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Beyond Unit-Testing in Search-based Test Case
Generation: Challenges and Opportunities

Annibale Panichella
Delft University of Technology, Netherlands

a.panichella@tudelft.nl

Abstract—Over the last decades, white-box search-based tech-
niques have been applied to automate the design and the
execution of test cases. While most of the research effort has
been devoted to unit-level testing, integration-level test case
generation requires to solve several open challenges, such as the
combinatorial explosion of conditions or pre-condition failures.
This paper summarizes these challenges in white-box testing and
highlights possible research directions to overcome them.

Index Terms—Test Case Generation, Search-Based Software
Testing, Integration Testing, White-box Testing

I. INTRODUCTION

Search algorithms have been widely applied to automate the
process of generating and executing unit-level tests. The ma-
turity of the field is proved by surveys (e.g., [14]), large-scale
studies (e.g., [9], [10]), and tool competitions (e.g., [15], [16]).
Prior studies showed that unit-test generation allows achieving
high code coverage [9], [15], [16], detect real-bugs (e.g., [17])
and reduce the cost of debugging (e.g., [8], [18]) compared
to manually-written tests. Despite these noteworthy results in
unit-testing, existing search-based approaches mostly rely on
black-box strategies (e.g., model-driven testing, input/output
diversity) when moving toward integration and system-level
testing. This is due to technical and research challenges related
to white-box testing when integrating single units. In this
paper, we discuss the most prominent yet open challenges as
well as viable solutions to overcome them.

II. OPEN CHALLENGES

A. Challenge 1: The Path and Condition Explosion Problem

When integrating multiple components, software testers
have to decide in which order the classes should be integrated
and tested. This problem is also known as integration test
order: find the order that reduces the test stub cost. Search
algorithms have been applied to solve this problem (e.g., [1]).
Generating tests at integration level in a white-box fashion
require (i) to solve the integration test order problem; (ii) to
generate input data that satisfies the precondition of the first
class in the order; (iii) to generate assertions for the output of
the last class in the order (oracle problem). Another important
step is to decide when to stop testing, i.e., when the integrated
classes are adequately tested. Zhenyi and Offutt [3] introduced
structural criteria for integration testing, such as all-coupling
uses and all-coupling paths. The state of one path executed in a
class A can impacts the state of a called class B. Therefore, the
number of paths to consider grows (explodes) with the number

and size of the classes to integrate. This poses a challenge to
the scalability of test case generation.

Direction: focusing on a subset of all-coupling paths.
To overall idea is to focus on specific paths of interests

rather than all-coupling paths. For example, let us assume
we want to integrate and test the classes A and B, where the
former calls some methods of the latter. We may test the case
A calls B by satisfying its preconditions, and the case where
such pre-conditions are not satisfied. An interesting example
is represented by testing Application Programming Interface
(API) uses. APIs misuses [4] are commons as clients may
invoke the APIs violating its implicit preconditions. Interesting
paths then are those where the client class invokes the APIs
without verifying whether the data passed to the APIs satisfy
or not its implicit precondition. Static analysis would play a
relevant role in the identification of these paths of interests.

B. Challenge 2: Integration with DataBases

Databases are commonly used to manage and store data
(e.g., medical data) in modern applications. It is very common
to have SQL queries within the traditional code. In the example
shown in Listing 1, an SQL query is used within Java code to
retrieve the credential of a user from an SQL database. First,
the connection to the database is established; then a prepared
statement is filled with the username and password;
finally, the output of the query (variable res) is used within
the Java code. Reaching 100% of branch coverage in the
example of Listing 1 requires to initialize the database with
valid and useful data such as the results of the query execution
satisfy the conditions in the underneath Java code. However,
generating test data for both Java code and SQL databases
remains an open problem [2]. On the other hand, recent work
focused on testing SQL queries in isolation [5] using search
algorithms and with the goal of satisfying structural criteria
for query coverage.

Direction: Unifying the coverage criteria for database
queries and traditional (e.g., Java) code.

Branch and decision coverage criteria have been defined
for both traditional code and database queries. When queries
appear within Java code, the corresponding control flow graph
(CFG) can be enhanced by including the CFG of the query
as well. Then, the search should be guided by combining the
coverage heuristics for the Java code (e.g., approach level and
branch distance) with the heuristics for query coverage (step
level and step distance [5]). To speed the search, in-memory



database engines could be used (as done in [5]) by mocking
the connection to SQL databases, which are slower and more
expensive to set up.

Listing 1. SQL query within Java code
p r o t e c t e d boolean l o g i n ( S t r i n g username ,

S t r i n g password ) {
. . .
P r e p a r e d S t a t e m e n t s t m t =

c o n n e c t i o n . p r e p a r e S t a t e m e n t ( ”SELECT * ”+
FROM User where u s e r I d =? AND psw=? ” ) ;

s t m t . s e t S t r i n g ( 1 , username ) ;
s t m t . s e t S t r i n g ( 2 , password ) ;
s t m t . e x e c u t e Q u e r y ( ) ;
R e s u l t S e t r e s = s t m t . g e t R e s u l t S e t ( ) ;
i f ( r e s != n u l l ) { . . . }
}

C. Challenge 3: External Files with Content

Data can also be stored in external files, e.g., XML or JSON
files. EvoSuite uses functional mocks when the class under test
contains environmental calls to read/write files [7]. In these
cases, calls to external files can be replaced with virtual calls
that mimic the behavior of the environment [7]. However, the
class under test might need files with specific content to satisfy
some branch conditions. In these cases, a simple mocking does
not help to cover the CUT [8].

Direction: Inferring the content of external files from the
constants in the source code.

XML and JSON files are characterized by a well-established
and documented open standards. Generating files with XML
(or JSON) format can be viewed as a grammar inference prob-
lem where the grammar rules are related to the standard format
while the terminals (strings) can be potentially extracted from
the source code of the CUT through static analysis. Indeed,
strings appearing in the source code should be likely contained
in the external files (constant seeding). However, the generated
files must be well formatted, and this represents a critical
constraint to the file generation problem. Rather than creating
external files, more advanced functional mocking should be
used to virtualize not only file system calls but also the content
of such files.

D. Challenge 4: Resource Usage

Integration-level tests are usually more expensive to run than
unit-level tests. Therefore, an important angle to consider is
to generate test cases that consume fewer resources (CPU,
memory and energy usage) at the same level of code coverage.
Early attempts to reduce the resource usage of generated
unit-tests have been discussed and investigated in the related
literature [9], [10]. However, new follow-up studies are needed
as search-algorithms in test case generation have become more
sophisticated and more effective in the last decade [9], [10].
We also need further studies in the context of integration-level
test generation where the problem of efficient resource usage
is more critical.

Direction: using performance testing techniques within the
search process.

Prediction methods and risk analysis techniques have been
used in unit (e.g., [19] and performance testing (e.g., [13]).
They represent viable solutions for test case generation tools
where direct measurements are infeasible due to their massive
overhead.

III. CONCLUSION

Noteworthy progress has been made in search-based unit
test generation research. However, moving from unit-level to
integration-level test generation requires to solve several open
research and technical challenges. In this paper, we discuss
some of the most critical challenges and highlights possible
research directions to address such challenges.
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