
LOD terrain rendering by local parallel processing on GPU 
 

Alexandre Valdetaro
1
    Gustavo Nunes

1
    Alberto Raposo

1
    Bruno Feijo

1
    Rodrigo de Toledo

2 

 
1
Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Dept. of Informatics, Brazil 

2
Federal University of Rio de Janeiro (UFRJ), Dept. of Computer Science, Brazil 

 

               
         (a)                      (b) 

            
         (c)                      (d) 
 

Figure 1: Terrain wireframe models and corresponding final visualization generated by the proposed technique running on an 

Nvidia GTX480 and an Intel i7 core. (a) and (b): 65536 x 65536 height map, area of 8 x 1012 m2 with precision of 40m x 40m, at 

52-109 fps. (c) and (d): height map 2048 x 2048, area of  4.4 x 1010 m2 with precision of 100m x 100m, at 347-399 fps. 

 

 

Abstract 
 

In this paper, we present a new technique for highly 

efficient terrain rendering using continuous view-

dependent Level-of-Detail based on hardware 

tessellation unit found in modern GPUs. Our technique 

is based on parallel local processing, in the sense that 

the results at each terrain patch do not depend on 

results already obtained at other patches. This patch-

by-patch processing uses no hierarchical structure 

whatsoever, what makes it specifically tailored for 

GPU-based LOD terrain and is highly scalable. 

 

Authors’ contact: 
avporto@tecgraf.puc-rio.br 

gbnunes@tecgraf.puc-rio.br 

abraposo@tecgraf.puc-rio.br 

bfeijo@inf.puc-rio.br 

rtoledo@dcc.ufrj.br 

 

Keywords: LOD terrain, GPU 

 

1. Introduction 
 

 Terrain rendering at interactive rates is essential for 

GIS applications, flight simulators, ground vehicle 

simulators, and games. However, despite the advances 

of the last decade, well-balanced control between high 

image quality and high processing time is still a 

challenge. A recent work (Asirvathan and Hoppe 2005) 

reports 90 fps for an interactive flight over a 20-billion-

sample height map (216,000 x 93,600), but several 

restrictions are applied. Astonishing visual fidelity and 

automatic LOD are promised by Direct X11 

tessellation support for the new generation of graphics 

cards (NVIDIA 2010), but the use of this facility is not 

straightforward, and innovative LOD techniques are 

yet required. 

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 169



 Terrains are a unique type of model, which is 

represented by a height map – a set of height samples 

over a planar domain. A naive approach for terrain 

rendering is to create a regular polygon grid and 

displace its vertices according to the height map, which 

is neither efficient nor scalable. 

 Algorithms for efficient terrain rendering have been 

proposed for over a decade, mostly involving 

hierarchical structures associated with LOD and 

culling techniques. Good surveys can be found 

elsewhere (De Floriani et al. 1996) (Pajarola and 

Gobbetti 2007). 

 Efficiency is required locally, as a percentage of the 

terrain may have constant height and does not need to 

be tessellated. However, the vertices should not be 

reduced naively, because there may be portions of the 

terrain that have a high frequency height variation – 

what demands a refined mesh for a reliable 

representation. The surface mesh must be 

automatically adapted to selectively refine or coarsen it 

according to the camera viewpoint. This requires a 

view-dependent LOD control that keeps consistent 

connectivity (i.e. no cracks) and smooth animation (i.e. 

no shimmering or popping artifacts). However, most 

real-time vertex splitting and edge collapsing 

(predominant in LOD techniques) require sequential 

CPU algorithms to update data-structures and, as a 

consequence, they are hard to be implemented 

efficiently, although there are some exceptions, such as 

(Losasso and Hoppe 2004). There is also the possibility 

of using the Geometry Shader, which has neighboring 

access and can update data structures residing in video 

memory. However, these approaches are very complex, 

because the mesh continuity needs to be preserved. 

Parallel view-dependent LOD control based on 

geometry shaders of modern GPUs has been recently 

proposed for arbitrary meshes (Hu et al. 2010). This 

control can be adapted to terrains, but the complexity 

of the solution is not significantly reduced. 

 Scalability is another critical issue when dealing 

with massive height maps. In this case, during close-up 

navigation, the viewer should receive the maximum 

possible refinement (i.e. one quad for every sample), 

which creates a critical overhead. Terrain rendering 

algorithms should be highly scalable. It has always 

been imperative to use some kind of hierarchical 

structure in order to navigate a terrain at highly 

variable scales. However, processes of building and 

accessing these data structures mean less 

computational efficiency and, sometimes, a burden to 

the CPU-GPU communication. Another type of 

scalability refers to the capacity that parallel algorithms 

should have to accommodate the increasing number of 

processing units made available in successive GPU 

generations. 

 In this paper, we present a new technique for highly 

efficient terrain rendering using continuous view-

dependent Level-of-Detail based on hardware 

tessellation unit found in modern GPUs. Our technique 

is based on parallel local processing, in the sense that 

the results at each terrain patch do not depend on 

results already obtained at other patches. This patch-

by-patch processing uses no hierarchical structure 

whatsoever, what makes it specifically tailored for 

GPU-based LOD terrain and is highly scalable. 

 This paper is organized as follows. Section 2 

discusses related work. An overview of the proposed 

approach is presented in section 3. The characteristics 

of the proposed model are presented in sections 4 e 5. 

Section 6 presents some implementation details. The 

results are shown in section 7 followed by a conclusion 

section. 

 

2. Related Work 
 

 Multiresolution techniques for terrain rendering can 

be classified into three basic classes: 

 

(i) multiresolution models over irregular meshes 

(De Floriani et al. 1996), and  

(ii) multiresolution models that exploit a certain 

semi-regularity of the data (Pajarola and 

Gobbetti 2007). 

(iii) hybrid multiresolution models that use a 

regular structure for irregular meshes(Toledo 

et. al 2001). 

 

 Following a classification proposed by Pajarola and 

Gobbetti (2007), the second class of models can be 

grouped into 3 main lines: 

 

[1] straightforward triangulations, such as tiled 

blocks (e.g. Falby et al. (1993)) and nested 

regular grids (e.g. Losasso and Hoppe (2004) 

and Asirvatham and Hoppe (2005)), 

[2] triangulations based on trees (e.g. Lindstrom 

et al. (1996) and Duchaineau et al. (1997)). 

and 

[3] cluster triangulations (e.g. Schneider and 

Westermann (2006), Cignoni et al. (2003), 

and Levenberg (2002)). 

 

 The first line uses regular grids, so they are 

scalable, simple to implement, and specially tailored 

for graphics hardware. The second line uses meshes 

with semi-regular connectivity, which relies on more 

powerful data structures. The third line works with 

regular or semi-regular contiguous portions of the 

mesh forming square or triangle patches. These patches 

are tessellated within the GPU with minimum CPU 

communication. 

 The model proposed in this paper uses a regular 2D 

grid of square patches (called tiles) that are 

independently tessellated by the GPU. This approach 

classifies the model as a cluster triangulation but with 

characteristics of simplicity found in straightforward 

triangulations. The key difference of our work from all 

the other techniques is that our system is the first to 

perform real-time LOD terrain rendering without using 

any kind of hierarchical data structure.  

 Non terrain-specific LOD strategies are also 

applicable to terrain cases. Many of those rely on the 

Geometry Shader, and can be very efficient. There are 

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 170



GPU-based methods such as (Hu et al. 2010) (DeCoro 

and Tatarchuk 2007) and (Ji et al. 2006). Even though 

such strategies are GPU-based and very efficient, they 

rely on complex hierarchical structures and conditions 

for mesh updating to avoid mesh fracture. 

 Most of the new GPU-based proposals for 

multiresolution models avoid precomputation steps, 

but still require to traverse the entire representation at 

every frame (Ji et al. 2006) (DeCoro et al. 2007). A 

notable exception is the work by Hu et al. (2010), 

which, however, uses a hierarchical data structure – 

what makes it more complex than our system. To 

traverse the entire representation at every frame is not 

appropriate for dynamic change of the terrain – a 

critical issue in 3D games. In our model, the terrain can 

be deformed dynamically by direct manipulation of the 

height map with no extra burden to the system. 

 Our system performs parallel local processing 

based on hardware tessellation unit found in modern 

GPUs. Hardware tessellation is not something new. 

ATI and Xbox 360 game developers have had the 

opportunity to use it since 2005 at least. DirectX 11, 

recently launched in the market, brings tessellation 

support as a native feature. However, in 2007, ATI 

extended the Direct3D 9 API to provide access to the 

tessellation functionality via a wrapper API. 

 Despite all the previous advance in tessellation 

hardware, LOD terrain researchers seem not be aware 

of the problems game developers face to use this 

functionality. Indeed, current Xbox games have not 

being extensively reporting the use of this 

functionality. We think that the reasons for this lack of 

popularity are the problems to control shimmering and 

popping artifacts emerging from the straightforward 

use of tessellation hardware. The present paper 

proposes a model to overcome those difficulties 

through simple control and error criteria. We can find 

some similarity of our criteria with techniques 

proposed by Tatarchuk et al. (2010). However, our 

approach is broader than the one found in that 

reference, because we calculate a minimum and 

maximum subdivision for the edges and also for the 

center of every patch. 

 Our model establishes a clearer framework for the 

practice of LOD terrain rendering by local parallel 

processing. 

 To the best of our knowledge, no other current 

work in the literature provides a way to implement a 

robust and efficient LOD terrain rendering without 

hierarchical data structures. Also no other work 

establishes a clear framework for local parallel 

processing of terrain rendering. 

 

3. Approach Overview 
 

 Refining the tiles view-dependently and 

continuously is a challenging problem, especially if the 

mesh tiles should not be refined the same way. We 

must guarantee mesh continuity. Edges of adjacent 

tiles must have equal number of subdivisions, 

regardless of each connected tile's number of sub-

quads. 

 In order to refine the mesh on-the-fly, our approach 

makes use of the Tessellator pipeline stage introduced 

in recent GPUs (NVIDIA, 2010) (Tatarchuk et al. 

2010), which is able to subdivide a tile (i.e. a square 

patch) in up to 4096 sub-tiles (also called “quads”). 

Tessellation and all its supporting stages are performed 

in parallel on the GPU, and the tessellation patterns are 

all performed by the fixed function part of the pipeline. 

Therefore, the idea is to tessellate the tile 

independently of the results of the other tiles, 

establishing a true local parallel processing. 

 We can achieve this independency by defining a 

regular grid in which an edge shared by two tiles has 

the same value of tessellation factor (called 

TessFactor).  

 

 We define tessellation reference points (Figure 2) 

and the tessellation factor for them is given by: 

 

                    i = 1, 4        Eq. 1 

 

where hi is the height value corresponding to the point 

i, view is the camera position and 
2
h is the second-

order derivative of the height map h(u,v) corresponding 

to the tile. The location of a reference point on an edge 

corresponds to the middle of the edge. The fifth point 

is at the center of the tile, and its tessellation is given 

by: 

                     

where      is the maximum height value of the 

samples inside the tile. 

 One of the principles behind Eq. 1 is that the 

relation between hi and view should establish a 

minimum value of TessFactor (Tmin) that guarantees an 

accurate tessellation from the camera’s viewpoint. For 

example, if the camera is too far away from the patch 

and hi is low, no tessellation will be necessary around 

the point i. Another principle underlying Eq. 1 is that 


2
h can be used to establish an upper bound for the 

TessFactor (Tmax) to guarantee that patches will not be 

overly tessellated. For example, no tessellation is 

required for a flat terrain (
2
h=0). On the other hand, 

steep cliffs require high tessellation factors. According 

to these principles, Eq. 1 should calculate a TessFactor 

value in the interval [Tmin,Tmax]. 

 The calculation of an edge TessFactor depends on 

the function 
2
h of the adjacent tile. However, this 

restriction does not destroy the local processing nature 

 
 

Figure 2. Tessellation reference points (four points in the 

middle of the edges and one at the patch center). vi is a patch 

vertex 

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 171



of the proposed method. Furthermore, we consider 

some simplifications in Eq. 1 that transform the 

calculation of the influence of 
2
h into a quite simple 

procedure. 

4. Analysis the Height Map 
  
4.1 Fractures Identification 

 
 A flat terrain would only need one primitive to be 

represented. However, real terrains have irregularities 

(such as steep cliffs) that need more geometry to be 

truthfully rendered. In this paper, we call these 

irregularities “fractures” (because of their “edge” 

look). 

 The process of finding fractures consists in 

averaging the derivatives of the height field in the 

horizontal and vertical direction (Figure 3). The 

calculation of the Laplacian 
2
h is not acceptable 

because the Laplacian is extremely sensitive to noise. 

Furthermore, we want a more simplified way of taking 

in account the steep variations of the height field. We 

propose a combination of two Sobel operators. The 

magnitude of the gradient vector calculated by the 

Sobel operator over the height map represents the 

height variation at a given pixel. However, the gradient 

is not enough to determine a fracture. 

 

 Places that should be viewed as fractures must have 

a change of height variation. In this paper, we estimate 

this rate by applying a Sobel operator over the gradient 

field obtained by the first Sobel operator. The new 

gradient values can be viewed as a “height acceleration 

map” (HAM, for short) that can be used to identify 

fractures. At the rendering phase, our algorithm needs 

to consult height accelerations in order to determine 

maximum refinement, which will be detailed in section 

5. 
 
4.2 Tile Size 

 
 The tile size is determined by the user, who decides 

how many samples from the height map one sub-tile 

(i.e. a quad) should cover. We have the most refined 

case when every quad covers one sample. 

 In real cases, a height map does not always require 

that every sample has one quad to be represented. 

However, if the density of texels is greater than the 

density of vertices of the tessellated patch, some 

undesirable patterns and shimmering artifacts may 

occur. These unwanted effects always occur when the 

sampling frequency (quad vertices) is too different 

from the signal frequency (texel density). 

 In our model we eliminate these problems by 

considering that 1 quad always covers 1 texel. In our 

system, this is guaranteed by a MIP mapping 

operation. 

 

 

5. View-dependent LOD 
 

5.1. Maximum Refinement: Tmax 
 

 Our first concern is not to over-tessellate parts that 

do not require refinement. Intuitively, a flat terrain 

poses no need for further tessellation, so every tile that 

contains a nearly-flat part of the terrain should not be 

refined even when close-up. Flat terrain can be 

identified by the height acceleration map (HAM) 

presented in section 4.1. Also we need to identify 

fractures associated to the tile by looking over the 

HAM. In these two cases, we do not need an exact 

expression for Eq. 1, but only a reasonable 

proportionality between acceleration and TessFactor. 

We propose the following equation: 

 

                           Eq. 2 

 

where HAMmax is the maximum value of height 

acceleration associated over the tile and g can be a 

logarithmic function or the square root function. Figure 

4 illustrates Eq. 2. In practice, HAMmax is within a 

range of values that do not contain the extremes of the 

domain interval. 

 

 Eq. 2 causes no burden on the complexity of the 

proposed algorithm. When the tessellation reference 

point is on a tile edge, the algorithm selects the biggest 

value of Tmax between the two adjacent tiles. 

 

 
 

 
Figure 4. TessFactor as a function of HAM. g is not defined 

for T < 1, because the TessFactor range is [1,64] 

 
 

Figure 3. The top patch has low first and second derivative. 

The bottom patch has high first derivative and low second 

derivative. The middle patch has high second derivative. 

Second derivatives denote places that require refinement. 

 

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 172



 
 
 
 
5.2. Minimum Refinement: Tmin 
 

 Another issue to be addressed is the minimum 

refinement required even from a long distance. A real 

example is a terrain part containing a peak. Every tile 

when viewed sideways from distance will be flat. 

Therefore, the terrain representation from long 

distances would have a whole tile as its deepest 

refinement, which is not a truthful representation. 

Thus, we need to estimate a minimum refinement per 

tile (Tmin) based on the angle between camera and the 

tile's normal. 

 Tmin is obtained from the control of the 

approximation error. It is common in the literature to 

measure the approximation error of a tessellated mesh 

by its deviation at the vertex. Duchaineau et al. (1997) 

and Lindstrom and Pascucci (2002) measured this 

deviation in the screen space. We also use the screen 

space, but in a different way. Figure 5 illustrates the 

proposed process, where we successively interpolate 

the point that should correspond to the maximum 

height h covered by the tile. We should notice that this 

maximum value (h) does not necessarily occur on one 

of the tessellation reference points (Figure 2). At each 

tessellation factor the point moves a little step towards 

the correct value. The deviation is monitored in the 

screen space and the process stops when the deviation 

is less than an allowed error   . If the process is a 

recursive one, the depth of the recursion is the value of 

Tmin. 

 

 However, the recursive process is not necessary, 

because a good estimate of Tmin can be obtained by 

observing that       is proportional to 2
T
 . Without loss 

of generality, we can assume that 

 
  

  
                                                                       Eq.3 

 

and substitute Eq. 1 by the following equation:  

 

         
  

  
                 Eq.4 

 

5.3. Distance to Camera 
 

 Now, the value of the TessFactor for a tessellation 

reference point i is obtained from a calculation based 

on the camera distance d, keeping them inside the 

bounds of the maximum and minimum values. Here we 

assume an inverse proportionality between TessFactors 

and camera distances. Also we assume that there is a 

value of camera distance (dmax) that if d < dmax then T 

should be equal to Tmax. Considering these assumptions 

we propose the following equation to substitute Eq. 1: 

 

  
        

 

        if  d  [dmax , dmin]                   Eq. 5a 

 

                  if  d < dmax                                Eq. 5b 

 

     
     

     
                                                 Eq. 5c 

 

Figure 6 illustrates Eq. 5. 

 

 

6. Implementation 

 
 A coarse grid needs to be passed to the GPU so it 

can be tessellated later. The grid size is calculated 

based on the tile size as discussed in section 4.2. 

Besides position, we need also to pass the height map 

textures coordinates corresponding to each vertex of 

the quad. 
 
6.1 Height acceleration map 
 

 Given a terrain represented by a height map H, our 

first goal is to find the rate of change of each texel in 

 
Figure 5 Process to calculate Tmin, which stops when the 

projected error  is equal to the allowed error   . h is the 

maximum heigh value. 

 
Figure 6 TessFactor as a function of the camera distance d 

(Eq. 5) 

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 173



H. In order to obtain such value, we use an approach 

based on the Sobel operator (Sobel and Feldman 1968). 

Two 3x3 kernels are convolved with H to calculate 

approximations of derivatives - one for horizontal and 

one for vertical changes. Assuming that    and    are 

the corresponding horizontal and vertical derivatives 

approximations, the calculation are as follows: 

 

    
      
            
      

     

                                                                            Eq. 6 

                              
        
        
        

     

 

where * represents a convolution operation in two 

dimensions. At each point in the image, the gradient 

magnitude is obtained by combining the two 

approximations: 

 

                                 
     

                         Eq. 7 

 

 A new magnitude gradient map M is created. Each 

texel of M has the D value corresponding to the 

respective point at H. The same process is repeated 

with M to calculate approximations of the second 

derivative which we will call height acceleration map 

(HAM). The process to generate the HAM is similar to 

other image processing algorithms and it can be easily 

parallelized in the GPU using pixel shaders (Mitchell 

2002). 

 

6.2 Transferring the HAM to the GPU 
 
 The new GPU pipeline based on the Shader Model 

5.0 works with the concept of patches, which in our 

case is a tile of the terrain. The tessellation factors must 

be determined per patch at the Hull Shader stage. 

 Every patch needs four informative values (each 

one in a texture channel): HAMmax value, maximum 

height h , the texel position x of h, and the texel 

position y of h. Then a texture H with four data 

channels is created. The first channel receives the 

HAMmax. The second channel receives the maximum 

height value h. The third and forth channel receives the 

corresponding position (x,y) of the texel. 

 

 
6.3 Terrain Displacement 
 
 After the mesh is tessellated, the following pipeline 

stage is the Domain Shader. The Domain Shader is 

invoked for each new vertex generated by the 

Tessellator. The Domain Shader receives the four 

initial patch vertices v1,v2,v3,v4 and two normalized 

coordinates ( [0..1] ), u and v, which represent the 

generated vertices of that patch. To find the world 

position of the new vertex we linearly interpolate 

between the patch vertices, using u and v as 

interpolation factors. The same procedure is done with 

the vertex texture coordinates. After that, the vertical 

displacement of the vertex is sampled from the height 

map using the new vertex texture coordinates. 

 

7. Results 
 
 Our tests were executed on an Intel Core i7 920 

with an Nvidia GTX480 and 6GB of RAM. We started 

with a 2048x2048 height map, which is equivalent to 

the map of Rio de Janeiro (             with a 

highest detail of       . We used no frustum culling , 

which will not be the case in real applications. 

 
 Figures 7 and 8 shows the results for the 2048 x 

2048 case (see Figures 1c and 1d in the first page). The 

results showed that just by being able to explore the 

Tesselator, without applying any LOD algorithm, our 

rendering is already much superior to a regular CPU 

based terrain algorithm in terms of fps, as can be seen 

in the two lower curves of Figure 7. In this case, both 

curves presented the same number of triangles (Figure 

8). When comparing a straight view-dependent LOD 

with our technique, we are able to maintain consistent 

frame rates independent of the viewer position (Figure 

7). Moreover, the triangle count is significantly 

reduced with our technique (Figure 8). 

 
 

Figure 7 Frames per second (fps) for the case in Figures 1c 

and 1d. “Straight view-dependent LOD” does not use Tmax, 

“No LOD with Tesselator” uses TessFactor 64 for the entire 

grid, “No LOD without Tesselator” is only a reference (the 

case where the entire mesh is transferred from CPU to GPU 

and fps < 2 )  

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 174



 
 

 Figure 9 presents fps values for the case of 

65536x65536 height map, which is equivalent to the 

map of Brazil (8          with a highest detail of 

     . The result shows that our system is able to 

provide a consistent rendering of a massive terrain 

case. Such result indicates that our technique is 

applicable for the majority of the available height maps 

nowadays. 

 
 
8. Conclusion and Future Work 
 

 In this paper, we present a new technique for 

massive terrain rendering using tessellation hardware, 

with no hierarchical structures. Our technique is 

capable of rendering massive height maps with 

interactive frame ratings and is very simple to 

implement. Also we present a true local parallel 

processing, in the sense that the results at each terrain 

patch do not depend on results already obtained at 

other patches. 

 With this approach we are able to determine, on-

the-fly, the minimal tessellation needed for a minimal 

screen space error. Keeping the minimal possible 

refinement, we can reduce subdivision overheads. 

Consequently, on areas where deep refinement is 

required, we can use the tessellation hardware in its 

full potential. Making the best use of the tessellation 

hardware, we drastically minimize the CPU-GPU bus 

overhead with just a small set of primitives being 

transferred. Our algorithm is linearly scalable, while 

some other models present logarithmic hierarchical 

algorithms. However, our constant is very small due to 

the extensive usage of the hardware tessellation. In our 

tests, using the tessellation hardware we could render 

models in order of     triangles at interactive frame-

rates with an error tolerance of 3 pixels. In any other  

older CPU Level-of-Detail approach this case would 

correspond to a prohibitive 5.0GB of data being 

transferred each frame between CPU and GPU. The 

continuous non-popping photorealism of the terrain is 

guaranteed by a smooth geomorphing and edge-

splitting provided by the fixed tessellator stage of the 

GPU. 

 As a future work, we intend to create a hierarchy of 

terrain tiles that is able to keep the edges continuity. 

With such structure, the system would be able to select 

for every part of the terrain which level of the 

hierarchy to use. Thus the primitive count can be 

reduced drastically for massive terrains. 

 
Acknowledgements 
 

The authors would like to thank CNPq, CAPES, 

FAPERJ, Tecgraf, and ICAD/VisionLab for the 

financing support. 

 

 

References 
 
ASIRVATHAM, A. AND HOPPE, H., 2005. Terrain rendering 

using GPU-based geometry clipmaps. M. Pharr and R. 

Fernando (eds.), GPU Gems 2, Addison-Wesley, pp. 27-

45. 

 

CIGNONI, P., F. GANOVELLI, E. GOBBETTI, F. MARTON,  F. 

PONCHIO AND R. SCOPIGNO, 2003. BDAM: batched 

dynamic adaptive meshes for high performance terrain 

visualization In: Computer Graphics Forum, vol. 22, no. 

3, pp. 505–514, 2003.  

 

DE FLORIANI, L., MARZANO, P., PUPPO, E., 1996. 

Multiresolution models for topographic surface 

description. The Visual Computer, 12(7), pp. 317–345. 

 

DECORO, C. AND N. TATARCHUK, 2007. Real-time mesh 

simplification using the GPU. In: Proceedings of the 

2007 Symposium on Interactive 3D Graphics and Games 

(I3D ’07), pp. 161–166, 2007 

 

DUCHAINEAU M., M.WOLINSKY, D. E. SIGETI, M. C. MILLER, 

C. ALDRICH, AND M. B. MINEEV-WEINSTEIN, 1997. 

ROAMing terrain: real-time optimally adapting meshes. 

In: Proceedings of the IEEE Conference on Visualization 

(VIS ’97), pp. 81–88, 1997 

 

FALBY, J., ZYDA, M., PRATT, D., MACKEY, L., 1993. NPSNET: 

Hierarchical data structures for realtime 3-dimensional 

visual simulation. Computers & Graphics, 17(1), pp. 65–

69. 

 

Figure 9. Frames per second (fps) for the 65536 x 

65536 case in Figures 1a and 1b. 

 
Figure 8. Triangle count for the same case of Figure 7. 

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 175



HU, L., SANDER, V.P., HOPPE, H., 2010. Parallel View-

Dependent Level-of-Detail Control. IEEE Transactions 

on Visualization and Computer Graphics, Vol 16, No. 5, 

pp. 718-728. 

 

JI, J., E. WU, S. LI, AND X. LIU, 2006. View-dependent 

refinement of multiresolution meshes using 

programmable graphics hardware. In: The Visual 
Computer, vol. 22, no. 6, pp. 424–433, 2006. 

 

LEVENBERG, R., 2002. Fast view-dependent level-of-detail 

rendering using cached geometry In: in Proceedings of 

the IEEE Conference on Visualization (VIS ’02), pp. 

259–266, 2002. 

 

LINDSTROM, P., D. KOLLER, , W. RIBARSKY AND HODGES, 

L.F., 1996. Real-Time, Continuous Level of Detail 

Rendering of Height Fields. In: in Computer Graphics 

(Proceedings of SIGGRAPH 1996), pp. 109–118, 1996. 

 

LINDSTROM, P. AND V. PASCUCCI 2002. Terrain simplification 

simplified: A general framework for view-dependent out-

of-core visualization. In: IEEE Trans. Visualization and 

Computer Graphics, vol. 8, no. 3, pp.239–254, 2002. 

 

LOSASSO, F. AND HOPPE, H., 2004. Geometry clipmaps: 

Terrain rendering using nested regular grids. In: Proc. of 

ACM SIGGRAPH 2004, ACM Trans. on Graphics, 23(3), 

pp. 769-776. 

 

MITCHELL, J. L., 2002, Image processing with 1.4 pixel 

shaders in Direct 3D. In: Direct3D ShaderX: Vertex and 

Pixel Shader Tips and Tricks. Engel, W. F. (Ed.), 

Wordware, pp. 258-269. 

 

NVIDIA, 2010. NVIDIA GF100. Available from: 

www.nvidia.com/object/IO_89569.html [Accessed 7 

August 2010]. 

 

PAJAROLA, R. AND GOBBETTI, E., 2007. Survey on Semi-

Regular Multiresolution Models for Interactive Terrain 

Rendering. The Visual Computer, 23(8), pp. 583–605. 

 

SCHNEIDER, J., WESTERMANN, R., 2006: GPU-friendly high-

quality terrain rendering. Journal of WSCG 14(1-3), pp. 

49–56. 

 

SOBEL, I.  AND G. FELDMAN 1968. A 3x3 isotropic gradient 

operator for image processing. In: Presentation for 

Stanford Artificial Project, 1968. 

 

TATARCHUK, N., BARCZAK, J. AND BILODEAU, B., 2010. 

Programming for real-time tessellation on GPU, AMD 

whitepaper. Available from: 

http://developer.amd.com/gpu_assets/Real-

Time_Tessellation_on_GPU.pdf [Accessed 7 August 

2010]. 

 

TOLEDO R., GATTASS M., VELHO L.,  2001. Qlod: A data 

structure for interative terrain visualization. Technical 

report, VISGRAF Laboratory, 2001. TR-2001-13. 

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November  8th-10th, 2010 176




