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Abstract: 

PDS/PIO is a lightweight, parallel interface designed to supp rt efficient transfers of massive, grid-based, simulation 
data among memory,disk, and tape subsystems. The higher-level PDS (Parallel Data Set) interface manages data 
with tensor and unstructured grid abstractions, while the lower-level PI0 (Parallel InpuVOutput) interface accesses 
data arrays with arbitrary permutation, and provides communication and collective I/O operations. Higher-level data 
abstraction for finite element applications is provided by PXI (Parallel Exodus Interface), which supports, in parallel, 
functionality of Exodus I I ,  a finite element data model developed at Sandia National Laboratories. The entire 
interface is implemented in C with Fortran-callable PDS and PXI wrappers. 
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Introduction 
Historically, scientists and engineers have depended on experimental results to validate their theories and designs. 
Experimentation has become prohibitively expensive, both from the financial and environmental points of view. 
Therefore, experimentation is increasingly being replaced by computer modeling and simulation. Increased reliance 
on high-resolution simulation forces the scope and complexity of those applications to increase dramatically. 
Computational resources have kept up with the increased demand, but I/O (InpuVOutput) subsystems have not. 

I/O "bottlenecks" slow modeling and simulation application output as well as visualization application input. The I/O 
"bottleneck" appears at different levels of sobarelhardware abstractions, e.g., in data format, application read/write, 
file systems, and disk. Much research has demonstrated the efficiencies of data organization and collective I/O 
J8lr9lrlO]. Panda 
Scalable Software for Input-Output) provide:; software support for loosely synchronous applications with data 
pre-fetching and data-sieving 1121. 

is an early system that made use of server-directed, collective 110. PASSION (Parallel and 

MPI-IO 
supporting partitioning of file data among processes and a collective interface supporting complete transfers of 
global data structures between memory and files. In addition, further efficiencies can be gained via support for 
asynchronous 110, strided accesses, and control over physical file layout on disk. Currently, Sandia's unstructured 
grid applications would not utilize MPI-10's fimctionality to its fullest, but would have to deal with the additional 
overhead of having that generality. MPI-IO i:; a promising interface that may become more useful to PDS/PIO in the 
future. ROMIO is the Argonne National Laboratory implementation of MPI-IO that will be evaluated on Sandia's 
TFLOP system. 

is the first standard interface designed for portable, parallel I/O. It provides a high-level interface 

A data model currently in use at SNL is Exodus II: A Finite Element Data Model H, developed to store and retrieve 
data for finite element analyses. The Exodus II data file is written using NETCDF and HDF. Its most obvious 
limitations include lack of parallelism, file size restricted to 2 gigabytes (GBytes), lack of compression, and poor 
performance. It is no longer a practical tool lor the largest and most complex problems. 

mailto:pdheerm}@sandia.gov
mailto:pchen@CS.Stanford.EDU


PDS/PIO addresses the I/O problem at the level of data format and parallel application read/write operations. Data is 
organized so that it may be presented to the disk subsystem in a near-optimal manner. The PXIIPDSIPIO libraries 
are based on the Single Program Multiple Data (SPMD) programming model. Data structures are decomposed into 
sub-units and distributed among the computational nodes (processors). The program executes on each compute 
node, and messages are passed between the nodes using the MPI message-passing protocol u. 
All PXI and PDS functions are collective in that all processors have to participate in function calls, albeit with 
processor-specific arguments. PDS maintains light-weight meta-data information about all of the data files within the 
dataset. To avoid burdening the file system, the meta-data is accessed by only one processor, which then 
broadcasts global data when necessary. At the PI0 level, the data files are accessed only by a selected set of 
processors acting as I/O servers, which communicate with processors needing the actual data transfer. 

Preliminary results demonstrate an order of magnitude increase in performance. A test application writing data from 
the Intel TFLOP to the Intel PFS (Parallel File System) 111 using NETCDF demonstrates a peak bandwidth of less 
than 10 megabytes (MBytes)/second. An unstructured grid-based simulation application writing PDS datasets with 
PXI from the Intel TFLOP to the Intel PFS demonstrates a peak bandwidth of greater than 100 MBytes/second. 

Background 
Environment 

The Accelerated Strategic Computing Initiative (ASCI) is focused upon problems requiring three-dimensional, 
full-physics calculations. At Sandia National Laboratories, simulation applications include electromechanics 
(ALEGRA [141), large deformation transient dynamics (PRONTO), low-Mach transient fluid dynamics (GILA w), 
and shock physics (CTH u), to name a few. It is estimated that high-resolution grid-based simulations with 
adequate temporal resolution will require 1 O6 to I O9 mesh nodes. The problem complexity is stressing the limits of 
current infrastructure. Achieving a balance between compute power, I/O bandwidth, disk and memory capacity has 
proven difficult for massively parallel systems a. 
Figure 1 illustrates the major hardware components of the TFLOP system. The major functional components are the 
analyst's workstation, the TFLOP computer, the TFLOP local disk storage system, the Visualization Server, and the 
HPSS (High Performance Storage System). The Intel TFLOP system is Sandia's MPP compute engine. It consists of 
4536 compute nodes, each of which contains two Pentium Pro processors with 128 MBytes of memory per node. 
The complete system has 1.8 teraflops peak computational rate with 608 GBytes of system memory. 

TPLOPMPP 

Figure 1: TFLOP System 

The TFLOP 110 subsystem is comprised of 18 specialized nodes that process 110 requests and 36 RAID (Redundant 
Array of Independent Disk) devices. Each specialized node, or I/O node, consists of 2 Pentium Pro processors 
sharing 256 MBytes of memory on an Intel "Eagle" board. I/O nodes run the "Tflops Operating System" (TOS), a 
distributed OSF UNlX operating system. Two RAID controllers, attached to the I/O node, control two RAID devices, 
each of which has a 512 kilobyte (KByte) cache. Maximum bandwidth of each RAID device is 32 MByteskecond. 
Peak aggregate bandwidth to disk is I GBytelsecond, achievable only in a very carefully tuned test configuration. 

This is in sharp contrast to the 51 GBytedsecond total potential message traffic capacity between all nodes in the 
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system. The inter-processor communication network of the TFLOP is configured in a 2-dimensional, 2-plane, mesh 
topology with peak bi-directional bandwidth of 800 MByteslsecond and peak directional bandwidth of 400 
MBytedsecond. Measured directional bandwidth is 330 MBytes/second. Thus, the cross-sectional bandwidth of the 
inter-processor communication network is 5,l GByteskecond. 

As shown in Figure 2, the Intel Parallel File !System (PFS) is built on one or more UNlX file systems, striped over 
multide RAID devices. The 512 KBvte blocksize was selected to match the RAID device cache size. The default 
stripe size of 

M o t iva t i on 

AByte was selectedto match the total RAID device cache available per I/O node. 
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Figure 2: TFLOP I/O Nodes and RAID Devices 

User-level applications gain flexibility by using data modeling and data management tools. Such tools provide a 
common database for multiple application codes, such as mesh generators, analysis codes, and visualization 
software. Increased problem size and complexity is forcing better performance from these tools. PDS/PIO addresses 
the performance issues by providing a lightvrreight, parallel interface that optimizes data organization and disk I/O. 

Currently, the ASCI Data Models and Formats (DMF) group is developing a portable data model interface that is 
generalized to solve all user needs. However, the time-critical needs of Sandia's ASCI applications required an 
immediate solution and could not wait for delivery of DMF. 

The Intel TFLOP supports a Parallel File System (PFS) to give applications high-speed access to a large amount of 
disk storage. PFS file systems are optimizecl for simultaneous access by multiple nodes. File size is not limited to 2 
GBytes. Access to PFS file systems use an I/O technique called fast path //O, which gives better performance for 
large I/O operations (64K bytes or more per read or write). The Intel Cougar operating system on the compute nodes 
cannot directly access the file system. As shown in Figure 3, I/O requests from the application on the compute nodes 
are made via Remote Procedure Calls (RPCs) to an I/O Service Process executing in the Service Partition. The 
Service Process sends RPCs to the required I/O nodes, which then transfer the data directly from compute node 
memory to disk m. Very careful use of this system is required to prevent extremely bad I/O performance. It is quite 
possible for an application to compute for minutes, then write data to PFS for hours. PDS/PIO was developed to 
present data to PFS in a near-optimal mannsr. 
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Figure 3: Control via RPC and Direct Data Path to 110 Nodes 

PDS/PIO and its higher level interface, PXI, were designed to address Sandia's computer modeling and simulation 
I/O problems from computation to visualization. Requirements from the areas of computation data I/O and 
visualization data I/O differ in some areas. Simulation applications usually write data as it is computed, for an entire 
problem topology. Reading is limited to restarting applications from some previously written data (checkpoint). 
Visualization applications may read data for subsets of the topology, such as 'slices', or follow one particular variable 
over time. PDS/PIO addresses issues of data access patterns by organizing data to optimize access for computer 
modeling and simulation applications and visualization applications. 

Approach 
PDS/PIO is a lightweight, parallel interface designed to support efficient transfers of massive, grid-based, simulation 
data among memory, disk and tape subsystems. The higher-level PDS (Parallel Data Set) interface manages data 
with tensor and unstructured grid abstractions, while the lower-level PI0 (Parallel InpuffOutput) interface accesses 
data arrays with permutation. User-level applications may access the interface at the PDS level. Higher-level 
abstraction for finite element applications is provided by PXI (Parallel Exodus Interface), which supports, in parallel, 
the functionality of Exodus II, a finite element data model. The entire interface is implemented in C with 
Fortran-callable PDS and PXI wrappers. 

Parallel I/O performance is critical! Other requirements, while secondary, are, none the less, important. Additional 
requirements include: 

Portability 
Ease of use, i.e., a clean API 
"Gather/scatter" functionality 
Capability to interface with vendor-specific parallel file systems and HPSS 
Synchronous and asynchronous I/O 
Coordination of I/O requests (I/O servers) 
Thread-safe for SMP clusters 

PXIIPDSIPIO was developed to address these requirements. Each library is described, beginning with the low-level 
PI0 library. 

PI0 

PI0 (Parallel InpuffOutput) reads and writes data arrays with arbitrary permutation. It is the software component 
responsible for organization and presentation of data to the disk subsystem in a near-optimal manner. PI0 data 
permutation may include any or all of the following: 

Byte swapping 
Data type conversions 
Remapping based on Index andlor Value 



To meet the PXI/PDS/PIO user requirements described previously, implementation of the PI0 library was driven by 
the design criteria described in the following sections. 

Parallel 110 

The single most important design requirement for our new I/O libraries was parallel I/O. Driving this requirement was 
the structure of the TFLOP I/O subsystem. The I/O control path is capable of handling multiple requests. More 
importantly, there are separate, direct data r)aths from compute node memory to 110 node, each of which has two 
attached RAID devices. Therefore, parallel IrO requests should be serviced concurrently, dramatically increasing 
aggregate bandwidth. PI0 issues parallel l/O requests via the selected set of processors acting as I/O Servers. 

To write a data array, all processors execute the algorithm in Figure 4. Writes to separate locations in the file are 
processed by separate I/O nodes, based on careful selection of data buffer size. 

Initialization 

MPl-AllgatherO b initialize #bytes to be written 

Construct and write section header infomation 

Initialize data buffers 
Lt?,op 

Collect data inb buffers 
Non4U Servers MFY-SendO 

l/O Servers MPl-ReceiveQ 

Write data buffer 

Figure 4: Algorithm to Write Data 

Collective 110 

A second important design requirement for PI0 was collective I/O. All compute nodes of a massively parallel system 
issuing I/O requests simultaneously would likely overwhelm the capacity of the I/O subsystem. Such was our 
experience on the TFLOP, where approximately 4500 compute nodes must issue I/O requests to a limited set of 18 
I/O nodes. In the past, many Sandia applications attempted to "throttle" this I/O bottleneck by allowing only subsets 
of processors to issue I/O requests, while other processors remained idle. A better solution is collective I/O whereby 
data is "collected" from many processors to a few processors who issue the I/O requests. 

The selected set of processors acting as 110 Servers communicates with processors needing actual data transfer via 
message passing. Communication via message passing is many times faster than disk I/O, resulting in greatly 
increased data throughput. Each 110 Server communicates with a subset of the application's compute processors. 
Figure 5 illustrates PI0 using two I/O Servers. 
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Figure 5: PI0 Communications 

Data Buffering 

A third important design requirement for PI0 was data buffering. Most, if not all, I/O subsystems operate more 
efficiently with few large data transfers, than with many small ones. Data buffering alone can improve I/O 
performance for a file system striped across multiple disks. A parallel file system should be "tuned" for optimum 
performance by selecting appropriate file system block size, stripe unif, and stripe file size, based on disk speed 
and cache size. Optimum PI0 buffer size will vary based on the optimum data transfer size. 

Data is buffered by the I/O Server into 1 MByte blocks, by default, for efficient reads and writes to TFLOP PFS. Peak 
performance should be achieved with a 14 MByte data buffer. However, buffers larger than one or two MBytes may 
not offer enough performance improvement to justify the memory cost to the application. It becomes very important 
on distributed memory systems to provide a good balance of application and PI0 memory requirements. 

Asynchronous 110 

It is important to provide an asynchronous I/O capability, for greatest performance benefit. As described earlier, 
control for multiple I/O requests can be handled by the TFLOP Service process, and multiple data paths exist to the 
PFS I/O nodes. Therefore, it should be possible to achieve some degree of concurrency by issuing blocking I/O 
requests from multiple processors to multiple I/O nodes. A greater degree of concurrency will be achieved by issuing 
non-blocking I/O requests from multiple processors to multiple 110 nodes. PI0 is currently limited to the use of 
blocking readdwrites Multiple, non-blocking I/O requests have been problematic for our initial target architecture, 
the TFLOP PFS. 

PDS 

PDS provides data management at a level above data arrays, in a data abstraction context. All PDS functions are 
collective in that all processors have to participate in function calls, albeit with processor-specific arguments. To 
support flexible migration of data, PDS maintains light-weight meta-data information about all of the data files within 
the dataset. Meta-data is stored at the end of the initial data file. To avoid burdening the file system, the meta-data is 
accessed by only one processor which then broadcasts global data when necessary. For example, meta-data may 
contain processor-independent information that must be broadcast to all processors. 

Before operating on a specific dataset, the meta-data is copied from the initial data file and accessed as a separate 
file (meta-file) with name extended by "MF", and a backup copy (meta-file-copy) with name extended by "MFC". 
PDS accesses and updates the meta-file and meta-file-copy. All other data files within the dataset are accessed 
through PIO. Access to the meta-file is normally buffered for efficiency. The size of the meta-file is expected to be no 
more than a few MBytes. At the end of PDS operations on a dataset or, at the user's discretion, the meta-data is 
appended to the initial data file. Figure 6 illustrates example PDS datasets. 
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Figure 6: Example PDS Datasets 

There are three sets of entities that PDS maintains: segments, variables, and infos. 

PDS Segment 

A segment is a contiguous piece of a file ths t contains data associated with a time index. It can either be a topology 
or a state segment, recording topological or state information at time associated with the time index. Segments must 
be written in increasing time-index order. A lopology and a state segment can have the same time index; however, 
no two topology or two state segments can have the same time index. 

Every segment must be entirely contained within one data file. Multiple segments may be written to a single data file. 
There can be more than one data file, each containing multiple segments. The segments have internal ID'S that are 
ordered linearly: first in increasing-time-indeK order, second in topology-followed-by-state order. In normal use, 
datasets can be grown only by appending a new segment, and modified only by erasing all segments following a 
selected segment. Figure 7 illustrates PDS topology and state segment 

1 
TP Seg I 

1- 
u 

Figure 7: PDS Topology and State 

PDS Variable 

iegments 

A variable is a handle to a single, distributed, parallel data array of homogeneous types. It must be registered, to 
associate the variable with an ID and set its type, before the corresponding data can be read or written for each 
segment. Variable data are stored strictly in the data files and their accesses are collective and 
processor-dependent. A variable data corresponding to a particular segment is called a section. Thus, every 
segment is composed of a number of sections, each corresponding to a different variable. It is not necessary that 
every segment contain the same number of sections. Figure 8 illustrates PDS variables within a segment. 
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Figure 8: PDS Segment 

A section is a set of variable data written in a processor-ranked, concatenated form, prepended by a header. 
Information in the 56-byte header includes an integer reserved for future use, number of processors contributing 
data, sum and max information, and a list of data sizes (number of bytes) for each processor. A section containing 
data written by n processors will consist of the header followed by data for Po, PI, P,, ... Pn-l. 

Variables are read and written by specifying the ID returned by its registration. Variable type is a sum of "item" type, 
such as PDS-SCALAR or PDS-VECTOR, plus "word" type, such as PIO-FLOAT or PIO-DOUBLE. Variable type 
may be reset before writing data. For a write operation, data type conversion is performed based on the "Put Type" 
of the variable versus the "compute word size" of the application performing the write. For a read operation, data 
type conversion is performed based on the "Get Type" of the variable versus the "compute word size" of the 
application performing the read. 

PDS Info 

An info is a processor-independent (name, value)-pair stored as meta-data. An info name is a string of a maximum 
length, and an info value is a homogeneous array whose size and datatype are user-specified. An info may be 
attached to the dataset or any variable or segment within the dataset. Using these info objects, one can introduce 
auxiliary user-supplied functions to interpret and process the data in special ways not provided through the standard 
PDS interface. 

PXI 

PXI provides data management at a level above PDS/PIO. It supports a finite element data model consisting of 
nodes, elements, element blocks, node sets, side sets (faces), etc. The initial version supports multi-processor 
applications reading/writing many-to-many, and visualization applications reading many-to-one. 

The user controls the number of data files in a particular dataset in one of the following modes of operation: 

Single data file contains problem topology, all data, and meta-data. 
Initial data file contains problem topology, data for first time index, and meta-data. Remaining data files each 

Initial data file contains problem topology, data for first n time indices, and meta-data. Remaining data files 
contain data for one time index. 

each contain data for n time indices. 

PXI also supports a subset of Nemesis I functionality (Set of Functions for Describing Unstructured Finite-Element 
Data on Parallel Computers) u. Nemesis I was developed at Sandia as a parallel extension to Exodus II. 

During the initial design phase, the requirement for a higher-level, finite-element model, interface was not 
anticipated. The required "clean", easy-to-use Application Programming Interface (API) also needed to provide an 
easy migration path for the applications. 



ResuI ts 
Peak performance of the Intel PFS (Parallel File System) on Sandia's Intel TFLOP system is 1 GBytekecond. It was 
achieved by a very finely tuned performance test conducted by Intel, using all 18 I/O nodes. Expected performance 
of PFS is 32 MByteslsecond for each RAID device, or 64 MBytedsecond for each I/O node. For 18 I/O nodes, the 
expected aggregate bandwidth would be 540 MBytes/second. Actual observed performance for 14 I/O nodes was 
100 MBytes/second aggregate bandwidth. 

On the TFLOP 28-way striped PFS, an cas)' way to increase performance was to increase the amount of data being 
read or written, Le. PI0 buffer size. Theoretically, one should be able to achieve close to the peak 32 MBytedsecond 
bandwidth for each of the 28 RAID devices. In practice, performance grows very slowly for PI0 buffer sizes greater 
than 2 MBytes. Table 1 shows the increase in performance (Max Bandwidth) as buffer size increases. 

Table 'I : PDSlPlO Writes for 1 110 Server 

A data model currently in use at SNL is Exo~his 11, which uses NETCDF and HDF V for its I/O. A test application 
writing directly to NETCDF achieved a peak bandwidth of less than 10 MBytes/second using 1 I/O node. The same 
test application writing directly to HDF V achieved a peak bandwidth of less than 4 MBytes/second from one I/O 
node. 

Preliminary PXI/PDS/PIO results demonstrate more than an order of magnitude increase in performance. A 
64-processor simulation application (ALEGF'A) writing PDS datasets with PXI from the Intel TFLOP to the Intel PFS 
demonstrated a peak bandwidth of 85 MBytss/second from one I/O node with a PI0 buffer of 1 MByte. The same 
simulation application writing PDS datasets ivith PXI demonstrated a peak bandwidth of greater than 100 
MByteslsecond from one 110 node with a PI0 buffer of 2 MBytes. The simulation application was updating meta-data 
following each time step. 

As shown in Table 2, good performance imFrovement is also possible for smaller problems. A simulation application 
(GILA) writing PDS datasets demonstrated ii peak bandwidth of 75.6 MBytes/second from one I/O node with a PI0 
buffer of 1 MByte. In the following table, bandwidth is reported in MBytes/second. 

Table 2: PDSlPlO Using 1 110 Server 

One of the accomplishments not to be forgotten is the significant improvement made toward generating and 
visualizing LARGE DATA using the PXI/PDS/PIO libraries. Applications no longer create thousands of files requiring 
a long, memory-intensive recombination step. There is no limit on file size. 

Testing of functionality at the PI0 level has uncovered issues that must be investigated further. On a system with 
normal user load, increasing the number of 110 servers is not producing the expected increases in aggregate 
bandwidth. Multiple blocking write requests lo a single PFS file do not appear to be executing in parallel, as 
expected. Requests are made using appropriate seek and PI0 buffer size of 1 MB, which should guarantee 
concurrent writes to multiple I/O nodes. 

Another issue is that multiple non-blocking write requests to a single PFS file appear to produce incorrect behavior 
and 'hangs' of the Service process. Further investigation is required to verify the behavior. 



An issue which needs further investigation is the potential conflict for an I/O Server, that contributes data to an I/O 
Server other than itself. The current algorithm that determines which processors contribute data to which I/O Servers 
is based on the ID of a data block, not based on processor ID. One solution would be to designate a set of 
processors as I/O servers that are not also compute servers. This solution would probably not be acceptable to the 
applications. A better solution might be to separate the communication step, i.e. the "data collection" step from the 
I/O request and data transfer. 

An order of magnitude increase in 110 performance is a significant step toward the goal of parallel, scalable 110 
libraries. However, we believe that our initial version of the libraries is simply the first step toward even better I/O 
perform an ce . 

Summary/Future 
The scope and complexity of computer modeling and simulation applications will increase as computational power 
increases. ASCI is already planning for future systems with goals of 10, 30, and eventually 100 teraflops of peak 
computing performance. It is quite possible that I/O subsystems will continue to lag behind computational systems in 
performance. It is imperative that we continue to develop new strategies for improving 110 performance. 

110 "bottlenecks" slow modeling and simulation application output as well as visualization application input. PDS/PIO 
addresses the 110 problem at the level of data format and application readlwrite. Data is organized so that it may be 
presented to the disk subsystem in a near-optimal manner. PDS/PIO is a lightweight parallel interface designed to 
support efficient transfers of massive, grid-based, simulation data among memory, disk and tape subsystems. 

Future directions include support for the following: 

Compression 
Adaptive meshing * Application-directed archival storagehetrieval 
ReadNVrite using different number of processors than previous read/write 
More Nemesis functionality 
New data types 
Partial read/write operations 

Parallel I/O performance is critical! Preliminary results are very promising. We must continue to improve performance 
of PDS/PIO and its higher level interface, PXI. 
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