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Figure 1: Darwin Kombat, strategy game simulator developed for the Machine Learning experiments. 
 

Abstract 
 
This work proposes the use of machine learning for the 
creation of a basic library of experiences, which will be 
used for the generation of emergent behaviors for 
characters in a strategy game. In order to create a high 
diversification of the agents’ story elements, the 
characteristics of the agents are manipulated based on 
their adaptation to the environment and interaction 
with enemies. We start by defining important 
requirements that should be observed when modeling 
the instances. Then, we propose a new architecture 
paradigm and suggest what would be the most 
appropriate classification algorithm for this 
architecture. Results are obtained with an 
implementation of a prototype strategy game, called 
Darwin Kombat, which validated the definition of the 
best classifier. 
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1. Introduction 
 
Machine learning studies the development of 
techniques and algorithms that allow computers to 
learn how to perform tasks based on empirical data. 
One of the most commonly studied tasks in machine 
learning is classification, which consists in mapping an 
instance represented by a set of attributes into a class. 
The learning is usually done using as input a database 
of labeled instances also called an instance base [15].  
 

For digital games there are many benefits and 
reasons for using these techniques, such as adapting the 
game to player actions or determining solutions for 

problems that are difficult to predict in the 
development process. As application examples, we can 
cite: the adaptation of a computer character strategy 
when playing against the human player character based 
on its actions in a fight or shooting game; the definition 
of the best profile for a football player that will be 
acquired by a trainer which is computer-controlled, so 
that the team performance can be in improved in a 
management simulation game; the adaptation of the 
race strategy of a vehicle to an unknown race circuit so 
as to minimize fuel usage, time and accident risk in a 
racer style game; among others.  
 

In digital games, the learning process can be done 
in two different ways, based on adaptive behaviors 
[10]: online and offline learning. The online approach 
shows more efficiency, since it implies in deciding 
how the behavior of an agent must change, in response 
to captured information from the world. The offline 
solution is applied in more specific and well delimited 
environments.  
 

Among the most commonly used machine learning 
techniques, we can highlight neural networks, genetic 
algorithms, Bayesian algorithms and decision trees. 
Typically game engines do not include imple-
mentations of such techniques, suggesting that 
developers should use separate software packages. For 
solving video game problems, there are few solutions 
that incorporate the requirements usually demanded. 
One of these packages is WEKA [17], which includes 
many different machine learning algorithms  
 

In general, the use of machine learning in digital 
game development is either avoided or reduced 
because it is considered of high risk. However this is 
probably due to the fact that neural networks, which is 
a hard to deploy technology, is the usual choice [16]. 
 

An exceptional commercial case that uses 
classification approaches based on machine learning  

 

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 17



strategies is the game Black and White [8][10]. In this 
game, the data modeling is made based on 
instantiations and learning rules are generated from the 
induction of decision trees. An indirect adaptation, 
classified as online learning, is done for determining 
which objects are appropriated for feeding a creature. 
With this strategy, this character is induced to choose 
only the options that are good for his knowledge base. 
 

Another important reference is the game Treasure 
Hunt [14],which uses machine learning, decision trees 
and Naive Bayes, applied to an NPC that will help the 
player on his mission objectives achievements.  
 

The main contribution and purpose of this work 
consists on modeling the problems that use instance 
bases focused on the classification problem, which 
differs from solutions that are usually presented 
[1][16], often related to neural network or genetic 
algorithms approaches. 
 

2. C4.5, Naive Bayes and M5P 
 
Classifiers usually take as input a data set, and generate 
as output a mathematical expression, rule set or a 
decision tree that embodies the knowledge contained 
within the data. The knowledge extracted can be used 
either directly by the system or it can be applied to new 
instances, not classified yet. Among many different 
existing classifier learning methods, we chose to work 
with the following: 
 

• C4.5 decision tree learner, since it is one of 
the most traditional learning algorithms based 
on decision trees [15]; 

• Naïve Bayes, since it is one of the most 
practical and well known probabilistic 
methods, at least when it comes to 
computational efficiency [15]; 

• M5P decision tree learner, since  it allows real 
numbers for the class, which turned out to be 
more appropriate for our problem. 

 
Each one of the algorithms works in a different 

way. C4.5 infers a decision tree from the data, allowing 
the tree to grow until if fits the training data as well as 
possible. Then the algorithm prunes the decision tree 
by eliminating branches that are not expected to be 
useful for new examples [15]. 
 

Naive Bayes is a probabilistic learner which 
calculates the probability of each class given the values 
of the attributes, by assuming that the attributes are 
independent of each other given the class. By using 
this assumption, it can run very efficiently compared to 
other probabilistic learners and still give accurate 
results in many real problems [15]. 
 

M5P [8] is a reconstruction of Quinlan’s M5 
algorithm [7] which has been designed for the 
induction of trees of regression models. M5P generates 

a conventional decision tree with linear regression 
model at the leaves. Its main steps include the 
induction algorithm that is used to build the decision 
tree, the pruning which is done regressively from the 
leaves and the smoothing procedure that is used to 
avoid abrupt discontinuities between subtrees. This 
method generates models that are compact and 
relatively understandable. 
 

The Naive Bayes algorithm produces probability 
tables as output, which can be incorporated into 
executing systems in real time. In a similar manner, 
C4.5 produces decision trees that can be translated into 
rules and also incorporated in real time. M5P can be 
seen as a hybrid model since it is a combination of 
decision tree with a linear function that allows it to 
predict real values. 
 

3. Creating an Intelligent Agent with 
Learning for Games 
 
A rational intelligent agent or simply intelligent agent 
is a system designed to achieve a certain goal and 
which is capable of perceiving its environment through 
sensors and acting upon its environment through 
actuators. Intelligent agents who can also learn, that is, 
change their behavior over time according to the 
results of their actions are known as Agents with 
Learning  [6]. Learning makes agents autonomous in 
the sense that they are able to adapt to new situations 
for which they have not been explicitly designed. 
 

Intelligent agents are present in different aspects of 
electronic game development, from the systems that 
calibrate game level according to user performance up 
to simple NPCs. 
 

Modeling a system using the intelligent agent with 
learning architecture eases system development as 
whole. For this reason, here we have opted to use this 
architecture integrated with a machine learning 
module. 
 

When defining the instance base for the machine 
learning module, we followed some pre-processing 
guidelines which are listed below [5]: 

 
• Ordinal qualitative attributes should be 

represented as numerical attributes instead of 
categorical attributes. This allows the 
algorithm to take advantage of the value 
order, and as a consequence, less data will 
generally be needed to learn a concept 
satisfactorily. Example: the attribute 
water_temperature {cold, warm, hot, very 
hot} should be transformed to 
water_temperature_numeric, with values 
between 0 and 3. 

• Restriction guarantees should be given to 
avoid inconsistent data. We prevent the 
insertion into the instance base of instances 
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that have inconsistent or out-of-bounds 
values. Example: the agent_points with value 
in 100 in a stage where it could reach at most 
10 points. 

• Aiming for dimensionality reduction. The 
instance base should only have the attributes 
that are deemed necessary for learning. This 
will make learning easier and it will also 
improve the running time, which is a requisite 
for real time processing systems like digital 
games. 

 

4. A Development Framework 
 
In this section we propose an architecture for the 
development of game applications with machine 
learning which makes use of free tools and 
components. This framework is especially tailored to 
digital games which are modeled used the intelligent 
agent paradigm. 
 
4.1 Tecnology 
 
This framework integrates the following technologies: 
Unity 3D (game engine), Microsoft Visual Studio 
(server development IDE ), C#, Weka and IKVM. 
 

Weka[17] is a free open source machine learning 
toolbox that is widely used among the developers in 
this área. It provides an API and a standalone jar file so 
that its algorithms can be used freely. The algorithms 
we use in this paper (C4.5, Naïve Bayes and M5P) 
have all been implemented within Weka. We note that 
the C4.5 algorithm in Weka is called J48. 
 

Unity3D 2.x [11] is a game development engine 
which has the main components needed for designing 
games rapidly, such as a physics engine, collision 
systems, sound system and a high level programming 
language based on C, among others.  
 

Unity 3D has an interface for programming in 
Mono. It incorporates key .NET components, including 
a compiler for the C# programming language and a 
complete suite of class libraries. 
 

Since we opted for developing the game in 
Unity3D, it was necessary to convert the standalone 
Weka module into a DLL that would be interpreted by 
Mono’s C#. For this integration, we used IKVM [2], 
which provided the DLL generation and served as 
reference for accessing the Java API from this DLL 
(for this purpose we have used a standalone module 
from IKVM as well). 
 

Despite all the advantages of using Mono, the 
version included in the Unity3D package had 
incompatibilities with the Weka DLL interpreted by 
IKVM in the experiments we ran. More specifically, 
the problem was related to the garbage collector. To 
circumvent this problem, we opted for integrating 

Unity3D with a server module developed using Visual 
Studio and making the connections through sockets. 
 

We chose the Microsoft Visual Studio .NET 
platform as the main server development tool, since it 
is a Rapid Application Development (RAD) tool and 
allows the interoperability between multiple 
programming languages [9]. Within this platform, we 
chose the C# programming language for incorporating 
Weka’s DLL. C# offers all the resources of a modern 
programming language, including support for objects, 
interfaces, components and managed code. 
 
4.2 System Architecture 
 
For developing the agent architecture we gave special 
attention to agent modeling and reinforcement 
learning. This architecture was specially designed for 
the creation of an agent capable of generating 
strategies for a specific game (which shall be explained 
in section 5). Nonetheless, the same basic principles 
could be applied for the creation of different games. 
 

As demonstrated in Figure 2, the agent in this 
application is represented by AI SYSTEM module and 
the environment is the UNITY3D GAME. We can 
characterize it as an intelligent agent because it has a 
sensor, the character score; a reasoner, with learning 
modules and an instance base; and an actuator, which 
generates a new character to be put into the 
environment. 
 

 
 
Figure 2. Intelligent agent architecture with learning applied 

to the generation of new strategies for a game. 
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The system starts in the IA SYSTEM module (First 
Instance Generation), generating a new random 
instance and sending it to the environment (UNITY3D 
GAME) through sockets. We note that the system uses 
on-line training and it does not have any classification 
rule for the first instances. 
 

In the environment the instance is incorporated to 
the game graphical elements, evaluated and sent back 
to the agent (character score), also through sockets. 
From this point on, the process depends on the chosen 
classification algorithm: 
 

• In the case of M5P, this score is kept in the 
instance base and serves as the base for 
generating the classification function; 

• In the case of Naïve Bayes or J48, the score 
value is transformed in to a discrete value by 
testing whether the value is above or below 
the average. The values above the average of 
all scores are considered “good”, whereas 
values below the average are considered 
“bad”. This new label is inserted into the 
instance base so that we can run the classifiers 
using them. This step is necessary because the 
Naïve Bayes and J48 algorithms do not deal 
with continuous class values in the 
classification attribute. 

 
Finally, the system generates a new individual pool, 

the classifiers are used to choose good individuals and 
they are sent to the environment, restarting the cycle. If 
M5P is used, the system generates 10 times as many 
individuals as needed and the new test base 
classification module chooses the best ones. For J48 
and Naïve Bayes, since there is no ranking from best to 
worst (only a discrete “good” and “bad” classification), 
we generate random individuals and select only the 
ones with “good” classification. 

Although we use classification algorithms, which 
are usually used in a supervised learning setting, this 
system can be seen as implementing a kind of 
reinforcement learning strategy because classification  
is applied repeatedly with the goal of improving an 
agent generation strategy without direct supervision. 
The classifier represents an agent generation strategy, 
and in each round, it is used to generate agents. The 
agents are rewarded with scores (rewards in 
reinforcement learning) and the best ones are used in 
the instance based for creating the classifier for the 
next round. Since the environment is dynamic, this 
allows the adaptation of the agent strategy to the 
environment, thus improving the generation strategy. 
 

5. A model for Machine learning 
applied for strategy games 
 
This session will present the implementation of a 
strategy game using our proposed architecture. This 
application will be used to evaluate classifiers in 
different situations. 

5.1 Game concepts 
 
The prototype developed is called Darwin Kombat 
(Figure 1) and can be classified as an action turn based 
strategy game. This experimental version implements 
only the simulation of simple agent reactions and the 
agent generation with learning process.  
 

The game starts with a battle environment (Figure 
3), where two rival groups fight one against the other 
with the objective of eliminating all their opponents. 
Each group may have from 1 up to 40 components. 
Each participant, represented by an agent, has a contact 
weapon (sword) and a launching weapon (shot). 
 

 
Figure 3 – The three different tests environments: (a) Zone-1, 
(b) Mazze Zone, (c) Sea Zone. The first group of tests where 

realized in Zone-1. 
 

Each agent has a technical specification with the 
following attributes: w_speed, move velocity; w_shot, 
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shoot velocity; w_life, resistance; w_sword, chance of 
eliminating the enemy with a sword movement (when 
close to the enemy); and w_delta-S, the space that is 
capable to move before an random turn around. Each 
one of this attributes may change from 1 (low) to 5 
(high). 
 

A Delta-S high does not yield necessarily a good 
character. For this reason it is not used in calculating 
the limit of the profile. This opens scope for the 
creation of different strategies (next sections). 
 

Each agent does not sense the presence of its 
enemies or friends, so it is not capable to detect an 
agent and then turn around in order to shoot on it. This 
is not possible even when this opponent is close to it. 
Despite this shot of an agent does not affect your ally. 
 

There may be many different types of battle 
environments (Figure 3 a, b and c). The simplest one is 
called Zone-1, which has few obstacles in its paths and 
no internal walls. The second scene is called Mazze 
Zone and is a labyrinth that has high walls, not 
allowing long shoots and for this reason creating a set 
of small combat cells. The third and last environment 
is called Sea Zone, that is an island on the sea. 
Although this scene limits agents movements, itallows 
targetting a shoot at any other environment agent and 
depending on the situation may also throw an enemy to 
the sea in case it is close to the border.  
 

Moreover, in this last phase about 10% of the 
characters dies initially by falling directly into the sea 
(i.e. to increase the dynamics of the environment). 
 

The battle is composed of two groups of agents: a 
blue one, with fixed attributes defined by the developer 
and a red one, with random attributes generated by the 
agent generator system, based on the learning machine 
definitions. 
 

The game establishes a limit time for a battle. The 
winner will be the one that kills all the opponent agents 
or at least the largest number. 
 

This prototype game represents a dynamic 
simulation system for the enemies and the environment 
and allows the generation of strategies for the teams. 
The strategy of technical data of the agents is a 
resource also used in different commercial games, such 
as Winning Eleven: Pro Evolution Soccer [3] and 
World of Warcraft [4]. 
 
5.2   Development Process 
 
The 3D game itself was developed using the Unity 
game engine and the decision of the characteristics was 
done using .Net. The communication process was 
developed using sockets, which did not generate 
problems related to waiting time.  
 

Given the option of validating on each frame the 
last generated element or all of them, preliminary 
experiments demonstrated that the largest the entrance 
instance set, the better the classification process 
performance (victories of the learning agent). For this 
reason we chose to validate the entire instance set. 
 
5.3   Experiments 
 
We performed 30 different tests with each of the three 
algorithms. The number of characters for each 
launched team was 20, being this amount defined in 
order to be big enough for a fast instantiation 
accumulation for each cycle and small enough for 
allowing a correct analysis of the evolution of the 
established algorithm strategy. Each test was composed 
of 10 phases, being the characters generated at the first 
one with randomized characteristics and in the 
following phases these attributes were regulated by the 
classifiers. 
 

The enemies (blue team) were configured with the 
following technical characteristics: w_speed = 4, 
w_life = 4, w_shot = 4, w_sword = 3 and w_delta-S = 
3, where 1 is the lowest value and 5 the highest value.  
The characters configuration generated by the 
intelligent system totalized always 10 points, with out 
the Delta-S. 
 
5.4   Comparison between the Classifiers 
 
In the experiment conducted by McQuiggan and Lester 
[14] on evaluation of empathy between characters in a 
game (RPG focused in the field of social networking), 
we observed that the naive Bayes needed less instances 
to acquire the knowledge in comparison with the 
decision tree. In our experiment, the naive Bayes 
obtained the same advantage over the classifier based 
on decision tree (J48).  
 

As can be seen in Figure 4, the y-axis represents the 
number of dead enemies and its x-axis stage. Vertical 
bars represent the standard deviation of the statistical 
tests. The number of killed red agents was disregarded 
in the graphs because in most cases was inversely 
proportional to the number of enemies killed, 
representing redundant information. 
 

An unquestioned analysis is that both the 
algorithms were successful: they learned how to 
eliminate the opposing team. It is observed in ancestry 
lines from the first test. 
 

J48 has obtained the worst performance with the 
largest standard deviation. The Naive Bayes proved to 
be better than the first with the shunting line tending to 
0. Despite this, M5P was the best of the three 
algorithms.  
 

This behavior is due to its numerical classification, 
which guarantees the least loss of information (so 
accurately) for the next generations (stages). While the 
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first two algorithms just map the set of attribute values 
to a categorical target value. 
 

 
Figure 4. Graphic evolution of J48, Naive Bayes e M5P 

algorithms. 
 

A very important piece of information that it is not 
shown in the graphs arethe generated strategies 
(detailed in next subsection). The J48 algorithm on 
each test was able to generate a strategy and evolved it. 
For example, in stage three, it produced the rule that 
characters have to tend to be fast and high life and 
maintained this strategy (or some derivation thereof) 
until stage 10. Naive Bayes, due to its characteristic of 
assuming the independence of attributes, only 
emphasizes the good attributes without considering 
their relationship with other attributes. Causing best 
battalions generation (in comparison with J48) 
although to possess personages with diversified 
characteristics (and diversified strategy). The M5P 
showed characteristics of both. In practice for the 
games, depending on the game, this factor may have 
great relevance since the developer will have to decide 
between making an algorithm that "wins the game" or  
that "keeps a team pattern characteristic", for example. 
 

5.5   Emerging Behaviors Analysis 
 
Through the games developed by Crocomo et al. in 
[12] and [13] it has been demonstrated that machine 
learning in games (in this case, evolutionary 
algorithms) are capable of allowing  strategies to 
emerge from simple behaviors. 
 

Through the resource management system for 
generating strategies present in Darwin Kombat, we 
can show that the strategy is able to adapt to the enemy 
and environment. 
 

Let us consider the tree generated in the fourth 
phase of one of the J48 in the previous experiment, 
which ensured a victory with 20 enemies killed: 
 
w_shot <= 3: amateur 

w_shot >  3 

    |     w_sword <=1: professional 

    |     w_sword > 1: amateur 

 
It indicates that the new generation of characters 

must have high w_shot and low w_sword, which 
indicates a new generation of individuals who have a 
very high firepower, speed and life therefore tend to be 
high. 
 

A new group of tests based on 5.3 parameters 
subsection was conducted to demonstrate environment 
adaptation. It was applied to the Mazze Zone and Sea 
Zone stages and only with the M5P algorithm and 
obtained the following result (Figure 5): 
 

 
Figure 5. Graphic evolution of M5P algorithm in two other 

environments. 
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Although these two new tests have even more 
dynamic components, M5P demonstrated evolution / 
adaptation. Some models generated by the algorithm 
(in tests with victory) can be checked below: 
 
w_classificacao = 

-0.43*w_life -0.40*w_shot + 

0.5*w_deltaS +1.54 

 
This example indicates that the generator has 

stipulated that the attributes w_life and w_shot must  
be low and the w_delta-S high. This means that other 
attributes (w_sword and w_speed) will be high and, 
due to the w_delta-S, the character will walk far before 
turning randomly. It is concluded that “ninja” was 
created one, a character who does not shoot and chase 
the enemy. Appropriate for this stage of labyrinths, in 
which the walls hinder the efficiency of release 
(w_shot). In Sea Zone we could observe this other 
model: 
 
w_classificacao = 

-0.20*w_speed -0.33*w_sword -

0.31*w_deltaS +1.43 

 
This example shows the reverse: w_shot, w_life 

and w_delta-S must be high. This means that it is not 
good at move fast (as it may fall into the sea) and it is 
more efficiently in eliminating enemies. This created, 
therefore, a character which behaves like a "tank-of-
war". 
 

6. Conclusion 
 
This paper presents a study of emergency in strategy 
games through the use of classical classifiers related to 
machine learning.  
From this study, we define key requirements to be 
observed for use of learning in games, as system 
modeling in intelligent agent form and some care in the 
database instances preprocessing to ensure 
performance in real-time processing. 
 

We define a free development framework based on 
an architecture centered on the tools Unity3D, MS 
Visual Studio and Weka. On this architecture we 
implemented the game Kombat Darwin and observed 
the sprouting of emerging strategies. Through 
experiments we demonstrate the advantages of using a 
classifier with ordinal quantitative return (the M5P) 
over its competitors based on qualitative attributes 
classifiers (J48 and the Naive Bayes). 
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