
PDSIPIO: Lightweight Libraries for Collective
Parallel I/O

wov 1 7 19%
0871 Judy Sturtevant, Mark Christon, Philip D. Heerrnann

Sandia National Laboratories
Albuquerque, NM 87185

oesturt, machris, pdheerm}@sandia.gov
Pang-Chieh Chen

pchen@CS.Stanford.EDU

Abstract:

PDS/PIO is a lightweight, parallel interface designed to supp rt efficient transfers of massive, grid-based, simulation
data among memory,disk, and tape subsystems. The higher-level PDS (Parallel Data Set) interface manages data
with tensor and unstructured grid abstractions, while the lower-level PI0 (Parallel InpuVOutput) interface accesses
data arrays with arbitrary permutation, and provides communication and collective I/O operations. Higher-level data
abstraction for finite element applications is provided by PXI (Parallel Exodus Interface), which supports, in parallel,
functionality of Exodus I I , a finite element data model developed at Sandia National Laboratories. The entire
interface is implemented in C with Fortran-callable PDS and PXI wrappers.

Keywords:

1/0, Parallel I/O, Scalable I/O, Collective I/O

Introduction
Historically, scientists and engineers have depended on experimental results to validate their theories and designs.
Experimentation has become prohibitively expensive, both from the financial and environmental points of view.
Therefore, experimentation is increasingly being replaced by computer modeling and simulation. Increased reliance
on high-resolution simulation forces the scope and complexity of those applications to increase dramatically.
Computational resources have kept up with the increased demand, but I/O (InpuVOutput) subsystems have not.

I/O "bottlenecks" slow modeling and simulation application output as well as visualization application input. The I/O
"bottleneck" appears at different levels of sobarelhardware abstractions, e.g., in data format, application read/write,
file systems, and disk. Much research has demonstrated the efficiencies of data organization and collective I/O
J8lr9lrlO]. Panda
Scalable Software for Input-Output) provide:; software support for loosely synchronous applications with data
pre-fetching and data-sieving 1121.

is an early system that made use of server-directed, collective 110. PASSION (Parallel and

MPI-IO
supporting partitioning of file data among processes and a collective interface supporting complete transfers of
global data structures between memory and files. In addition, further efficiencies can be gained via support for
asynchronous 110, strided accesses, and control over physical file layout on disk. Currently, Sandia's unstructured
grid applications would not utilize MPI-10's fimctionality to its fullest, but would have to deal with the additional
overhead of having that generality. MPI-IO i:; a promising interface that may become more useful to PDS/PIO in the
future. ROMIO is the Argonne National Laboratory implementation of MPI-IO that will be evaluated on Sandia's
TFLOP system.

is the first standard interface designed for portable, parallel I/O. It provides a high-level interface

A data model currently in use at SNL is Exodus II: A Finite Element Data Model H, developed to store and retrieve
data for finite element analyses. The Exodus II data file is written using NETCDF and HDF. Its most obvious
limitations include lack of parallelism, file size restricted to 2 gigabytes (GBytes), lack of compression, and poor
performance. It is no longer a practical tool lor the largest and most complex problems.

mailto:pdheerm}@sandia.gov
mailto:pchen@CS.Stanford.EDU

PDS/PIO addresses the I/O problem at the level of data format and parallel application read/write operations. Data is
organized so that it may be presented to the disk subsystem in a near-optimal manner. The PXIIPDSIPIO libraries
are based on the Single Program Multiple Data (SPMD) programming model. Data structures are decomposed into
sub-units and distributed among the computational nodes (processors). The program executes on each compute
node, and messages are passed between the nodes using the MPI message-passing protocol u.
All PXI and PDS functions are collective in that all processors have to participate in function calls, albeit with
processor-specific arguments. PDS maintains light-weight meta-data information about all of the data files within the
dataset. To avoid burdening the file system, the meta-data is accessed by only one processor, which then
broadcasts global data when necessary. At the PI0 level, the data files are accessed only by a selected set of
processors acting as I/O servers, which communicate with processors needing the actual data transfer.

Preliminary results demonstrate an order of magnitude increase in performance. A test application writing data from
the Intel TFLOP to the Intel PFS (Parallel File System) 111 using NETCDF demonstrates a peak bandwidth of less
than 10 megabytes (MBytes)/second. An unstructured grid-based simulation application writing PDS datasets with
PXI from the Intel TFLOP to the Intel PFS demonstrates a peak bandwidth of greater than 100 MBytes/second.

Background
Environment

The Accelerated Strategic Computing Initiative (ASCI) is focused upon problems requiring three-dimensional,
full-physics calculations. At Sandia National Laboratories, simulation applications include electromechanics
(ALEGRA [141), large deformation transient dynamics (PRONTO), low-Mach transient fluid dynamics (GILA w),
and shock physics (CTH u), to name a few. It is estimated that high-resolution grid-based simulations with
adequate temporal resolution will require 1 O6 to I O9 mesh nodes. The problem complexity is stressing the limits of
current infrastructure. Achieving a balance between compute power, I/O bandwidth, disk and memory capacity has
proven difficult for massively parallel systems a.
Figure 1 illustrates the major hardware components of the TFLOP system. The major functional components are the
analyst's workstation, the TFLOP computer, the TFLOP local disk storage system, the Visualization Server, and the
HPSS (High Performance Storage System). The Intel TFLOP system is Sandia's MPP compute engine. It consists of
4536 compute nodes, each of which contains two Pentium Pro processors with 128 MBytes of memory per node.
The complete system has 1.8 teraflops peak computational rate with 608 GBytes of system memory.

TPLOPMPP

Figure 1: TFLOP System

The TFLOP 110 subsystem is comprised of 18 specialized nodes that process 110 requests and 36 RAID (Redundant
Array of Independent Disk) devices. Each specialized node, or I/O node, consists of 2 Pentium Pro processors
sharing 256 MBytes of memory on an Intel "Eagle" board. I/O nodes run the "Tflops Operating System" (TOS), a
distributed OSF UNlX operating system. Two RAID controllers, attached to the I/O node, control two RAID devices,
each of which has a 512 kilobyte (KByte) cache. Maximum bandwidth of each RAID device is 32 MByteskecond.
Peak aggregate bandwidth to disk is I GBytelsecond, achievable only in a very carefully tuned test configuration.

This is in sharp contrast to the 51 GBytedsecond total potential message traffic capacity between all nodes in the

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency O F the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, comideteness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would niDt infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, r*ecommendation, or favoring by the United
States Governrnent or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

system. The inter-processor communication network of the TFLOP is configured in a 2-dimensional, 2-plane, mesh
topology with peak bi-directional bandwidth of 800 MByteslsecond and peak directional bandwidth of 400
MBytedsecond. Measured directional bandwidth is 330 MBytes/second. Thus, the cross-sectional bandwidth of the
inter-processor communication network is 5,l GByteskecond.

As shown in Figure 2, the Intel Parallel File !System (PFS) is built on one or more UNlX file systems, striped over
multide RAID devices. The 512 KBvte blocksize was selected to match the RAID device cache size. The default
stripe size of

M o t iva t i on

AByte was selectedto match the total RAID device cache available per I/O node.

I
If0

Node I

.. ..

..

If0
Node n

RAID I

RAID 2

RAID n-I

RAID n

I
Figure 2: TFLOP I/O Nodes and RAID Devices

User-level applications gain flexibility by using data modeling and data management tools. Such tools provide a
common database for multiple application codes, such as mesh generators, analysis codes, and visualization
software. Increased problem size and complexity is forcing better performance from these tools. PDS/PIO addresses
the performance issues by providing a lightvrreight, parallel interface that optimizes data organization and disk I/O.

Currently, the ASCI Data Models and Formats (DMF) group is developing a portable data model interface that is
generalized to solve all user needs. However, the time-critical needs of Sandia's ASCI applications required an
immediate solution and could not wait for delivery of DMF.

The Intel TFLOP supports a Parallel File System (PFS) to give applications high-speed access to a large amount of
disk storage. PFS file systems are optimizecl for simultaneous access by multiple nodes. File size is not limited to 2
GBytes. Access to PFS file systems use an I/O technique called fast path //O, which gives better performance for
large I/O operations (64K bytes or more per read or write). The Intel Cougar operating system on the compute nodes
cannot directly access the file system. As shown in Figure 3, I/O requests from the application on the compute nodes
are made via Remote Procedure Calls (RPCs) to an I/O Service Process executing in the Service Partition. The
Service Process sends RPCs to the required I/O nodes, which then transfer the data directly from compute node
memory to disk m. Very careful use of this system is required to prevent extremely bad I/O performance. It is quite
possible for an application to compute for minutes, then write data to PFS for hours. PDS/PIO was developed to
present data to PFS in a near-optimal mannsr.

Proc I]

Proc 1

I

Proc n n
RAID 1

RAID 2

RAID wl

RAID n
I

Figure 3: Control via RPC and Direct Data Path to 110 Nodes

PDS/PIO and its higher level interface, PXI, were designed to address Sandia's computer modeling and simulation
I/O problems from computation to visualization. Requirements from the areas of computation data I/O and
visualization data I/O differ in some areas. Simulation applications usually write data as it is computed, for an entire
problem topology. Reading is limited to restarting applications from some previously written data (checkpoint).
Visualization applications may read data for subsets of the topology, such as 'slices', or follow one particular variable
over time. PDS/PIO addresses issues of data access patterns by organizing data to optimize access for computer
modeling and simulation applications and visualization applications.

Approach
PDS/PIO is a lightweight, parallel interface designed to support efficient transfers of massive, grid-based, simulation
data among memory, disk and tape subsystems. The higher-level PDS (Parallel Data Set) interface manages data
with tensor and unstructured grid abstractions, while the lower-level PI0 (Parallel InpuffOutput) interface accesses
data arrays with permutation. User-level applications may access the interface at the PDS level. Higher-level
abstraction for finite element applications is provided by PXI (Parallel Exodus Interface), which supports, in parallel,
the functionality of Exodus II, a finite element data model. The entire interface is implemented in C with
Fortran-callable PDS and PXI wrappers.

Parallel I/O performance is critical! Other requirements, while secondary, are, none the less, important. Additional
requirements include:

Portability
Ease of use, i.e., a clean API
"Gather/scatter" functionality
Capability to interface with vendor-specific parallel file systems and HPSS
Synchronous and asynchronous I/O
Coordination of I/O requests (I/O servers)
Thread-safe for SMP clusters

PXIIPDSIPIO was developed to address these requirements. Each library is described, beginning with the low-level
PI0 library.

PI0

PI0 (Parallel InpuffOutput) reads and writes data arrays with arbitrary permutation. It is the software component
responsible for organization and presentation of data to the disk subsystem in a near-optimal manner. PI0 data
permutation may include any or all of the following:

Byte swapping
Data type conversions
Remapping based on Index andlor Value

To meet the PXI/PDS/PIO user requirements described previously, implementation of the PI0 library was driven by
the design criteria described in the following sections.

Parallel 110

The single most important design requirement for our new I/O libraries was parallel I/O. Driving this requirement was
the structure of the TFLOP I/O subsystem. The I/O control path is capable of handling multiple requests. More
importantly, there are separate, direct data r)aths from compute node memory to 110 node, each of which has two
attached RAID devices. Therefore, parallel IrO requests should be serviced concurrently, dramatically increasing
aggregate bandwidth. PI0 issues parallel l/O requests via the selected set of processors acting as I/O Servers.

To write a data array, all processors execute the algorithm in Figure 4. Writes to separate locations in the file are
processed by separate I/O nodes, based on careful selection of data buffer size.

Initialization

MPl-AllgatherO b initialize #bytes to be written

Construct and write section header infomation

Initialize data buffers
Lt?,op

Collect data inb buffers
Non4U Servers MFY-SendO

l/O Servers MPl-ReceiveQ

Write data buffer

Figure 4: Algorithm to Write Data

Collective 110

A second important design requirement for PI0 was collective I/O. All compute nodes of a massively parallel system
issuing I/O requests simultaneously would likely overwhelm the capacity of the I/O subsystem. Such was our
experience on the TFLOP, where approximately 4500 compute nodes must issue I/O requests to a limited set of 18
I/O nodes. In the past, many Sandia applications attempted to "throttle" this I/O bottleneck by allowing only subsets
of processors to issue I/O requests, while other processors remained idle. A better solution is collective I/O whereby
data is "collected" from many processors to a few processors who issue the I/O requests.

The selected set of processors acting as 110 Servers communicates with processors needing actual data transfer via
message passing. Communication via message passing is many times faster than disk I/O, resulting in greatly
increased data throughput. Each 110 Server communicates with a subset of the application's compute processors.
Figure 5 illustrates PI0 using two I/O Servers.

P aral I el

System
Srvr 2 File

Proc n .
Figure 5: PI0 Communications

Data Buffering

A third important design requirement for PI0 was data buffering. Most, if not all, I/O subsystems operate more
efficiently with few large data transfers, than with many small ones. Data buffering alone can improve I/O
performance for a file system striped across multiple disks. A parallel file system should be "tuned" for optimum
performance by selecting appropriate file system block size, stripe unif, and stripe file size, based on disk speed
and cache size. Optimum PI0 buffer size will vary based on the optimum data transfer size.

Data is buffered by the I/O Server into 1 MByte blocks, by default, for efficient reads and writes to TFLOP PFS. Peak
performance should be achieved with a 14 MByte data buffer. However, buffers larger than one or two MBytes may
not offer enough performance improvement to justify the memory cost to the application. It becomes very important
on distributed memory systems to provide a good balance of application and PI0 memory requirements.

Asynchronous 110

It is important to provide an asynchronous I/O capability, for greatest performance benefit. As described earlier,
control for multiple I/O requests can be handled by the TFLOP Service process, and multiple data paths exist to the
PFS I/O nodes. Therefore, it should be possible to achieve some degree of concurrency by issuing blocking I/O
requests from multiple processors to multiple I/O nodes. A greater degree of concurrency will be achieved by issuing
non-blocking I/O requests from multiple processors to multiple 110 nodes. PI0 is currently limited to the use of
blocking readdwrites Multiple, non-blocking I/O requests have been problematic for our initial target architecture,
the TFLOP PFS.

PDS

PDS provides data management at a level above data arrays, in a data abstraction context. All PDS functions are
collective in that all processors have to participate in function calls, albeit with processor-specific arguments. To
support flexible migration of data, PDS maintains light-weight meta-data information about all of the data files within
the dataset. Meta-data is stored at the end of the initial data file. To avoid burdening the file system, the meta-data is
accessed by only one processor which then broadcasts global data when necessary. For example, meta-data may
contain processor-independent information that must be broadcast to all processors.

Before operating on a specific dataset, the meta-data is copied from the initial data file and accessed as a separate
file (meta-file) with name extended by "MF", and a backup copy (meta-file-copy) with name extended by "MFC".
PDS accesses and updates the meta-file and meta-file-copy. All other data files within the dataset are accessed
through PIO. Access to the meta-file is normally buffered for efficiency. The size of the meta-file is expected to be no
more than a few MBytes. At the end of PDS operations on a dataset or, at the user's discretion, the meta-data is
appended to the initial data file. Figure 6 illustrates example PDS datasets.

Dataf

Data II

Metadata

~ Metadata Mehdata

0 Data 8-10

Figure 6: Example PDS Datasets

There are three sets of entities that PDS maintains: segments, variables, and infos.

PDS Segment

A segment is a contiguous piece of a file ths t contains data associated with a time index. It can either be a topology
or a state segment, recording topological or state information at time associated with the time index. Segments must
be written in increasing time-index order. A lopology and a state segment can have the same time index; however,
no two topology or two state segments can have the same time index.

Every segment must be entirely contained within one data file. Multiple segments may be written to a single data file.
There can be more than one data file, each containing multiple segments. The segments have internal ID'S that are
ordered linearly: first in increasing-time-indeK order, second in topology-followed-by-state order. In normal use,
datasets can be grown only by appending a new segment, and modified only by erasing all segments following a
selected segment. Figure 7 illustrates PDS topology and state segment

1
TP Seg I

1-
u

Figure 7: PDS Topology and State

PDS Variable

iegments

A variable is a handle to a single, distributed, parallel data array of homogeneous types. It must be registered, to
associate the variable with an ID and set its type, before the corresponding data can be read or written for each
segment. Variable data are stored strictly in the data files and their accesses are collective and
processor-dependent. A variable data corresponding to a particular segment is called a section. Thus, every
segment is composed of a number of sections, each corresponding to a different variable. It is not necessary that
every segment contain the same number of sections. Figure 8 illustrates PDS variables within a segment.

Variable I

Variable 2 0
*

Variable n

Figure 8: PDS Segment

A section is a set of variable data written in a processor-ranked, concatenated form, prepended by a header.
Information in the 56-byte header includes an integer reserved for future use, number of processors contributing
data, sum and max information, and a list of data sizes (number of bytes) for each processor. A section containing
data written by n processors will consist of the header followed by data for Po, PI, P,, ... Pn-l.

Variables are read and written by specifying the ID returned by its registration. Variable type is a sum of "item" type,
such as PDS-SCALAR or PDS-VECTOR, plus "word" type, such as PIO-FLOAT or PIO-DOUBLE. Variable type
may be reset before writing data. For a write operation, data type conversion is performed based on the "Put Type"
of the variable versus the "compute word size" of the application performing the write. For a read operation, data
type conversion is performed based on the "Get Type" of the variable versus the "compute word size" of the
application performing the read.

PDS Info

An info is a processor-independent (name, value)-pair stored as meta-data. An info name is a string of a maximum
length, and an info value is a homogeneous array whose size and datatype are user-specified. An info may be
attached to the dataset or any variable or segment within the dataset. Using these info objects, one can introduce
auxiliary user-supplied functions to interpret and process the data in special ways not provided through the standard
PDS interface.

PXI

PXI provides data management at a level above PDS/PIO. It supports a finite element data model consisting of
nodes, elements, element blocks, node sets, side sets (faces), etc. The initial version supports multi-processor
applications reading/writing many-to-many, and visualization applications reading many-to-one.

The user controls the number of data files in a particular dataset in one of the following modes of operation:

Single data file contains problem topology, all data, and meta-data.
Initial data file contains problem topology, data for first time index, and meta-data. Remaining data files each

Initial data file contains problem topology, data for first n time indices, and meta-data. Remaining data files
contain data for one time index.

each contain data for n time indices.

PXI also supports a subset of Nemesis I functionality (Set of Functions for Describing Unstructured Finite-Element
Data on Parallel Computers) u. Nemesis I was developed at Sandia as a parallel extension to Exodus II.

During the initial design phase, the requirement for a higher-level, finite-element model, interface was not
anticipated. The required "clean", easy-to-use Application Programming Interface (API) also needed to provide an
easy migration path for the applications.

ResuI ts
Peak performance of the Intel PFS (Parallel File System) on Sandia's Intel TFLOP system is 1 GBytekecond. It was
achieved by a very finely tuned performance test conducted by Intel, using all 18 I/O nodes. Expected performance
of PFS is 32 MByteslsecond for each RAID device, or 64 MBytedsecond for each I/O node. For 18 I/O nodes, the
expected aggregate bandwidth would be 540 MBytes/second. Actual observed performance for 14 I/O nodes was
100 MBytes/second aggregate bandwidth.

On the TFLOP 28-way striped PFS, an cas)' way to increase performance was to increase the amount of data being
read or written, Le. PI0 buffer size. Theoretically, one should be able to achieve close to the peak 32 MBytedsecond
bandwidth for each of the 28 RAID devices. In practice, performance grows very slowly for PI0 buffer sizes greater
than 2 MBytes. Table 1 shows the increase in performance (Max Bandwidth) as buffer size increases.

Table 'I : PDSlPlO Writes for 1 110 Server

A data model currently in use at SNL is Exo~his 11, which uses NETCDF and HDF V for its I/O. A test application
writing directly to NETCDF achieved a peak bandwidth of less than 10 MBytes/second using 1 I/O node. The same
test application writing directly to HDF V achieved a peak bandwidth of less than 4 MBytes/second from one I/O
node.

Preliminary PXI/PDS/PIO results demonstrate more than an order of magnitude increase in performance. A
64-processor simulation application (ALEGF'A) writing PDS datasets with PXI from the Intel TFLOP to the Intel PFS
demonstrated a peak bandwidth of 85 MBytss/second from one I/O node with a PI0 buffer of 1 MByte. The same
simulation application writing PDS datasets ivith PXI demonstrated a peak bandwidth of greater than 100
MByteslsecond from one 110 node with a PI0 buffer of 2 MBytes. The simulation application was updating meta-data
following each time step.

As shown in Table 2, good performance imFrovement is also possible for smaller problems. A simulation application
(GILA) writing PDS datasets demonstrated ii peak bandwidth of 75.6 MBytes/second from one I/O node with a PI0
buffer of 1 MByte. In the following table, bandwidth is reported in MBytes/second.

Table 2: PDSlPlO Using 1 110 Server

One of the accomplishments not to be forgotten is the significant improvement made toward generating and
visualizing LARGE DATA using the PXI/PDS/PIO libraries. Applications no longer create thousands of files requiring
a long, memory-intensive recombination step. There is no limit on file size.

Testing of functionality at the PI0 level has uncovered issues that must be investigated further. On a system with
normal user load, increasing the number of 110 servers is not producing the expected increases in aggregate
bandwidth. Multiple blocking write requests lo a single PFS file do not appear to be executing in parallel, as
expected. Requests are made using appropriate seek and PI0 buffer size of 1 MB, which should guarantee
concurrent writes to multiple I/O nodes.

Another issue is that multiple non-blocking write requests to a single PFS file appear to produce incorrect behavior
and 'hangs' of the Service process. Further investigation is required to verify the behavior.

An issue which needs further investigation is the potential conflict for an I/O Server, that contributes data to an I/O
Server other than itself. The current algorithm that determines which processors contribute data to which I/O Servers
is based on the ID of a data block, not based on processor ID. One solution would be to designate a set of
processors as I/O servers that are not also compute servers. This solution would probably not be acceptable to the
applications. A better solution might be to separate the communication step, i.e. the "data collection" step from the
I/O request and data transfer.

An order of magnitude increase in 110 performance is a significant step toward the goal of parallel, scalable 110
libraries. However, we believe that our initial version of the libraries is simply the first step toward even better I/O
perform an ce .

Summary/Future
The scope and complexity of computer modeling and simulation applications will increase as computational power
increases. ASCI is already planning for future systems with goals of 10, 30, and eventually 100 teraflops of peak
computing performance. It is quite possible that I/O subsystems will continue to lag behind computational systems in
performance. It is imperative that we continue to develop new strategies for improving 110 performance.

110 "bottlenecks" slow modeling and simulation application output as well as visualization application input. PDS/PIO
addresses the 110 problem at the level of data format and application readlwrite. Data is organized so that it may be
presented to the disk subsystem in a near-optimal manner. PDS/PIO is a lightweight parallel interface designed to
support efficient transfers of massive, grid-based, simulation data among memory, disk and tape subsystems.

Future directions include support for the following:

Compression
Adaptive meshing * Application-directed archival storagehetrieval
ReadNVrite using different number of processors than previous read/write
More Nemesis functionality
New data types
Partial read/write operations

Parallel I/O performance is critical! Preliminary results are very promising. We must continue to improve performance
of PDS/PIO and its higher level interface, PXI.

Acknowledgments
The authors wish to acknowledge Daniel Sands for his contributions to the manuscript. This work was supported, in
part, by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia National
Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company.

References
1 Intel Corporation Paragon System Administrator's Guide. Chapter IO: Managing P f S f i le Systems. April 1996.
2 Message Passing Interface Forum. MPI: A Message-Passing lnterface Standaml. Version 1 .I, June 1995. On the
World-Wide Web at http:/lwww.mpi-forum.orgldocsldocs.htm1.
3 L. Schoof, V. Yarberry. EXODUS II: A Finite Element Data Model. Sandia Report: SAND92-2137, September
1996.
4 Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface. July 1997. On the
World-Wide Web at http:l/www.mpi-forum.org/docs/docs.html.
5 G. Hennigan, J. Shadid. NEMESIS I: A Set of Functions for Describing Unstructured Finite-Element Data on
Parallel Computers. Sandia Reporf, July 1997.
6 M. Christon, D. Crawford, E. Hertel, J. Peery, A. Robinson. ASCI Red - Experiences and Lessons Learned with a
Massively Parallel TeraFLOP Supercomputer. Supercomputer 1997, Hans-Werner Meuer, K. G. Saur, Munich,
Germany, 1997.
7 B. Cole, P. Fay, B. Godley, G. Henry, D. Robboy, P. Work. Getting 110 Performance on the ASCI Red Platform.
Intel Corporation, August, 1998. In preparation.

http:/lwww.mpi-forum.orgldocsldocs.htm1
http:l/www.mpi-forum.org/docs/docs.html

8 J. del Rosario, R. Bordawekar, A. Choudhary. Improved Parallel I/O via a Two-Phase Run-time Access Strategy.
In Proceedings of the Workshop on l/O in Parallel Computer Systems af lPPS ‘93, pages 56-70, April 1993. Also
published in Computer Architecture News, 21 (5):31-38, December, 1993.
9 D. Kotz. Disk-directed I/O for MlMD Multiprocessors. ACM Transactions on Computer Systems, 15(1):41-74,
February, 1997.
10 R. Thakur, A. Choudhary. An Extended Two-Phase Method for Accessing Sections of Out-of-Core Arrays.
Scientific Programming, 5(4):301-317, Winter, 1996.
I I K. Seamons, Y. Chen, P. Jones, J. Jozwiak, M. Winslett. Server-Directed Collective 110 in Panda. In Proceedings
of Supercompufing ‘95. ACM Press, December, 1995.
12 R. Thakur, A. Choudhary, R. Bordawekar, S. More, S. Kuditipudi. Passion: Optimized 110 for Parallel Applications.
Compufer, 29(6):70-78, June, 1996.
13 R. Thakur, E. Lusk, W. Gropp. Users Guide for ROMIO: A High-Performance, Portable MPI-IO Implementation.
Technical Report ANUMCS-TM-234, Mathematics and Computer Science Division, Argonne National Laboratory,
October, 1997.
14 ALEGRA - A Three-Dimensional, Multi-Material, Arbitrary-Lagrangian-Eulerian Code for Solid Dynamics,
http://www.sandia.gov/l431/ALEGRAw.html
15 GILA, http:l/www.cs.sandia.gov/-machris
16 CTH 3D Eulerian Shock Code, http://www.sandia.gov/l431/CTHw.htmI

http://www.sandia.gov/l431/ALEGRAw.html
http:l/www.cs.sandia.gov/-machris
http://www.sandia.gov/l431/CTHw.htmI

