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Abstract—We show that the learning sample complexity
of a sigmoidal neural network constructed by Sontag (1992)
required to achieve a given misclassification error under a
fixed purely atomic distribution can grow arbitrarily fast: for
any prescribed rate of growth there is an input distribution
having this rate as the sample complexity, and the bound is
asymptotically tight. The rate can be superexponential, a an-
recursive function, etc. We further observe that Sontag’s AIN
is not Glivenko—Cantelli under any input distribution havi ng
a non-atomic part.

Keywords-PAC learnability, fixed distribution learning, sam-
ple complexity, infinite VC dimension, witness of irregulaiity,
Sontag’s ANN, precompactness.

I. INTRODUCTION

In fact, the existence of a concept class whose sample
complexity grows exponentially it /e under a given fixed
input distribution was already shown in 1991 by Benedek
and lItai [2] (Theorem 3.5). Their example consisted of all
finite subsets of a domain. Later and independently, a rather
more natural concept class with such properties (generated
by a neural network) was constructed by Barbara Hammer
in her Ph.D. thesid [5] (Example 4.4.3 on page 77), cf. also
[el.

Here we somewhat strengthen the above results and at
the same time show that the phenomenon is quite common.
Suppose that a concept clagssatisfies a slightly stronger
property than having an infinite VC dimension, namedy:
shatters every finite subset of an infinite set. Fix a sequence

We begin with a quote of the first part of the open problemt of desired values_of Iear_ning precisio_n, converning to
12.6 from Vidyasagars book [11] (this problem appearsZ€r0, and letf be an increasing real function d, +oc).

already in the original 1997 version).

“How can one reconcile the fact that in distribution-free
learning, every learnable concept class is also “polyno-
mially” learnable, whereas this might not be so in fixed-

distribution learning?

In the case of distribution-free learning of concept classe

(...) there are only two possibilities:

1. % has infinite VC-dimension, in which cageis not PAC
learnable at all.

2. ¥ has finite VC-dimension, in which casg is not
only PAC learnable, but the sample complexity(z,d)

Then one can find a probability measyreon the domain
Q of € with the property tha®’ is PAC learnable undeg,
but the sample complexity of learning to precisign k =
1,2,3,..., is growing asQ(f (s, ')). The prescribed rate of
growth can be ridiculouly high, for instance, a non-reotesi
function. The bound is essentially tight. For example, d-wel
known sigmoidal feed-forward neural network of infinite VC
dimension constructed by Sontag [8] has this property.

This naturally brings up a question of behaviour of
Sontag’s network\" under non-atomic input distributions.
It follows from Talagrand’s theory of witness of irregulgri

is O(1/e + log(1/5)). Let us call such a concept class [9], [10] that " is not Glivenko—Cantelli with regard to any
“polynomially learnable”. measure having a non-atomic part. We do not know if a sim-
In other words, there is no “intermediate” possibility ilar property holds for PAC learnability, although it is gds

of a concept class being learable, but having a samplé€€ non-learnability o” for some common measures (the
complexity that is superpolynomial in/e. uniform distribution on the interval, the gaussian measure

In the case of fixed-distribution learning, the situation While discussing a relationship between Glivenko-Caintell
is not so clear. (...) Is there a concept class for whichProperty, PAC learability, and precompactness, we give an
everyalgorithm would require a superpolynomial number of &nSWer to another (minor) question of Vidyasagar.
samples? The only known way of consructing such a concept Note that we find it instructive to present the above
class would be to (...) attempt to construct a concept clas@bservations in the reverse order. In Conclusion, we sugges
whoses-covering number growkasterthan any exponential a few open problems and a conjecture supported by the
in 1/e. It would be interesting to know whether such aresults of this note which might shed light on Vidyasagar's
concept class exists” problem.
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Il. GLIVENKO—CANTELLI CLASSES AND LEARNABILITY
A. PAC learnability and total boundedness

Benedek and Itai_[2] had proved that a concept cléss
is PAC learnable under a single probability distributjorif
and only if ¢ is totally bounded in thé.!(1)-distance. Here
we remind their results.

Theorem 2.1 (Theorem 4.8 inl[2]; Theorem 6.3 [inl[11]):
Suppose? is a concept clasg, > 0, and thatBy, ..., By
is an e/2-cover for ¥. Then the minimal empirical
risk algorithm is PAC to accuracy. In particular, the
sample complexity of PAC learning to accuracy:s with
confidencel — ¢ is
k
5

Recall that a subset of a metric spac&X is e-separated
or e-discrete,if, whenevera,b € A anda # b, one has
d(a,b) > ¢ > 0. The largest cardinality of am-discrete
subset ofX is thee-packing numbeof X . For example, the

32
m < — log
€

following lemma estimates from below the packing number

of the Hamming cube.

Lemma 2.2 ([11], Lemma 7.2 on p. 27QPet 0 < ¢ <
1/4. The Hamming cubg0,1}", equipped with the nor-
malized Hamming distance

dn(z,y) = % Witz # ui}l,

admits a family of elements which are pairwise at a dis-

tance of at leasRe from each other of cardinality at least
exp[2(0.5 — 2¢)?n).

The following is a source of lower bounds on the sampl
complexity.

Theorem 2.3 (Lemma 4.8 ihl[2]; Theorem 6.6 In][11]):
Suppose?% is a given concept class, and let> 0 be

notion applies to neural networks as well, % denotes
the family of output functions corresponding to all possibl
values of learning parameters.

Every Glivenko—Cantelli class is PAC learnable, which
explains the important role of this notion. In fact, every
consistent learning rulé will learn .%. We find it instructive
to give a different proof, replying in passing to a remark of
Vidyasagar([1l], p. 241. After proving that every Glivenko—
Cantelli concept clasg” with regard to a fixed measure
is precompact with regard to thie!(11)-distance, the author
remarks that his proof is both indirect (Glivenko—Cantelli
= PAC learnable=- precompact), and does not extend to
function classes, so it is not known to the author whether
the result holds if¢ is replaced with a function clas#%.

The answer is yes, as is (implicitely) stated [in][10] (p.
379, the beginning of the proof of Proposition 2.5), but a
deduction is also rather roundabout (proving first the atxsen
of a witness of irregularity). In fact, the result is reallgry
simple.

Observation 2.4:Every (uniformly bounded) Glivenko—
Cantelli function class# with regard to a fixed probabillty
measureu is precompact in the.!(;)-distance.

Proof: If .# is not precompact, then for somg > 0
it contains an infinitezo-discrete subfamily%’. For every
finite samplec € Q" there is a further infinite subfamily
F" C Z' of functions whose restrictions te are at
a pairwise L' (u,,)-distance< ¢y/2 from each other (the
pigeonhole principle coupled with the fact that the resitiic
of .Z to o is L'(u,)-precompact). This means that and

e,un-expectations of some function of the forpf; — fal,

fi € ZF,1i = 1,2, differ between themselves by at least
£0/2, and for at least one ofe {1, 2},

Ey(fi) — Ep, (fi)| > €0/4

specified. Then any algorithm that is PAC to accuracy

e requires at leastlg M (2¢,%, L*(11))
M (2¢,%,L'(u)) denotes the2e-packing number of the
concept clas§’ with regard to thelL!(u)-distance.

For the most comprehensive presentation of PAC learn-

ability under a single distribution, see [11], Ch. 6.

B. Glivenko—Cantelli classes

A function class.# on a domain (a standard Borel
space)( is Glivenko—Cantelliwith regard to a probability
distributiony ([3], Ch. 3), or else has the propertywafiform
convergence of empirical meadCEM property) [11], if
for eache > 0

sup pu&"

{sup |E.(f) —Eu, (f)] > 6} — 0 asn — oo.
BEP feF

1)
Here ®" is the product measure d*, andy,, stands for
the empirical (uniform) measure onpoints, sampled from
the domain in an i.i.d. fashion. We assunge to assume

samples, where (an application of the triangle inequality IR). Since the

latter is true foreverysample, no matter the siz¢Z is not
Glivenko—Cantelli. ]

In fact, the same proof works in a slightly more general
case when#Z is uniformly bounded by a single function (not
necessarily integrable).

This gives an alternative deduction of the implication
Glivenko—Cantelli= PAC learnability Admittedly, the re-
sult obtained is somewhat weaker, as this way we do not get
consistentearnability.

C. Talagrand’s witness of irregularity

Talagrand|[[9],[[10] had characterized uniform Glivenko—
Cantelli function classes with regard to a single distiitout
in terms of shattering. We will remind his main result for
concept classes only. L&t be a measurable space, ¥the
a concept class oft, and lety be a probability measure on
Q. A measurable subset C Q2 is awitness of irregularity
of ¢, if u(A) > 0 and for everyn the set of alln-tuples

values in an interval (i.e., to be uniformly bounded). Theof elements ofA shattered bys has full measure iA™.



In other words,u-almost alln-tuples of elements ofl are
shattered bys'.

Theorem 2.5 (Talagrand [9], Th. 2)A concept class¢’
is Glivenko—Cantelli with regard to the probability measur
u if and only if € admits no witness of irregulaity.

Let 1 be a probability measure dn. Recall that a sett
is anatomif for every measurabléd3 C A one has either
u(B) =0 or pu(B) = pu(A). The measurg: is non-atomic
if it contains no atoms, andurely atomicif the measures
of atoms add up to one. The restrictionofo the union of
atoms is theatomic partof u.

Since a witness of irregularity can contain no atoms, the
following is an immediate corollary of Talagrand’s 1987
result.

Corollary 2.6: If a measure. is purely atomic, then every
concept clas¥ is uniform Glivenko—Cantelli with regard
to u, and in particular PAC learnable.

The corollary is easy to prove directly, without using
subtle results of Talagrand, and the result was observed (in
dependently) in 1991 and investigated in detail by Benedek
and ltai ([2], Theorem 3.2). Notice that the result does not
assertpolynomial PAC learnability of¢, and we will see >
shortly that the required sample complexity@fcan grow
arbitrarily fast.
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D. The neural network of Sontag
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Figure[1 recalls a well-known example of a sigmoidal
neural networkN" constructed by Sontadl[8], pp. 34-36.
(Cf. also [11], page 389, where the top diagram in Fidure 1
is borrowed from.) The activation sigmoid is of the form

1 1 cos T 1
$(r)=—tan" "z + —— + -,
m a(l + £C2) 2 Figure 1. Sontag’s ANN architecture (top) and the activatsigmoid ¢
N with o = 100 (bottom).
where o > 27 is fixed, e.g.a = 100. and the output-
layer perceptron has both input weights equal to one and a

threshold of one. The input-output function of the network Theorem 2.8:The neural network of SontagV is

is given by Glivenko—Cantelli under a probability distributign on the
y = nlp(z)], inputs if and only ify is purely atomic.

Proof: Sufficiency(«) follows from Corollary[2.6. Let

where 2 COS W us prove necessity=). By splitting . into a purely atomic

plr) = ———5 - part i, and a continuous payt., in view of Theorem§ 215

a(l + w?a?) . :

of Talagrand and 217 of Sontag, it suffices to prove that

The input space ol is the spac® of real numbers. for every non-atomic probability measureon R the set of

Recall that a collectiorn:y, xo, . . ., x,, of real numbers is rationally independent-tuples has a fulb®" measure in

rationally independentf no non-trivial linear combination Rgn: the support ofu. will then be a witness of irregularity.
of 1,21, z2,..., 2, With rational coefficients vanishes. In its turn, this reduces to a proof that for a fixed collection

Theorem 2.7 [[8], pp. 42-43)The Sontag network\" (X, ... A,.;) of rationals not all of which are zero, the
shatters every rationally independentuple of real inputs  affine hyperplane

T1,L2y...,Tnp. n
In particular, the VC dimension of Sontag’s network is Hy={z e R": (2,A) = A1},
infinite. Besides, it is easy to find an infinite rationally where A = (\,...,\,), hasv®"-measure null. This is a

independent set, and so every finite subset of such a sgbnsequence of Eggleston’s theorém [4]Afis a measur-
is shattered byV'. We will need this fact later. able, Lebesgue-positive subset of the unit square, thea the
Here is another extreme property of Sontag's network. js a measurable positive sé and a perfect se€ such



However, we do not know if there exists a non-atomic
measure under which Sontag’s ANN is PAC learnable.

E. Glivenko—Cantelli versus learnability

Not every PAC learnable function, or even concept, class
is Glivenko—Cantelli. Examples of such concept classest exi
trivially, e.g. the concept class consisting of all finitedan

0.015 0.020
| |
—

£ g

5 27 all cofinite subsets of the unit intervals is PAC learnable
% - under every non-atomic distribution, yet clearly not unifio

g § n Glivenko—Cantelli, cf.[[2], p. 385, note (2), dr [11], p. 230

J \ Example 6.4. A more interesting example, though based on
™~ ————e the same idea, is Example 6.6 in_[11], p. 232. Here we

present such an example of a countable concept class.
Example 2.10:For n € N, say that intervalgi/n, (i +

1)/n], i = 0,1,...,n — 1, are of order. Let %, consist

X of all unions of less thar/n intervals of ordem, and set

€ =UX,%,. Ifnowk € Nisany andr; < z2 < ... < zg

are points of the unit interval, choose> k2 so thatl/n is

smaller than any of the half-distances between neighbgurin

|

|
&
<

1

|

S/ M/ o/ points (z;41 — z;)/2, i = 1,2,...,n. Clearly, elements of
%, shatter the sampléxy,zs,..., 2}, and so the entire

g interval is a witness of irregularity for the concept cl&ss
By Talagrand’s result, the class is not Glivenko—Cantelli.

3 At the same time, for every, %,, forms ann—'/2-net for¢

- with regard to thel.! (\)-distance, and s@ is PAC learnable

o under the Lebesgue measurgthe uniform measure on the

N interval).

S Observe that, in facty fails the Glivenko—Cantelli prop-

° erty with regard teeverymeasure having a non-atomic part.

SV As we have seen, there exist non-atomic measures under

3 2 -1 o0 1 2 3 which ¢ is PAC learnable. There are also measures under
which @ is not PAC learnable. for example the Haar measure
v on the Cantor set.

Recall the construction of the Cantor “middle third” gkt
Figure 2. The functionp for @ = 100 andw = 5 (top) and the  (Figurel3). This is the set left of the closed unit interjall]
corresponding output binary function (bottom). after first deleting the middle thir(l/3,2/3), then deleting

the middle thirds of the two remaining interval(g,/9,2/9)

and (7/9,8/9), and continuing to delete the middle thirds
that B x C is included in A. “Lebesgue measure on the ad infimum The elements of the Cantor set are exactly those
unit square” here is not a loss of generality, as every twareal numbers betwedgnand1 admitting a ternary expansion
non-atomic standard Borel probability measure spaces aigot containingl. Sometime<’ is called Cantor dust The
isomorphic, and we obtain by induction thatAfC R™ and  complement to the Cantor set is a union of countably many
v®"(A) > 0, then A contains a product of. sets one of open intervals, all the middle thirds left out. The <&t
which is v®"-measure positive and all the rest are perfectieft after the firstn steps of removing the middle thirds is
(contain no isolated points). Clearly, ito — 1)-hyperplane  the union of2” closed intervals of equal lengBT” each.

in R can have this property. B The Haar measure of every such interval is set to be equal

Example 2.9:Sontag’s ANN is not PAC learnable under to 2—™, and this condition defines a non-atomic measure
the uniform distribution on an interval. supported orC in a unique way.

Indeed, for the sequence of learning parametgrs= 2~ It is easy to see now that the closed intervals
the corresponding output binary functions are at a pairwisd,, I»,...,I,» at the leveln are shattered with concept
L*(\)-distancel/2 from each other, whera is a uniform  classes froméy if N is large enough X 22"), in the
distribution on some interval. following sense: for every set of indicesC {1,2,...,2"}

A similar argument works for the gaussian distribution onthere is aC' € € which contains every intervdl;, j € J,
the inputs. and is disjoint from every interval,, wherek ¢ J. Now



two middle thirds removed at the

—— second step S

middle third
removed at
the 1st step

Figure 3. Construction of the Cantor set, aftee= 2 steps.

elements. This set forms a finitg,-net in ¥ with regard
to the L' (u)-distance. Sincey | 0, we use Theorern 2.1
to conclude: the clas%” is PAC learnable under, and
the sample complexity of learning to accuracys; and
confidencel — 4, § > 0 is

8§ . 2/
m 2 Flog 5

=5 (fut1op(6Y)).
€k

For everyk, Lemmd 2.2, applied with = 0.2, guarantees
the existence of a subsét, of € every two elements of
which are at aL!(yu;)-distance> 0.42m; from each other,
and containing> exp[0.0128(fx — fx—1)] elements. Let
N be so large thagfle my > (1.05)7L. Fix k. Since
UN_, Fy, is shattered by, one can find elements @f which

one can modify the proof of Lemmia 2.2 exactly as it wascorrespond to elements of the prOdlﬁf;k ®;, and every

done in [7], proof of Theorem 3, in order to conclude that
% is not totally bounded in thé ! (v)-distance.

IIl. ALL RATES OF SAMPLE COMPLEXITY ARE POSSIBLE

Theorem 3.1:Let ¥ be a concept class which shatters
every finite subset of some infinite set. Let;), e | 0

two of which are at a distance 0.42 31| myey > 0.4ey,

from each other. According to Theorem 2.3, this means

that the computational complexity of learnir§ under p

to accuracye, with confidencel — ¢ is at least0.0128 f%

samples. [ ]
Remark 3.2:The measure: constructed in the proof is

be a sequence of positive reals converging to zero, and I&urely atomic. However, by replacing the domanwith
f: R, — R, be a non-decreasing function growing at leastf? x [0, 1], every concepC € ¢ with C' x [0,1], and

linearly: f(x) = Q(z). Then there is a probability measure
= p((eg), f) on the input domaif with the property that
for everyd > 0 andk € N the classé is PAC learnable
under the distributiorp: to accuracye,, and the rate of
required sample complexity is at least

o -a(s(2)

r
Moreover, the above estimate is essentially tight in thesen
that the sample complexity

end) =0 (1 (

suffices to learr¥’ to accuracyde;, with confidencel — 6.
Proof: We can assume without loss in generality that

€1 = 1/5. For everyk, setmy = 5(cx+1 — k). Thenmy
form a sequence of non-negative reals which sums up t
one. Denote, for simplicityf, = f(e,'). Further, choose
pairwise disjoint finite setdy, of cardinality |Fy| = fr —
fr—1 (where fo = 0) in a way that every union of finitely
many of Fi's is shattered by# (this is possible due to
the assumption on the clas§). Let u; denote a uniform
measure supported ofi, of total massmy. Now sety =
oo pk. Sinced> 2, my = 1, p is a probability Borel
measure.

Let £ be arbitrary. Select any subset @f shattering
U¥_, F; and containing

k
[1I7] = 2"
=1

()

om(l)

k

with the producty ® A, where is the uniform (Lebesgue)
measure on the interval, one can “translate” every example
as above into an example of learning under a non-atomic
probability distribution.

Corollary 3.3: Let v be a probability distribution on a
domain§2 having infinite support. Then there exist concept
classes®é which are PAC learnable under and whose
required sample complexity is arbitrarily high.

Proof: The measure spacf?,») admits a measure-
preserving mapp to the measure space constructed in the
proof of Theoreni 3]1 in such a way that—! = . (here
one uses the fact that is purely atomic). Now the concept
class¢¢~1, consisting of all setsy~!(C), has the same
learning properties under the distributionas the class’
has undep.. [ ]

Corollary 3.4: Let ¢, | 0 be a sequence of positive
values converging to zero, and lgt be a real function on
Tb, +00) growing at least linearly. Then there is a probability
distribution i on the real numbers under which Sontag’s
network A is PAC learnable to accuraey, with confidence
1 -4, requiring the sample of siZ8(f(s; *)). This estimate
is essentially tight, because the sample size

n(er,d) = O (f (i) + log (%)) . (4)

already suffices to traiv" to accuracyley, with confidence
1-46.

Remark 3.5:It is easy to construct concept classes which
are PAC learnable undeaveryinput distribution, and yet
exhibit all possible rates of learning sample complexity.
These are the class&s which, speaking informally, cannot



tell a difference between a given probability distribution Problem 3.Give a criterion for a concept class to be PAC
and some purely atomic measure More precisely, if the learnable under a fixed probability distribution in terms of
sigma-algebra of sets generated#yis purely atomic and shattering.

% shatters every finite subset of an infinite set, themill Some sufficient conditions can be found in [2]] [1], but
have the above property. none of them is also necessary. The “right” condition will
An example is a clas® that consists of all finite unions be strictly intermediate between the witness of irregtyari
of middle thirds of the Cantor sef. The atoms of the [9], [10] and the VC dimension modulo countable séts [7].
sigma-algebra of sets generated by this class are precisely

the middle thirds, and s@ has the desired property. ACKNOWLEDGMENTS
The author is grateful to the anonymous referees, in
IV. CONCLUSION particular for pointing out the references [5]J [6], and to

Stimulated by a question embedded into the Problentlijas Farah for pointing out the reference [4].
12.6 of Vidyasagar([11], we have shown that all rates of
sample compleixity growth are possible for distribution-
dependent learning, in particular all are realized by hinar [1] M. Anthony and J. Shawe-TayloA sufficient condition for
output feed-forward sigmoidal neural network of Sontag. polynomial distribution-dependent learnabilitRiscrete Ap-
Now Vidyasagar continues thus: plied Math. 77 (1997), 1-12.

‘I would like to have an “intrinsic” explanation as t0 2] G.M. Benedek and A. Itaileamability with respect to fixed
why in distribution-free learning, every learnable contep distributions, Theor. Comp. Sci86 (1991), 377-389.
class is also forced to be polynomially learnable. Next, how . o .

a family of probabilities that contains a ball in the total ~ Swdies in Advanced Mathematids3, Cambridge University
- . . Press, Cambridge (1999).

variation metric p. From Theorem 8.8 it follows that every

concept class that is learnable with respectRomust also  [4] H.G. EgglestonTwo measure properties of Cartesian product

be polynomially learnable (becau$é must have finite VC- sets,Quart. J. Math. Oxford (2p (1954), 108-115.

dimension). Is it possible to identify other such classes of5 B H Learn h R (N | Networksi
probabilities?” [5] B. Hammer,Learning wi ecurrent Neural NetworkBjs-

. . . . . sertation, Universitat Osnabriick, 1999. Available frattp://
We suggest the following conjecture, which, in our view,  \yyww2.in.tu-clausthal.det-hammer/

is the right framework in which to address Vidyasagar's
guestion. [6] B. Hammer,On the learnability of recursive datdjathematics

Conjecture(“the sample complexity alternativg” Let P of Control Signals and Systems? (1999), 62-79.
be a fa_mlly of probability distributions on the doma@‘ [7] V. Pestov, PAC learnability of a concept class under non-
Then either every class learnable undfers learnable with atomic measures: a problem by Vidyasagés, appear in
sample complexity)(¢ '), or else there exist PAC learnable  Proc. 21st Conf. on Algorithmic Learning Theory (ALT2010),
classes undeP whose required sample complexity grows  arXiv:1006.5090v1 [cs.LG].
arbitrarily fast.

The classical VC theory tells that the conjecture is true[s]
if P is the family of all probability measures: namely, the
first alternative holds always. In view of Corolldry B.3, the [9] M. Talagrand, The Glivenko—Cantelli problemnn. Probab.
conjecture is also true in the other extreme case, where 15 (1987), 837-870.

P = {u} contains a single distribution: unlegsis finitely-
supported, we have the second alternative.

Problem 1.Does the above alternative hold for every
family P of probability distributions on the inputs? [11] M. Vidyasagar,Learning and Generalization, with Applica-
Problem 2 Does there exist a non-atomic probability mea-  tions to Neural Networks2nd Ed., Springer-Verlag, 2003.

sure onR under which the Sontag ANN is PAC learnable?
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