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Abstract—We show that the learning sample complexity
of a sigmoidal neural network constructed by Sontag (1992)
required to achieve a given misclassification error under a
fixed purely atomic distribution can grow arbitrarily fast: for
any prescribed rate of growth there is an input distribution
having this rate as the sample complexity, and the bound is
asymptotically tight. The rate can be superexponential, a non-
recursive function, etc. We further observe that Sontag’s ANN
is not Glivenko–Cantelli under any input distribution havi ng
a non-atomic part.

Keywords-PAC learnability, fixed distribution learning, sam-
ple complexity, infinite VC dimension, witness of irregularity,
Sontag’s ANN, precompactness.

I. I NTRODUCTION

We begin with a quote of the first part of the open problem
12.6 from Vidyasagar’s book [11] (this problem appears
already in the original 1997 version).

“How can one reconcile the fact that in distribution-free
learning, every learnable concept class is also “polyno-
mially” learnable, whereas this might not be so in fixed-
distribution learning?

In the case of distribution-free learning of concept classes
(...) there are only two possibilities:
1. C has infinite VC-dimension, in which caseC is not PAC
learnable at all.
2. C has finite VC-dimension, in which caseC is not
only PAC learnable, but the sample complexitym0(ε, δ)
is O(1/ε + log(1/δ)). Let us call such a concept class
“polynomially learnable”.

In other words, there is no “intermediate” possibility
of a concept class being learnable, but having a sample
complexity that is superpolynomial in1/ε.

In the case of fixed-distribution learning, the situation
is not so clear. (...) Is there a concept class for which
everyalgorithm would require a superpolynomial number of
samples? The only known way of consructing such a concept
class would be to (...) attempt to construct a concept class
whoseε-covering number growsfasterthan any exponential
in 1/ε. It would be interesting to know whether such a
concept class exists.”

In fact, the existence of a concept class whose sample
complexity grows exponentially in1/ε under a given fixed
input distribution was already shown in 1991 by Benedek
and Itai [2] (Theorem 3.5). Their example consisted of all
finite subsets of a domain. Later and independently, a rather
more natural concept class with such properties (generated
by a neural network) was constructed by Barbara Hammer
in her Ph.D. thesis [5] (Example 4.4.3 on page 77), cf. also
[6].

Here we somewhat strengthen the above results and at
the same time show that the phenomenon is quite common.
Suppose that a concept classC satisfies a slightly stronger
property than having an infinite VC dimension, namely:C

shatters every finite subset of an infinite set. Fix a sequence
εk of desired values of learning precision, converning to
zero, and letf be an increasing real function on[0,+∞).
Then one can find a probability measureµ on the domain
Ω of C with the property thatC is PAC learnable underµ,
but the sample complexity of learning to precisionεk, k =
1, 2, 3, . . ., is growing asΩ(f(ε−1

k )). The prescribed rate of
growth can be ridiculouly high, for instance, a non-recursive
function. The bound is essentially tight. For example, a well-
known sigmoidal feed-forward neural network of infinite VC
dimension constructed by Sontag [8] has this property.

This naturally brings up a question of behaviour of
Sontag’s networkN under non-atomic input distributions.
It follows from Talagrand’s theory of witness of irregularity
[9], [10] thatN is not Glivenko–Cantelli with regard to any
measure having a non-atomic part. We do not know if a sim-
ilar property holds for PAC learnability, although it is easy to
see non-learnability ofN for some common measures (the
uniform distribution on the interval, the gaussian measure).
While discussing a relationship between Glivenko–Cantelli
property, PAC learnability, and precompactness, we give an
answer to another (minor) question of Vidyasagar.

Note that we find it instructive to present the above
observations in the reverse order. In Conclusion, we suggest
a few open problems and a conjecture supported by the
results of this note which might shed light on Vidyasagar’s
problem.
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II. GLIVENKO –CANTELLI CLASSES AND LEARNABILITY

A. PAC learnability and total boundedness

Benedek and Itai [2] had proved that a concept classC

is PAC learnable under a single probability distributionµ if
and only ifC is totally bounded in theL1(µ)-distance. Here
we remind their results.

Theorem 2.1 (Theorem 4.8 in [2]; Theorem 6.3 in [11]):
SupposeC is a concept class,ε > 0, and thatB1, . . . , Bk

is an ε/2-cover for C . Then the minimal empirical
risk algorithm is PAC to accuracyε. In particular, the
sample complexity of PAC learningC to accuracyε with
confidence1− δ is

m ≤ 32

ε
log

k

δ
.

Recall that a subsetA of a metric spaceX is ε-separated,
or ε-discrete, if, whenevera, b ∈ A and a 6= b, one has
d(a, b) ≥ ε > 0. The largest cardinality of anε-discrete
subset ofX is theε-packing numberof X . For example, the
following lemma estimates from below the packing number
of the Hamming cube.

Lemma 2.2 ([11], Lemma 7.2 on p. 279):Let 0 < ε ≤
1/4. The Hamming cube{0, 1}n, equipped with the nor-
malized Hamming distance

dh(x, y) =
1

n
|{i : xi 6= yi}| ,

admits a family of elements which are pairwise at a dis-
tance of at least2ε from each other of cardinality at least
exp[2(0.5− 2ε)2n].

The following is a source of lower bounds on the sample
complexity.

Theorem 2.3 (Lemma 4.8 in [2]; Theorem 6.6 in [11]):
SupposeC is a given concept class, and letε > 0 be
specified. Then any algorithm that is PAC to accuracy
ε requires at leastlgM(2ε,C , L1(µ)) samples, where
M(2ε,C , L1(µ)) denotes the2ε-packing number of the
concept classC with regard to theL1(µ)-distance.

For the most comprehensive presentation of PAC learn-
ability under a single distribution, see [11], Ch. 6.

B. Glivenko–Cantelli classes

A function class F on a domain (a standard Borel
space)Ω is Glivenko–Cantelliwith regard to a probability
distributionµ ([3], Ch. 3), or else has the property ofuniform
convergence of empirical means(UCEM property) [11], if
for eachε > 0

sup
µ∈P

µ⊗n

{

sup
f∈F

|Eµ(f)− Eµn
(f)| ≥ ε

}

→ 0 asn → ∞.

(1)
Hereµ⊗n is the product measure onΩn, andµn stands for
the empirical (uniform) measure onn points, sampled from
the domain in an i.i.d. fashion. We assumeF to assume
values in an interval (i.e., to be uniformly bounded). The

notion applies to neural networks as well, ifF denotes
the family of output functions corresponding to all possible
values of learning parameters.

Every Glivenko–Cantelli classF is PAC learnable, which
explains the important role of this notion. In fact, every
consistent learning ruleL will learn F . We find it instructive
to give a different proof, replying in passing to a remark of
Vidyasagar [11], p. 241. After proving that every Glivenko–
Cantelli concept classC with regard to a fixed measureµ
is precompact with regard to theL1(µ)-distance, the author
remarks that his proof is both indirect (Glivenko–Cantelli
⇒ PAC learnable⇒ precompact), and does not extend to
function classes, so it is not known to the author whether
the result holds ifC is replaced with a function classF .

The answer is yes, as is (implicitely) stated in [10] (p.
379, the beginning of the proof of Proposition 2.5), but a
deduction is also rather roundabout (proving first the absence
of a witness of irregularity). In fact, the result is really very
simple.

Observation 2.4:Every (uniformly bounded) Glivenko–
Cantelli function classF with regard to a fixed probabillty
measureµ is precompact in theL1(µ)-distance.

Proof: If F is not precompact, then for someε0 > 0
it contains an infiniteε0-discrete subfamilyF ′. For every
finite sampleσ ∈ Ωn there is a further infinite subfamily
F ′′ ⊆ F ′ of functions whose restrictions toσ are at
a pairwiseL1(µn)-distance< ε0/2 from each other (the
pigeonhole principle coupled with the fact that the restriction
of F to σ is L1(µn)-precompact). This means thatµ- and
µn-expectations of some function of the form|f1 − f2|,
fi ∈ F , i = 1, 2, differ between themselves by at least
ε0/2, and for at least one ofi ∈ {1, 2},

|Eµ(fi)− Eµn
(fi)| ≥ ε0/4

(an application of the triangle inequality inR). Since the
latter is true foreverysample, no matter the size,F is not
Glivenko–Cantelli.

In fact, the same proof works in a slightly more general
case whenF is uniformly bounded by a single function (not
necessarily integrable).

This gives an alternative deduction of the implication
Glivenko–Cantelli⇒ PAC learnability. Admittedly, the re-
sult obtained is somewhat weaker, as this way we do not get
consistentlearnability.

C. Talagrand’s witness of irregularity

Talagrand [9], [10] had characterized uniform Glivenko–
Cantelli function classes with regard to a single distribution
in terms of shattering. We will remind his main result for
concept classes only. LetΩ be a measurable space, letC be
a concept class onΩ, and letµ be a probability measure on
Ω. A measurable subsetA ⊆ Ω is a witness of irregularity
of C , if µ(A) > 0 and for everyn the set of alln-tuples
of elements ofA shattered byC has full measure inAn.



In other words,µ-almost alln-tuples of elements ofA are
shattered byC .

Theorem 2.5 (Talagrand [9], Th. 2):A concept classC
is Glivenko–Cantelli with regard to the probability measure
µ if and only if C admits no witness of irregulaity.

Let µ be a probability measure onΩ. Recall that a setA
is an atom if for every measurableB ⊆ A one has either
µ(B) = 0 or µ(B) = µ(A). The measureµ is non-atomic
if it contains no atoms, andpurely atomicif the measures
of atoms add up to one. The restriction ofµ to the union of
atoms is theatomic partof µ.

Since a witness of irregularity can contain no atoms, the
following is an immediate corollary of Talagrand’s 1987
result.

Corollary 2.6: If a measureµ is purely atomic, then every
concept classC is uniform Glivenko–Cantelli with regard
to µ, and in particular PAC learnable.

The corollary is easy to prove directly, without using
subtle results of Talagrand, and the result was observed (in-
dependently) in 1991 and investigated in detail by Benedek
and Itai ([2], Theorem 3.2). Notice that the result does not
assertpolynomialPAC learnability ofC , and we will see
shortly that the required sample complexity ofC can grow
arbitrarily fast.

D. The neural network of Sontag

Figure 1 recalls a well-known example of a sigmoidal
neural networkN constructed by Sontag [8], pp. 34–36.
(Cf. also [11], page 389, where the top diagram in Figure 1
is borrowed from.) The activation sigmoid is of the form

φ(x) =
1

π
tan−1 x+

cosx

α(1 + x2)
+

1

2
,

where α ≥ 2π is fixed, e.g.α = 100. and the output-
layer perceptron has both input weights equal to one and a
threshold of one. The input-output function of the network
is given by

y = η[ρ(x)],

where

ρ(x) =
2 coswx

α(1 + w2x2)
.

The input space ofN is the spaceR of real numbers.
Recall that a collectionx1, x2, . . . , xn of real numbers is

rationally independentif no non-trivial linear combination
of 1, x1, x2, . . . , xn with rational coefficients vanishes.

Theorem 2.7 ([8], pp. 42-43):The Sontag networkN
shatters every rationally independentn-tuple of real inputs
x1, x2, . . . , xn.

In particular, the VC dimension of Sontag’s network is
infinite. Besides, it is easy to find an infinite rationally
independent set, and so every finite subset of such a set
is shattered byN . We will need this fact later.

Here is another extreme property of Sontag’s network.
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Figure 1. Sontag’s ANN architecture (top) and the activation sigmoidφ
with α = 100 (bottom).

Theorem 2.8:The neural network of SontagN is
Glivenko–Cantelli under a probability distributionµ on the
inputs if and only ifµ is purely atomic.

Proof: Sufficiency(⇐) follows from Corollary 2.6. Let
us prove necessity(⇒). By splittingµ into a purely atomic
partµa and a continuous partµc, in view of Theorems 2.5
of Talagrand and 2.7 of Sontag, it suffices to prove that
for every non-atomic probability measureν on R the set of
rationally independentn-tuples has a fullν⊗n measure in
R

n: the support ofµc will then be a witness of irregularity.
In its turn, this reduces to a proof that for a fixed collection
(λ1, . . . , λn+1) of rationals not all of which are zero, the
affine hyperplane

Hλ = {x ∈ R
n : 〈x, λ〉 = λn+1},

whereλ = (λ1, . . . , λn), hasν⊗n-measure null. This is a
consequence of Eggleston’s theorem [4]: IfA is a measur-
able, Lebesgue-positive subset of the unit square, then there
is a measurable positive setB and a perfect setC such
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Figure 2. The functionρ for α = 100 and w = 5 (top) and the
corresponding output binary function (bottom).

that B × C is included inA. “Lebesgue measure on the
unit square” here is not a loss of generality, as every two
non-atomic standard Borel probability measure spaces are
isomorphic, and we obtain by induction that ifA ⊆ R

n and
ν⊗n(A) > 0, thenA contains a product ofn sets one of
which is ν⊗n-measure positive and all the rest are perfect
(contain no isolated points). Clearly, no(n− 1)-hyperplane
in R

n can have this property.
Example 2.9:Sontag’s ANN is not PAC learnable under

the uniform distribution on an interval.
Indeed, for the sequence of learning parameterswk = 2k

the corresponding output binary functions are at a pairwise
L1(λ)-distance1/2 from each other, whereλ is a uniform
distribution on some interval.

A similar argument works for the gaussian distribution on
the inputs.

However, we do not know if there exists a non-atomic
measure under which Sontag’s ANN is PAC learnable.

E. Glivenko–Cantelli versus learnability

Not every PAC learnable function, or even concept, class
is Glivenko–Cantelli. Examples of such concept classes exist
trivially, e.g. the concept class consisting of all finite and
all cofinite subsets of the unit intervals is PAC learnable
under every non-atomic distribution, yet clearly not uniform
Glivenko–Cantelli, cf. [2], p. 385, note (2), or [11], p. 230,
Example 6.4. A more interesting example, though based on
the same idea, is Example 6.6 in [11], p. 232. Here we
present such an example of a countable concept class.

Example 2.10:For n ∈ N, say that intervals[i/n, (i +
1)/n], i = 0, 1, . . . , n − 1, are of ordern. Let Cn consist
of all unions of less than

√
n intervals of ordern, and set

C = ∪∞
i=1Cn. If now k ∈ N is any andx1 < x2 < . . . < xk

are points of the unit interval, choosen > k2 so that1/n is
smaller than any of the half-distances between neighbouring
points (xi+1 − xi)/2, i = 1, 2, . . . , n. Clearly, elements of
Cn shatter the sample{x1, x2, . . . , xk}, and so the entire
interval is a witness of irregularity for the concept classC .
By Talagrand’s result, the classC is not Glivenko–Cantelli.
At the same time, for everyn, Cn forms ann−1/2-net forC
with regard to theL1(λ)-distance, and soC is PAC learnable
under the Lebesgue measureλ (the uniform measure on the
interval).

Observe that, in fact,C fails the Glivenko–Cantelli prop-
erty with regard toeverymeasure having a non-atomic part.
As we have seen, there exist non-atomic measures under
which C is PAC learnable. There are also measures under
whichC is not PAC learnable. for example the Haar measure
ν on the Cantor set.

Recall the construction of the Cantor “middle third” setC
(Figure 3). This is the set left of the closed unit interval[0, 1]
after first deleting the middle third(1/3, 2/3), then deleting
the middle thirds of the two remaining intervals,(1/9, 2/9)
and (7/9, 8/9), and continuing to delete the middle thirds
ad infimum. The elements of the Cantor set are exactly those
real numbers between0 and1 admitting a ternary expansion
not containing1. SometimesC is calledCantor dust. The
complement to the Cantor set is a union of countably many
open intervals, all the middle thirds left out. The setCn
left after the firstn steps of removing the middle thirds is
the union of2n closed intervals of equal length3−n each.
The Haar measure of every such interval is set to be equal
to 2−n, and this condition defines a non-atomic measureν
supported onC in a unique way.

It is easy to see now that the closed intervals
I1, I2, . . . , I2n at the leveln are shattered with concept
classes fromCN if N is large enough (≥ 22n), in the
following sense: for every set of indicesJ ⊆ {1, 2, . . . , 2n}
there is aC ∈ CN which contains every intervalIj , j ∈ J ,
and is disjoint from every intervalIk, wherek /∈ J . Now
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Figure 3. Construction of the Cantor set, aftern = 2 steps.

one can modify the proof of Lemma 2.2 exactly as it was
done in [7], proof of Theorem 3, in order to conclude that
C is not totally bounded in theL1(ν)-distance.

III. A LL RATES OF SAMPLE COMPLEXITY ARE POSSIBLE

Theorem 3.1:Let C be a concept class which shatters
every finite subset of some infinite set. Let(εk), εk ↓ 0
be a sequence of positive reals converging to zero, and let
f : R+ → R+ be a non-decreasing function growing at least
linearly: f(x) = Ω(x). Then there is a probability measure
µ = µ((εk), f) on the input domainΩ with the property that
for every δ > 0 and k ∈ N the classC is PAC learnable
under the distributionµ to accuracyεk, and the rate of
required sample complexity is at least

n(εk, δ) = Ω

(

f

(

1

εk

))

. (2)

Moreover, the above estimate is essentially tight in the sense
that the sample complexity

n(εk, δ) = O

(

f

(

1

εk

)

+ log

(

1

δ

))

. (3)

suffices to learnC to accuracy4εk with confidence1− δ.
Proof: We can assume without loss in generality that

ε1 = 1/5. For everyk, setmk = 5(εk+1 − εk). Thenmk

form a sequence of non-negative reals which sums up to
one. Denote, for simplicity,fk = f(ε−1

k ). Further, choose
pairwise disjoint finite setsFk of cardinality |Fk| = fk −
fk−1 (wheref0 = 0) in a way that every union of finitely
many of Fk ’s is shattered byC (this is possible due to
the assumption on the classC ). Let µk denote a uniform
measure supported onFk of total massmk. Now setµ =
∑∞

i=1
µk. Since

∑∞

i=1
mk = 1, µ is a probability Borel

measure.
Let k be arbitrary. Select any subset ofC shattering

∪k
i=1Fi and containing

k
∏

i=1

|Fi| = 2fk

elements. This set forms a finiteεk-net in C with regard
to the L1(µ)-distance. Sinceεk ↓ 0, we use Theorem 2.1
to conclude: the classC is PAC learnable underµ, and
the sample complexity of learningC to accuracyεk and
confidence1− δ, δ > 0 is

m ≥ 8

ε2
log

2fk

δ
=

8

ε2k

(

fk + log(δ−1)
)

.

For everyk, Lemma 2.2, applied withε = 0.2, guarantees
the existence of a subsetΦk of C every two elements of
which are at aL1(µi)-distance≥ 0.42mi from each other,
and containing≥ exp[0.0128(fk − fk−1)] elements. Let
N be so large that

∑N
k=1

mk ≥ (1.05)−1. Fix k. Since
∪N
k=1

Fk is shattered byC , one can find elements ofC which
correspond to elements of the product

∏N
i=k Φi, and every

two of which are at a distance≥ 0.42
∑N

k=1
mkεk ≥ 0.4εk

from each other. According to Theorem 2.3, this means
that the computational complexity of learningC underµ
to accuracyεk with confidence1 − δ is at least0.0128fk
samples.

Remark 3.2:The measureµ constructed in the proof is
purely atomic. However, by replacing the domainΩ with
Ω × [0, 1], every conceptC ∈ C with C × [0, 1], and µ
with the productµ⊗ λ, whereλ is the uniform (Lebesgue)
measure on the interval, one can “translate” every example
as above into an example of learning under a non-atomic
probability distribution.

Corollary 3.3: Let ν be a probability distribution on a
domainΩ having infinite support. Then there exist concept
classesC which are PAC learnable underν and whose
required sample complexity is arbitrarily high.

Proof: The measure space(Ω, ν) admits a measure-
preserving mapφ to the measure space constructed in the
proof of Theorem 3.1 in such a way thatνφ−1 = µ (here
one uses the fact thatµ is purely atomic). Now the concept
classCφ−1, consisting of all setsφ−1(C), has the same
learning properties under the distributionν as the classC
has underµ.

Corollary 3.4: Let εk ↓ 0 be a sequence of positive
values converging to zero, and letfk be a real function on
[0,+∞) growing at least linearly. Then there is a probability
distribution µ on the real numbers under which Sontag’s
networkN is PAC learnable to accuracyεk with confidence
1−δ, requiring the sample of sizeΩ(f(ε−1

k )). This estimate
is essentially tight, because the sample size

n(εk, δ) = O

(

f

(

1

εk

)

+ log

(

1

δ

))

. (4)

already suffices to trainN to accuracy4εk with confidence
1− δ.

Remark 3.5:It is easy to construct concept classes which
are PAC learnable underevery input distribution, and yet
exhibit all possible rates of learning sample complexity.
These are the classesC which, speaking informally, cannot



tell a difference between a given probability distributionµ
and some purely atomic measureν. More precisely, if the
sigma-algebra of sets generated byC is purely atomic and
C shatters every finite subset of an infinite set, thenC will
have the above property.

An example is a classC that consists of all finite unions
of middle thirds of the Cantor setC. The atoms of the
sigma-algebra of sets generated by this class are precisely
the middle thirds, and soC has the desired property.

IV. CONCLUSION

Stimulated by a question embedded into the Problem
12.6 of Vidyasagar [11], we have shown that all rates of
sample compleixity growth are possible for distribution-
dependent learning, in particular all are realized by binary
output feed-forward sigmoidal neural network of Sontag.
Now Vidyasagar continues thus:

“I would like to have an “intrinsic” explanation as to
why in distribution-free learning, every learnable concept
class is also forced to be polynomially learnable. Next, how
far can one “push” this line of argument? SupposeP is
a family of probabilities that contains a ball in the total
variation metricρ. From Theorem 8.8 it follows that every
concept class that is learnable with respect toP must also
be polynomially learnable (becauseC must have finite VC-
dimension). Is it possible to identify other such classes of
probabilities?”

We suggest the following conjecture, which, in our view,
is the right framework in which to address Vidyasagar’s
question.

Conjecture(“the sample complexity alternative”). Let P
be a family of probability distributions on the domainΩ.
Then either every class learnable underP is learnable with
sample complexityO(ε−1), or else there exist PAC learnable
classes underP whose required sample complexity grows
arbitrarily fast.

The classical VC theory tells that the conjecture is true
if P is the family of all probability measures: namely, the
first alternative holds always. In view of Corollary 3.3, the
conjecture is also true in the other extreme case, where
P = {µ} contains a single distribution: unlessµ is finitely-
supported, we have the second alternative.

Problem 1. Does the above alternative hold for every
family P of probability distributions on the inputs?

Problem 2.Does there exist a non-atomic probability mea-
sure onR under which the Sontag ANN is PAC learnable?

Problem 3.Give a criterion for a concept class to be PAC
learnable under a fixed probability distribution in terms of
shattering.

Some sufficient conditions can be found in [2], [1], but
none of them is also necessary. The “right” condition will
be strictly intermediate between the witness of irregularity
[9], [10] and the VC dimension modulo countable sets [7].
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