemed necessary for learning. This
will make learning easier and it will also
improve the running time, which is a requisite
for real time processing systems like digital
games.

4. A Development Framework

In this section we propose an architecture for the
development of game applications with machine
learning which makes use of free tools and
components. This framework is especially tailored to
digital games which are modeled used the intelligent
agent paradigm.

4.1 Tecnology

This framework integrates the following technologies:
Unity 3D (game engine), Microsoft Visual Studio
(server development IDE), C#, Weka and IKVM.

Weka[17] is a free open source machine learning
toolbox that is widely used among the developers in
this área. It provides an API and a standalone jar file so
that its algorithms can be used freely. The algorithms
we use in this paper (C4.5, Naïve Bayes and M5P)
have all been implemented within Weka. We note that
the C4.5 algorithm in Weka is called J48.

Unity3D 2.x [11] is a game development engine
which has the main components needed for designing
games rapidly, such as a physics engine, collision
systems, sound system and a high level programming
language based on C, among others.

Unity 3D has an interface for programming in
Mono. It incorporates key .NET components, including
a compiler for the C# programming language and a
complete suite of class libraries.

Since we opted for developing the game in
Unity3D, it was necessary to convert the standalone
Weka module into a DLL that would be interpreted by
Mono’s C#. For this integration, we used IKVM [2],
which provided the DLL generation and served as
reference for accessing the Java API from this DLL
(for this purpose we have used a standalone module
from IKVM as well).

Despite all the advantages of using Mono, the
version included in the Unity3D package had
incompatibilities with the Weka DLL interpreted by
IKVM in the experiments we ran. More specifically,
the problem was related to the garbage collector. To
circumvent this problem, we opted for integrating

Unity3D with a server module developed using Visual
Studio and making the connections through sockets.

We chose the Microsoft Visual Studio .NET
platform as the main server development tool, since it
is a Rapid Application Development (RAD) tool and
allows the interoperability between multiple
programming languages [9]. Within this platform, we
chose the C# programming language for incorporating
Weka’s DLL. C# offers all the resources of a modern
programming language, including support for objects,
interfaces, components and managed code.

4.2 System Architecture

For developing the agent architecture we gave special
attention to agent modeling and reinforcement
learning. This architecture was specially designed for
the creation of an agent capable of generating
strategies for a specific game (which shall be explained
in section 5). Nonetheless, the same basic principles
could be applied for the creation of different games.

As demonstrated in Figure 2, the agent in this
application is represented by AI SYSTEM module and
the environment is the UNITY3D GAME. We can
characterize it as an intelligent agent because it has a
sensor, the character score; a reasoner, with learning
modules and an instance base; and an actuator, which
generates a new character to be put into the
environment.

Figure 2. Intelligent agent architecture with learning applied

to the generation of new strategies for a game.

send
agent score

IKVM Interpreter

Instance Base

Socket Receiver

Socket Receiver

UNITY3D GAME (CLIENT)

AI SYSTEM (SERVER)

Weka Classifier Generator

War Game Simulator

Enemy Generator

Socket Sender

Agent Generator

Simple Avaliation

Algorithm

M5P

J48 or
Bayes

new test base
classification

First Instance Generation

Socket Sender

Socket Sender
send

agent attributes

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 19

The system starts in the IA SYSTEM module (First
Instance Generation), generating a new random
instance and sending it to the environment (UNITY3D
GAME) through sockets. We note that the system uses
on-line training and it does not have any classification
rule for the first instances.

In the environment the instance is incorporated to
the game graphical elements, evaluated and sent back
to the agent (character score), also through sockets.
From this point on, the process depends on the chosen
classification algorithm:

• In the case of M5P, this score is kept in the
instance base and serves as the base for
generating the classification function;

• In the case of Naïve Bayes or J48, the score
value is transformed in to a discrete value by
testing whether the value is above or below
the average. The values above the average of
all scores are considered “good”, whereas
values below the average are considered
“bad”. This new label is inserted into the
instance base so that we can run the classifiers
using them. This step is necessary because the
Naïve Bayes and J48 algorithms do not deal
with continuous class values in the
classification attribute.

Finally, the system generates a new individual pool,

the classifiers are used to choose good individuals and
they are sent to the environment, restarting the cycle. If
M5P is used, the system generates 10 times as many
individuals as needed and the new test base
classification module chooses the best ones. For J48
and Naïve Bayes, since there is no ranking from best to
worst (only a discrete “good” and “bad” classification),
we generate random individuals and select only the
ones with “good” classification.

Although we use classification algorithms, which
are usually used in a supervised learning setting, this
system can be seen as implementing a kind of
reinforcement learning strategy because classification
is applied repeatedly with the goal of improving an
agent generation strategy without direct supervision.
The classifier represents an agent generation strategy,
and in each round, it is used to generate agents. The
agents are rewarded with scores (rewards in
reinforcement learning) and the best ones are used in
the instance based for creating the classifier for the
next round. Since the environment is dynamic, this
allows the adaptation of the agent strategy to the
environment, thus improving the generation strategy.

5. A model for Machine learning
applied for strategy games

This session will present the implementation of a
strategy game using our proposed architecture. This
application will be used to evaluate classifiers in
different situations.

5.1 Game concepts

The prototype developed is called Darwin Kombat
(Figure 1) and can be classified as an action turn based
strategy game. This experimental version implements
only the simulation of simple agent reactions and the
agent generation with learning process.

The game starts with a battle environment (Figure
3), where two rival groups fight one against the other
with the objective of eliminating all their opponents.
Each group may have from 1 up to 40 components.
Each participant, represented by an agent, has a contact
weapon (sword) and a launching weapon (shot).

Figure 3 – The three different tests environments: (a) Zone-1,
(b) Mazze Zone, (c) Sea Zone. The first group of tests where

realized in Zone-1.

Each agent has a technical specification with the
following attributes: w_speed, move velocity; w_shot,

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 20

shoot velocity; w_life, resistance; w_sword, chance of
eliminating the enemy with a sword movement (when
close to the enemy); and w_delta-S, the space that is
capable to move before an random turn around. Each
one of this attributes may change from 1 (low) to 5
(high).

A Delta-S high does not yield necessarily a good
character. For this reason it is not used in calculating
the limit of the profile. This opens scope for the
creation of different strategies (next sections).

Each agent does not sense the presence of its
enemies or friends, so it is not capable to detect an
agent and then turn around in order to shoot on it. This
is not possible even when this opponent is close to it.
Despite this shot of an agent does not affect your ally.

There may be many different types of battle
environments (Figure 3 a, b and c). The simplest one is
called Zone-1, which has few obstacles in its paths and
no internal walls. The second scene is called Mazze
Zone and is a labyrinth that has high walls, not
allowing long shoots and for this reason creating a set
of small combat cells. The third and last environment
is called Sea Zone, that is an island on the sea.
Although this scene limits agents movements, itallows
targetting a shoot at any other environment agent and
depending on the situation may also throw an enemy to
the sea in case it is close to the border.

Moreover, in this last phase about 10% of the
characters dies initially by falling directly into the sea
(i.e. to increase the dynamics of the environment).

The battle is composed of two groups of agents: a
blue one, with fixed attributes defined by the developer
and a red one, with random attributes generated by the
agent generator system, based on the learning machine
definitions.

The game establishes a limit time for a battle. The
winner will be the one that kills all the opponent agents
or at least the largest number.

This prototype game represents a dynamic
simulation system for the enemies and the environment
and allows the generation of strategies for the teams.
The strategy of technical data of the agents is a
resource also used in different commercial games, such
as Winning Eleven: Pro Evolution Soccer [3] and
World of Warcraft [4].

5.2 Development Process

The 3D game itself was developed using the Unity
game engine and the decision of the characteristics was
done using .Net. The communication process was
developed using sockets, which did not generate
problems related to waiting time.

Given the option of validating on each frame the
last generated element or all of them, preliminary
experiments demonstrated that the largest the entrance
instance set, the better the classification process
performance (victories of the learning agent). For this
reason we chose to validate the entire instance set.

5.3 Experiments

We performed 30 different tests with each of the three
algorithms. The number of characters for each
launched team was 20, being this amount defined in
order to be big enough for a fast instantiation
accumulation for each cycle and small enough for
allowing a correct analysis of the evolution of the
established algorithm strategy. Each test was composed
of 10 phases, being the characters generated at the first
one with randomized characteristics and in the
following phases these attributes were regulated by the
classifiers.

The enemies (blue team) were configured with the
following technical characteristics: w_speed = 4,
w_life = 4, w_shot = 4, w_sword = 3 and w_delta-S =
3, where 1 is the lowest value and 5 the highest value.
The characters configuration generated by the
intelligent system totalized always 10 points, with out
the Delta-S.

5.4 Comparison between the Classifiers

In the experiment conducted by McQuiggan and Lester
[14] on evaluation of empathy between characters in a
game (RPG focused in the field of social networking),
we observed that the naive Bayes needed less instances
to acquire the knowledge in comparison with the
decision tree. In our experiment, the naive Bayes
obtained the same advantage over the classifier based
on decision tree (J48).

As can be seen in Figure 4, the y-axis represents the
number of dead enemies and its x-axis stage. Vertical
bars represent the standard deviation of the statistical
tests. The number of killed red agents was disregarded
in the graphs because in most cases was inversely
proportional to the number of enemies killed,
representing redundant information.

An unquestioned analysis is that both the
algorithms were successful: they learned how to
eliminate the opposing team. It is observed in ancestry
lines from the first test.

J48 has obtained the worst performance with the
largest standard deviation. The Naive Bayes proved to
be better than the first with the shunting line tending to
0. Despite this, M5P was the best of the three
algorithms.

This behavior is due to its numerical classification,
which guarantees the least loss of information (so
accurately) for the next generations (stages). While the

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 21

first two algorithms just map the set of attribute values
to a categorical target value.

Figure 4. Graphic evolution of J48, Naive Bayes e M5P

algorithms.

A very important piece of information that it is not
shown in the graphs arethe generated strategies
(detailed in next subsection). The J48 algorithm on
each test was able to generate a strategy and evolved it.
For example, in stage three, it produced the rule that
characters have to tend to be fast and high life and
maintained this strategy (or some derivation thereof)
until stage 10. Naive Bayes, due to its characteristic of
assuming the independence of attributes, only
emphasizes the good attributes without considering
their relationship with other attributes. Causing best
battalions generation (in comparison with J48)
although to possess personages with diversified
characteristics (and diversified strategy). The M5P
showed characteristics of both. In practice for the
games, depending on the game, this factor may have
great relevance since the developer will have to decide
between making an algorithm that "wins the game" or
that "keeps a team pattern characteristic", for example.

5.5 Emerging Behaviors Analysis

Through the games developed by Crocomo et al. in
[12] and [13] it has been demonstrated that machine
learning in games (in this case, evolutionary
algorithms) are capable of allowing strategies to
emerge from simple behaviors.

Through the resource management system for
generating strategies present in Darwin Kombat, we
can show that the strategy is able to adapt to the enemy
and environment.

Let us consider the tree generated in the fourth
phase of one of the J48 in the previous experiment,
which ensured a victory with 20 enemies killed:

w_shot <= 3: amateur

w_shot > 3

 | w_sword <=1: professional

 | w_sword > 1: amateur

It indicates that the new generation of characters

must have high w_shot and low w_sword, which
indicates a new generation of individuals who have a
very high firepower, speed and life therefore tend to be
high.

A new group of tests based on 5.3 parameters
subsection was conducted to demonstrate environment
adaptation. It was applied to the Mazze Zone and Sea
Zone stages and only with the M5P algorithm and
obtained the following result (Figure 5):

Figure 5. Graphic evolution of M5P algorithm in two other

environments.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 22

Although these two new tests have even more
dynamic components, M5P demonstrated evolution /
adaptation. Some models generated by the algorithm
(in tests with victory) can be checked below:

w_classificacao =

-0.43*w_life -0.40*w_shot +

0.5*w_deltaS +1.54

This example indicates that the generator has

stipulated that the attributes w_life and w_shot must
be low and the w_delta-S high. This means that other
attributes (w_sword and w_speed) will be high and,
due to the w_delta-S, the character will walk far before
turning randomly. It is concluded that “ninja” was
created one, a character who does not shoot and chase
the enemy. Appropriate for this stage of labyrinths, in
which the walls hinder the efficiency of release
(w_shot). In Sea Zone we could observe this other
model:

w_classificacao =

-0.20*w_speed -0.33*w_sword -

0.31*w_deltaS +1.43

This example shows the reverse: w_shot, w_life

and w_delta-S must be high. This means that it is not
good at move fast (as it may fall into the sea) and it is
more efficiently in eliminating enemies. This created,
therefore, a character which behaves like a "tank-of-
war".

6. Conclusion

This paper presents a study of emergency in strategy
games through the use of classical classifiers related to
machine learning.
From this study, we define key requirements to be
observed for use of learning in games, as system
modeling in intelligent agent form and some care in the
database instances preprocessing to ensure
performance in real-time processing.

We define a free development framework based on
an architecture centered on the tools Unity3D, MS
Visual Studio and Weka. On this architecture we
implemented the game Kombat Darwin and observed
the sprouting of emerging strategies. Through
experiments we demonstrate the advantages of using a
classifier with ordinal quantitative return (the M5P)
over its competitors based on qualitative attributes
classifiers (J48 and the Naive Bayes).

Acknowledgements

This work has been partially funded by Instituto
Federal de Educação, Ciência e Tecnologia do Sudeste
de Minas Gerais.

References

[1] BUGAJSKA, M.D., SCHULTZ, A.C., TRAFTON, J.G.,

TAYLOR, M., MINTZ, F.E., 2002. A hybrid cognitive-
reactive multi-agent controller. In: Proceedings of the
IEEE/RSJ Intl. Conference on Intelligent Robots and
Systems, EPFL, Lausanne, Switzerland.

[2] IKVM.NET, http://www.ikvm.net/
[3] WIKIPEDIA: Pro Evolution Soccer (series). At

http://en.wikipedia.org/wiki/Winning_Eleven
[4] WIKIPEDIA: Warcraft. At

http://en.wikipedia.org/wiki/Warcraft
 [5] TAN, N., STEINBACH, M., KUMAR, V., 2006. Introduction

to Data Mining, Addison-Wesley.
[6] RUSSELL, S. J., NORVIG, P., 2003. Artificial Intelligence:

A Modern Approach (2nd ed.), Upper Saddle River, New
Jersey: Prentice Hall, ISBN 0137903952.

[7] QUINLAN, R. J., 1992. Learning with Continuous Classes.
In: 5th Australian Joint Conference on Artificial
Intelligence, Singapore, 343-348.

[8] WANG ,Y., WITTEN, I. H., 1997. Induction of model trees
for predicting continuous classes. In: Poster papers of the
9th European Conference on Machine Learning.

[9] LIBERTY, J., 2001. Programming C#. O’Reilly.
[10] HOULETTE, R., 2003. Player Modeling for Adaptive

Games: AI Programming Wisdom 2, p. 557. ISBN
1584502894.

[11] UNITY TECHNOLOGIES: Unity 3D User Manual.
At www.unity3d.com/support/documentation/Manual
[12] CROCOMO, M. K., SIMÕES, E. V., 2008. Um Algoritmo

Evolutivo para Aprendizado On-line em Jogos
Eletrônicos. SBGames.

[13] CROCOMO, M. K., MIAZAKI, M. Simões, E. V., 2007.
Algoritmos Evolutivos para a produção de NPCs com
Comportamentos Adaptativos. SBGames.

[14] MCQUIGGAN, S. W., LESTER, J. C., 2007. Modeling and
evaluating empathy in embodied companion agents. In:
International Journal of Human-Computer Studies, v.65
n.4, p.348-360.

[15] MITCHELL, T. M., 1997. Machine Learning, McGraw-
Hill.

[16] CARVALHO, F. G., 2004. Comportamento em Grupo de
Personagens do Tipo Black&White. Dissertation. PUC-
Rio – Digital Certification N° 0210488/CA.

[17] HOLMES, G., DONKIN, A., WITTEN, I.H., 1994. Weka: a
machine learning workbench. In: Proceedings of the
1994. Second Australian and New Zealand Conference
on Intelligent Information Systems, Brisbane, Australia,
pp. 357-361.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 23

