
A Simple Architecture for Digital Games On Demand using low
Performance Resources under a Cloud Computing Paradigm

Diego Cordeiro Barboza Hamilton Lima Junior* Esteban Walter Gonzalez Clua

Vinod E. F. Rebello

 Universidade Federal Fluminense, Instituto de Computação - Media Lab, Brasil

Abstract

Cloud computing is becoming an increasingly viable

source of low cost computing power for developers

and users in diverse areas. Services from the creation

of presentations, spreadsheets and text processing, to

picture and video editing, and more recently high

performance scientific computing are some examples

of systems currently available in the cloud. While these

applications are typically executed in the form of batch

jobs, responsiveness or timeliness is not usually an

issue. Executing interactive applications, i.e.

applications that require real time responsiveness in the

cloud, however, is more challenging and still not so

common in this environment. This work proposes and

evaluates the feasibility of building a simple off-the-

shelf architecture for an on demand gaming service.

Our proposal consists on running an appropriate

remote server in the cloud so that the client need only

perform a few basic tasks, such as reading user input

and displaying the resulting game screens.

Consequently, even low-power computing systems,

such as mobile devices or digital TV setup boxes, can

have access to sophisticated graphic rich or complex

games, since most of the processing is performed

remotely.

Keywords: cloud computing, games, computer

networks

Authors’ contact:
*hlima@acm.org

{dbarboza, esteban, vinod}@ic.uff.br

1. Introduction

Today, digital games reach further than just

entertainment, with applications in diverse areas of

society including health and education, and as such are

reaching a broader public each day [ESA, 2010]. Its

popularization is being further driven through the

availability of applications on computational devices of

all kinds, but in particular cheap low power equipment

such as cell phones or digital TV receivers. Still, the

development of games that achieve a good balance

between technical quality and required processing

power of devices is a challenge for developers. The

higher the level of detail in graphics, artificial

intelligence and physical modeling, for example, the

higher the computational requirements and smaller is

the group of devices able to execute them. Thus, a

balance must be found to avoid launching games that

only a small fraction of the target audience can play.

The splitting of the processing of a game in two

parts: the client - responsible for reading the user's

commands and display the game’s graphical output -

and a server - responsible for most of the processing

such as generation of graphics, modeling of physical

processes and artificial intelligence - might be expected

to minimize the problems relating from the correlation

between processing power and technical qualities. The

games are being processed on servers controlled by the

service provider and client devices need only basic

computer capacity and a network access to play. Of

course, now an additional component - communication

across the network - will also affect performance.

Today, almost all computational devices come with

wireless connectivity, e.g. WiFi, GSM, and

telecommunication companies have been steadily

increasing their backbone bandwidth capacity to

support new applications such as digital TV.

The concepts of cloud computing [Armbrust et al,

2009] can be applied to build a client/server game

infrastructure, where a player consumes a service

available in the cloud that is able to manage all system

components, performing access control, establishing

communication between the client and server,

managing the hardware resources, software available

and so on. This work aims to explore the concept of

cloud computing applied to the use of digital games as

a service. It is intended to study the feasibility of

running games remotely, through a cloud computing

architecture, and display the result to the user in real

time. Also, within the scope of this work is the

manipulation of virtual machines that are initiated and

finalized in accordance with the requirements of the

system to provide on demand services to new

customers.

The following aspects were studied in the context

of this work: the design of a service management

system for the execution of multiple types of digital

games, including the management and manipulation of

virtual machines on demand; the construction of a

service capable of behaving like a game server in the

cloud; and building a game client capable of soliciting

and receiving the outcome of the game rendered in the

cloud, displaying it to the user, and receiving and

transmitting interactions with the user.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 38

This paper is organized as follows: Section 2

presents an brief overview of the little related work

encountered; in Section 3, we describe some concepts

of cloud computing, while Section 4 details the

development of the various system components

proposed in this work. In Section 5, we comment on

some of the initial results obtained and present our

final considerations and future work in Section 6.

2. Related work

As far as we can tell, relatively little has been explored

to date in the context of taking advantage of combining

the concept of cloud computing with digital games.

OnLive is a game on demand service developed

primarily for desktop operating systems, like Microsoft

Windows and Mac OS X, though some demonstrations

have already been made with smart phones. The

system is designed for Internet access, instead of a

local network, so its large bandwidth requirements is a

great disadvantage. It is estimated that standard

definition games will require a 1,5 Mbps connection,

while for high definition games this value rises to

around 4 or 5 Mbps. Another drawback is its high

computational requirements for desktop platforms,

such as a dual core processor [OnLive, 2009b]. These

characteristics limit accessibility due to costs not only

to acquire the appropriate equipment but also rent

bandwidth for the transmission of data.

3. Cloud computing

Cloud computing is a paradigm that is still under

development and its definitions and terms will likely

change over time. According to [Mell and Grance,

2009], the cloud is defined as a type of on demand

network access to a set of computational resources that

can be delivered quickly, with minimal managerial

effort. [Mell and Grance, 2009] also define a set of

essential features, service models and ways of

providing the computing model promoted by the

clouds. Sections 3.1 to 3.3 describes these features in

more detail.

3.1. Service models

This section describes the service models in the cloud

computing paradigm, namely, how this paradigm can

be applied in practice.

 Software as service (SaaS): In this model, the

client uses the provider’s applications running on a

cloud infrastructure. Applications can be accessed

by different devices, such as a web browser but

the user has no access or control to the

infrastructure of the cloud (network, servers,

operating system, among others). An example of

software as a service customers are webmail

clients.

● Platform as a service (PaaS): this model allows

the customer to use the cloud infrastructure to run

their own applications. These applications should

be developed using tools and programming

languages supported by the provider. As in the

SaaS model, the consumers does not have control

of the infrastructure of the cloud, but has control

over their installed applications and can also

configure the hosting environment as required.

● Infrastructure as a service (IaaS): In the model,

the client uses the infrastructure of the cloud

according to their particular needs. The client is

able to install and run any software, including

operating systems and other diverse applications.

The control and management of the physical

structure of the cloud is not available to the client,

but he can control his own private virtual

environment including operating systems, data

storage, and installed applications, among others.

It is also possible to have limited control of certain

networking components, such as choosing a

firewall system, for example.

3.2. Essential characteristics

This section describes the elements considered

essential in the paradigm of cloud computing.

● Self-service model for use of resources: The

resources of the cloud should be available to

consumers automatically, according to their needs,

without the need for human interaction by the

service provider.

● Provision of services via the network: The

services are offered through a network and should

be open to heterogeneous devices such as mobile

phones, laptops and PDAs

● Resources pooling: The resources (such as disk

storage, processing time, memory, virtual

machines and bandwidth) of the provider are

arranged to serve multiple customers

simultaneously and their physical and virtual

resources are allocated dynamically according

with consumer demand. The location of these

resources cannot be controlled by the user, except

for a higher level of abstraction, where he can

choose to use resources from a particular state or

country, for instance.

● Elasticity of the system: The system capabilities

can be quickly increased or decreased to meet the

requests of the client. For consumers, the cloud

computing resources often seem limitless and can

be purchased in any quantity.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 39

● Monitoring of resource use: The computer

systems in the clouds can control and optimize

their resources by measuring the consumption of

specific services such as storage or processing

time. Monitoring the use of resources is

fundamental to provide transparency to the

provider and consumer.

3.3. Deployment models

A cloud computing structure may be available to

consumers in different ways. This section describes

how this provision can be made.

● Private: The cloud's infrastructure is operated for a

single organization and can be managed by the

organization itself or a third party. In this case, the

infrastructure can be physically on the premises or

in an external location.

● Community: The cloud's infrastructure is shared

among various organizations and is designated for

a community with common interests and

standards, such as technical requirements and

security policies, for example.

● Public: A public cloud structure is accessible to the

general public or a large industrial group. This

type of cloud belongs to an organization that sells

cloud services to consumers.

● Hybrid: A combination of cloud infrastructures of

other kinds, private, community or public. While

each entity remains with its own identity, they are

bound by standards to promote data portability

between applications and interoperability of

clouds infrastructures.

4. The proposed architecture

This section presents an overview of the proposed

architecture, divided in three components that interact

to enable the implementation of the game. First, we

present the system architecture and then details for

setting up sessions and games running through a cloud

computing infrastructure are described.

4.1. System architecture

The system was organized in an architecture composed

of three basic components: the client, the cloud

manager and the host manager. These components are

described with more details in the following sections

and Figure 1 displays an overview of this architecture

and how the components communicate.

Figure 1 - Architecture overview.

4.1.1. Client

The client is a software system running on a device

hosted by the user to access the game. This device can

be a mobile phone, a personal computer, or any other

device capable of running the client software and

connect to a wired or wireless network.

The request to initiate a new game is made by the

client to the cloud manager, a component that must be

available and visible within the network. This request

is performed through an HTTP call made to the cloud

manager. The cloud manager will find from its list of

available and managed hosts, one node that has

resources and capacity required to run the game and

provide the client with identification data of the virtual

machine that will process its requests.

Since the communication between the client and

the game server has been established, they exchange

messages directly without going through other system

components. The client handles user input and sends

the data over the network. The game is executed

remotely on a virtual machine and acts as a normal

desktop or mobile game, carrying out physics

processing, artificial intelligence and so on. The

differences appear only in user’s input and graphical

output.

Reading data from user’s input, such as keystrokes

and mouse coordinates and clicks, is done locally on

the client. These data are collected on the client device

and transmitted to the server through the network, then

are processed according to the behavior programmed to

run the game at the moment. This allows an interaction

between the client devices and server for implementing

the game.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 40

During the execution of a game, the graphical

output is used to show the player the current state of

the game. This output is processed by the game server

without the usage of the server graphics device. The

output image, a game frame, is compressed and sent

over the network to be displayed to the user. The

client’s device must be able to receive several images

per second over the network and display them in

sequence to the player, giving the impression of

smooth movement.

In the experiments carried out so far, we tried to

work with complex backgrounds images, thus creating

worst case scenario in order to simulate the behavior of

more elaborate games. Figure 2 shows an example of a

game running on the Android operating system, with a

resolution of 320x240 pixels. The background photo

was used to increase the complexity of the image to be

sent over the network, causing tests to occur always at

the worst case scenario or near it. Figure 3 shows the

desktop client of the same game running under

Windows Vista with Java 6.

Figure 2 - Game screen on a mobile phone with the Android

operating system.

Figure 3 - Game screen on a desktop client running on

Windows Vista.

The possibility of performing all processing of the

game on a remote server, including physics and

graphics processing is one of the most important points

of this system. This allows games to be developed

considering only the server’s system requirements, i.e.,

the customer's equipment is no longer a factor to be

considered within the limits of resource use in the

game and now more cost effective use can be made of

state of art graphics hardware if installed and shared

amongst multiple clients. Under the present situation,

the games should be developed to match the target

audience equipment, where graphics realism and

performance must be balanced to generate the best

outcome for the player. With games running on a

server, the client devices need only meet the basic

requirements, like being able to connect to a high

speed network and display streaming video. This

allows both the implementation of simpler games as

well as games with fairly advanced graphics effects,

since this additional processing load will never be

passed along to the game client.

The game client is a simple piece of software that’s

only function is to display the frames received over the

network, as streaming video player, and send user’s

input to be handled on the server. This facilitates the

creation of clients for several platforms since the game

code remains unchanged. Different clients can be

created for personal computers and mobile devices

with processing power and varied APIs, for example.

We developed two versions of this test game, both

using the Java platform: a desktop and one for mobile

devices using version 1.5 of Android SDK [Lecheta,

2010].

4.1.2. Cloud manager

The cloud manager is a component responsible for

managing the infrastructure of the cloud. It is this

component that performs the first communication

between the client and a virtual machine controlled by

the host manager, allowing a new game to be initiated.

Initially, available host managers in the network

register themselves with the cloud manager, indicating

that they are ready to run new games. From this

moment, when a new client appears, the

communication between him/her and the virtual

machine that runs the game is mediated by the cloud

manager.

When a client wants to play, the cloud manager

searches among its registered host managers the one

who has availability to provide the new game. When a

physical resource is found, a command is sent to boot

up an appropriate virtual machine and begin a session,

while the address of the virtual machine is returned to

the client, thus permitting communication between the

two extremes of the system. All future communication

will be done directly between the game server and the

client, without going through the cloud manager. At

the end of the gaming session, the cloud manager is

signaled by the client and the corresponding session is

closed and virtual machine shut down.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 41

The cloud manager is also responsible for

registering and providing information about the

sections in progress, including data on which virtual

machines are running and customer’s usage time.

Periodically, the manager of the cloud sends requests

for state information from the host managers and they

respond using a data structure in JSON (JavaScript

Object Notation) format.

This component was developed as a Java Servlet

with a MySQL database [Oracle 2010b] for storage of

settings and system status. The cloud manager runs on

an Apache Tomcat server.

4.1.3. Host manager

The host manager is the system component that

manages virtual machines responsible for running the

games available to the clients.

This component is registered in the cloud manager,

indicating that it is available to run games requested by

a client. In a heterogeneous environment, several

different game types may be available and each host

manager may be able to provide only a subset of these

games. Thus, when registering the component in the

system must identify which games a host is capable of

providing.

The registration of a host managers is carried out

via a HTTP call to the cloud manager. At this point, it

reports its IP address to the cloud manager, so it can be

accessed later. New host managers can be added to the

system at any time according to system requirements.

Once registered, the host manager becomes

available to provide gaming to new customers. Upon

receiving a new customer to be serviced, a new virtual

machine to run a particular game is initiated. This

virtual machine will function as the game server,

communicating directly with the customer without

relying further on the host manager. This is done

through the exchange of IP addresses between the

client and server mediated by the host manager. Once a

component knows the IP of the other, they begin to

communicate directly.

A host manager can be classified as one of two

types: homogeneous or heterogeneous. It is said

homogeneous if all the virtual machines managed by it

can serve only a single game type. In this case, the host

manager is able to meet only the demands of this single

game. Heterogeneous host managers are the ones able

to meet requests from two or more game types, that is,

it manages two or more distinct groups of virtual

machines and each group is able to perform a different

type of game.

Virtual machines managed by this component are

responsible for running the game servers. These virtual

machines run the Linux operating system and are

managed through Oracle’s general purpose full

virtualizer for x86 processors, Virtual Box. Just as the

cloud manager, the host manager was also developed

using the Java servlets technology.

4.2. Stages for running a game

The game execution can be considered as the elapsed

time since the player makes the request to start a new

game session until the time when this session ends.

During this time, various actions are performed so that

the game can be started and run. The following is an

overview of steps for running a game:

1. Client asks the cloud manager the initialization of a

new game;

2. Cloud manager identifies the hosts that can satisfy

the request;

3. Cloud manager requests a new session from the

chosen host manager;

4. Host manager starts a virtual machine capable of

running the requested game;

5. The number of customers can be serviced by the

host manager is decreased by one;

6. Host manager obtains the IP address of the virtual

machine and returns to the cloud manager;

7. Cloud manager passes the IP address for the client;

8. Client establishes communication with the game

server in the virtual machine;

9. Client sends keyboard commands to control the

game for the server;

10. Server processes the user input and runs the game

logic;

11. Server processes the graphical output of the game

and sends it via the network to the client;

12. Client displays the graphical output of the game for

the player;

13. Repeat steps 9-12 until the client requests the

closure of the game;

14. Host manager shall notify the cloud manager of the

termination of the game;

15. Host manager closes the virtual machine;

16. The amount of clients that can be serviced by the

host manager is incremented by one.

The following sections describe in more detail some of

the above steps.

4.2.1. New game request

When a client wants to start a new game, it makes this

request to the cloud manager. Despite being a virtual

machine that will actually run the game, the customer

needs not to have any knowledge of internal system

components to play. Similarly, a user's webmail client

does not need to know where his messages are stored

or which machine will serve you. He needs only know

how to access the infrastructure of your mail server, in

this case, an IP address of the service.

The game client needs to know a way to access the

cloud manager. In the proposed system, the

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 42

infrastructure of the cloud is contained in a local

network and cloud manager has a fixed IP address in

this network location. Thus, the client software can

access it directly, without additional configuration.

Despite the ease that the use of a local network brings,

the transfer of this infrastructure for an open

environment like the internet is quite simple. Instead of

using the feature of a fixed IP address, the cloud

manager could be accessible via a URL that would be

translated by a DNS service.

Once the customer has access to the cloud

manager’s services, he can order the start of a new

game session. It is important to note that many

different games may be available to the client. By its

choice, the cloud manager will detect which host

manager is best able to process the request of the new

game.

4.2.2. Establishing communication between a
client and a server through the cloud

The client accesses the cloud manager to request the

initiation of a new game, but this is not who will run

the game. The cloud manager first searches among host

managers that are able to run the game and returns to

the client the IP address of the virtual machine

responsible for processing the game. After these steps,

the client and server are able to communicate directly

without going through other components of the system,

starting the game play.

4.2.3. Execution of the game through the
exchange of data packets

All game logic is handled remotely by a server running

on a virtual machine. The customer is only responsible

for capturing the user's keyboard input and display

screens of the game. Thus, much of the processing is

performed on the server and only a small fraction is

left to the client. To work together, we need these two

components to exchange data constantly.

With the IP addresses known after a session has

started, the client and server initiate a communication

channel via sockets [Donahoo and Calvert, 2001].

Currently, TCP is used, but the authors propose further

tests using the UDP protocol to verify a possible

performance gain.

The sequence of steps executed during the game is

listed below. These steps are repeated continuously

until the game session is closed.

1. Client sends user input through the network;

2. The network server receives the user input;

3. Server processes the game’s logic;

4. Server generates game’s graphical output in

memory and sends it across the network;

5. Customer receives graphical output from the

network;

6. Client displays the graphical output to the user.

When communication between the client and server

is broken or there is a request to logoff from the client,

the game ends. Thus, the virtual machine is

disconnected from the server that then returns to be

available to host new customers.

4.3. Control game sessions’ state

The control of game sessions’ state is done to ensure

that system resources remain allocated only as needed,

being released when they no longer be used.

Game clients communicates regularly with the

cloud manager, in a configurable time interval,

reporting their status. While playing, the resources

allocated for this client remain active. When a

customer terminates the game or is disconnected, a

message with the request for disconnection is sent to

the cloud manager (the first case, a request to

disconnect) or status reports are no longer received (in

the second case, inadvertent disconnection).

The cloud manager maintains a list of active

sessions and updates its state whenever it receives the

report from the client. Upon receiving a request to

close the session or when stipulated time limit has been

exceeded, the component sends a message to the host

manager stating that the game session has ended and

the resources of the virtual machine can be released

and become available for provide a new session.

5. Results

This section describes the results of this

implementation work. The results were evaluated in

relation to the use of network bandwidth required to

run an interactive game, the response time to

commands sent by the client and the amount of frames

by the client per second achieved.

The bandwidth usage was analyzed in relation to

the number of bytes sent from server to the client per

second, for displaying game screens. The server sends

each ready game screen for the customer divided into

packets of 512 bytes. Using the screen resolution of

320x240 pixels, each image sent is divided into 28

packets of this size, resulting in 14 kilobytes per image.

Achieving an optimum performance of 30 frames

per second, requires send across the network medium

420 kilobytes per second (or 3.3 Mb/s). This is a quite

acceptable value is taken into account the capacity of a

local network, as shown in Figure 4.

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 43

Figure 4 - Growth rates of investments in transmission

networks [Siemon, 2010].

In prototypes developed, using Wi-Fi network, the

desktop version averaged 20 frames per second

received over the network. In empirical tests, the

results were satisfactory, giving a feeling of fluidity in

the animations in the game. In the mobile client, the

transmission of frames from the network reached lower

values, being close to 10 frames per second, so some

improvements are still required to be done.

Besides the number of frames per second that the

game is capable of displaying, system response time to

user actions is of great importance for a good result

during the sessions. The response time is the time that

a user input command is sent over the network, this

command is processed by the server according to the

game’s logic and the result is displayed to the

customer. The desktop client received an average of 30

milliseconds of delay in response time, while the

mobile version showed results in between 800 and

1000 milliseconds.

The value presented here can be improved in future

by exploring further the specific features of the

Android platform and seeking more efficient ways to

transmit data. All tests were performed based on packet

switching network using the reliable TCP protocol. It is

believed that the use of UDP protocol, which does not

guarantee reliability, will lead better results regarding

the number of frames per second transmitted on the

network and the response time.

6. Conclusion and future work

This work has shown that a cloud computing

infrastructure can be used in real-time interactive

applications, including digital games. The system

allows the execution of digital games in a format that

separates the reading keyboard and display graphical

output of processing the heavier parts, such as

generation of graphical output and processing of

physics and artificial intelligence.

The focus of this study was restricted to the

processing of user input, the execution of the game

logic and display graphics output. The treatment of

sounds and their transmission across the network has

not been addressed, remaining as an avenue for future

work.

Some issues relating to the network are currently

under investigation and alternatives are being studied.

Currently, virtual machines have a static IP address,

obtained through a table configured on the router. The

inclusion of a server IP address leases can make this

task automatic.

With respect to communication, it is necessary to

define security mechanisms for communication

between the manager of the cloud and the host

manager and also between the client and server. This

security is necessary to prevent, for example, a client

sending messages to the game server with another

client.

Finally, it is suggested to create tests using the

UDP network protocol, which may not provide

reliability benefits with respect to high amounts of data

traffic on the network but may reduce the delay of

communication.

Also, lower data traffic over the network should be

achieved with the usage of light-weight data

compression algorithms before sending the frames to

the client. The trade-off between required CPU power

to uncompress these images and the bandwidth usage

should be analyzed in order to find out the best

approach.

References

Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R.,

Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica,

I., e Zaharia, M., 2009. Above the Clouds: A Berkeley

View of Cloud Computing. Disponível em:

<http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EE

CS-2009-28.pdf> [Accessed 03 jul 2010].

Buyya, R., Yeo, C., Venugopal, S., 2008. Market-Oriented

Cloud Computing: Vision, Hype, and Reality for

Delivering IT Services as Computing Utilities.

Disponível em:

<http://www.buyya.com/papers/hpcc2008_keynote_clou

dcomputing.pdf> [Accessed 04 jul 2010].

Delic, K., Walker, M., 2008. Emergence of The Academic

Computing Clouds. Disponível em:

<http://www.acm.org/ubiquity/volume_9/v9i31_delic.ht

ml> [Accessed 04 jul 2010].

Donahoo, M., Calvert, K., 2001. TCP/IP Sockets in C:

Practical Guide for Programmers, 1º edição.

ESA – Entertainment Software Association, 2010. Video

Games in the 21st Century – The 2010 Report. Available

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 44

from: <
http://theesa.com/facts/pdfs/VideoGames21stCentury_20

10.pdf > [Accessed 15 sep 2010].

Lecheta, R., 2010. Google Android, 2º edição.

Manfe, T., 2009. VirtualBox Factory: HowTo Automate

VBox Provisioning in a Cloud. Disponível em

<http://blogs.sun.com/partnertech/entry/automating_virtu

albox_provisioning_for_a> [Accessed 04 jul 2010].

Mell, P., Grance, T., 2009. The NIST Definition of Cloud

Computing, National Institute of Standards and

Technology, Information Technology Laboratory.

Disponível em: < http://csrc.nist.gov/groups/SNS/cloud-

computing/cloud-def-v15.doc> [Accessed 16 jun 2010].

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G.,

Soman, S., Youseff, L., Zagorodnov, D., 2008. The

Eucalyptus Open-source Cloud-computing System.

Disponível em <http://www.cca08.org/papers/Paper32-

Daniel-Nurmi.pdf> [Accessed 04 jul 2010].

OnLive, 2009a. OnLive. Disponível em

<http://www.onlive.com/> [Accessed 03 jul 2010].

OnLive, 2009b. OnLive Techinical FAQ. Disponível em

<http://www.onlive.com/support/performance#performan

ce_1> [Accessed 03 jul 2010].

Taurion, C., 2009. Cloud Computing - Computação em

Nuvem, 1º edição.

Oracle, 2010a. Java Servlet Technology. Disponível em:

<http://java.sun.com/products/servlet/> [Accessed 03 jul

2010].

Oracle, 2010b. MySQL. Disponível em:

<http://www.mysql.com/?bydis_dis_index=1/>

[Accessed 03 jul 2010].

Siemon, 2010. Os Ciclos de Vida do Cabeamento e as Leis

das Comunicações em Redes. Disponível em

<http://www.siemon.com/br/whitepapers/10G-

Assurance.asp> [Accessed 04 jul 2010].

The Apache Software Foundation, 2010. Apache Tomcat.

Disponível em: <http://tomcat.apache.org/> [Accessed 03

jul 2010].

Zhen, J.,2008. Five Key Challenges of Enterprise Cloud

Computing. Disponível em; <http://cloudcomputing.sys-

con.com/node/659288> [Accessed 04 jul 2010].

SBC - Proceedings of SBGames 2010 Computing Track - Full Papers

IX SBGames - Florianópolis - SC, November 8th-10th, 2010 45

