
-. AtiL/flcs~P-/O~~~8b,th,u...s,fCh,cagoasOPOrt.r.f.f
The submitted manuscnpt has been crea[ed

Argonne National Laboratory (“Argonfle”~

under Contract No. W-31 -109- ENG-38 with

the U.S. Department of Energy. The U S.
Government retains for tself, and others act-
ing on its behalf, a paid-up. nonexclusive
irrevocable worldwlde license In said arflcte
to reproduce. prepare derivative works. ~Is-

tnbute copies!. !~e Public.andDerformD~~-

A GricI-Enabled NII?I:
Iicly and display pubhcly, by or on behalf of
the Government.

\Iessage Passkg in Heterogeneous Distributed Computing

Ian Foster

Jfathematics and Computer Science
.+rgonne >-atjona~ Laboratory

!1700 South C’ass Avenue
Argonne. IL 60439

Abstract

.4pplLcutlon decclopment jot- high-perjbrrnunce dLs-
[! ’lk)llk<d wmp!ftlng .S~.St&m S, or compututionu[grids us
~~,,5~ ~ ~.e~om etlnzes cu[led. requires ““grzd-enubled” tools

:htit h& rnundune uspects of the heterogeneous grid

-:i[Lronm~nt without compromising performance. .4s

part OJ un inuestigution of these issues, we huve devel-
i>p~d .llPICH- G, u grid- enubled implementation of the

.Uessugc Passing Interfuce (iVIPI) thut U11OUXa user to

run MPI progru ms ucross multiple computers ut dif-

ferent sites using the same communds that would be
used on a parallel computer. This librury extends the

.-irgonne MPICH implementation of MPl to use ser-
).z(:~.s.prorlded by the Globus grid toolkit. In this paper,
L+ ,~t.5(.,rlbe the .JIPICH-G implementation und present
,.1./lIJILf}Uryperj%rmance results.,P

1 Introduction

IIlqll-/)erforIll Li1lce ‘.(:otnputational gricls.’ [11] in-
i,li llel(’ro~eneous collections of computers that may
:,.. [. l,. [i] ,Iifferent ,a(inlini~trativ~ domains, run differen[,

-(,(1,V;I(>, i]e sllbject to different access control policies,

ill, [be onnec~ecl by network with widely varying per-
f~)rtllil[)(.’echaracteristics. kVe believe that application
i~v(;l,)pt~~~ntin Ghese environments requires specialized
“+ri(j-,,[lttble(l” tools that hide mundane aspects of the
lLf,t(,rO1:C’[I{:()(iSgrid environment without compromising
[J(.rforIt~all(,e. These tools may implement familiar pro-

<V II II II IILI: tllmlels. such as message passing. data paral-
!,.il~lll. !)r ol>,je~.r. p:~ralle{ism (perhaps with extensions),

,! 111:1} II!i[)i(’til(’llt t..ofllpletely new progralllnling mod-
!. l!! IIIILI’ ‘:1s!’ r,wc.;lr(.ll is r(xlllir(,(.1 [,() ll[l~lt>rstwl(l

‘.!, l[; !:[) !,1’,lllr[,l’(~ 111 ,ll)l~roa(:tl~s :\ti((t,ll~, t<~(,ll[}i(lil(y

>ichulas T’

Hj:h–performance

[iaronis

Computing

Systems

Lab

Department of Computer Science
j-orthern Illinois L“niversity

Delialb. IL 6011.5

that may be used to implement these approaches in

different environments.

.As part of an investigation of these issues. we have
developed MPIC’H-G. a grid-enabled implementation
of the >Iessage Passing Interface i 11 PI) that allo~vs [he

user to run }IPI programs across multiple ccmputers
at different sites using the same commands that would

be used on a parallei computer. This library extends
the .Argonne MPICH implementation of MP1 [1.51 to
use services provided by the Globus grid toolkit [1O].

as follows:

1.

2.

3.

4.

.5.

6.

i’.

i

The Globus information service is used to deter-
mine how to obtain access to the compu Lers in
quest ion.

The Globus security service is used to handle au-
thentication and authorization at each site.

The Globus executable management service is
used to stage executable.

The Globus resource rnanasyment serril:e i.~ r.iwd
to start processes on ra(:h compiur,er, i[irerf:~,i[]~
with local schedulers where nw:ess:ar}.

The Glot)us (:ol~~t~lLl[~i(:~itio;lset-vi-e is i~>d ~> [I..~u-
age tile difrerent comrnunicacion n]et]lmis [ha C

may apply in a heterogeneous enviroun)e[lr. suc”!l

as vendor-supplied protocols or TCP/IP.

The Globus file access service is used to (!irect
standard oLltpllt ancl error (Sf,(lolut ali(l stderr)
streams to the user’s terminai iknci to provide :k. -

cess to tiles rf?garclless of lo(::Ltiorl.

Globlls pri)(vss t~l;.~t~:tgf~[ll(~lltf’af:!lirif’~ ;Ili{)w :!I(>

prf)gratl][ll(r to !l]~[lltl)r {l], [Jr,(+r~~.+ ,1”III I! I;,li -

,,:Ll,i[)[l :LIICI l(~rt(li[l;~t(, II i[’ ,11.>lr~,(!

DISCLAIMER

This repoti was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

\I P[CH-G is a complete i~llplell~elltatioll of the MPI-

i >talldarci and passes the MPICH test suite. Early ex-

p{’riences suggest that it achieves our goal of reducing
harriers to the use of distributed computing by allow-

ing [he Ilse of iMPI as a portable, high-performance

progratnming model for heterogeneous clusters and for
,,vide-area computing systems. Several groups (e. g., at

[.aivrence Liverrnore National Laboratory (LLNL) and
S .+S .-i .\nles Research Center) are using it to run con-

IL’!IIioilal IIPI programs across multiple massively par-

:\l[el processors (\IPPs) within the same machine room.
[i] tl~is case. JIPICH-C+ is used primarily to manage
start up and to achie~e efficient communication via use

of different low-level communication methods. Other
grOUPS m-e using JIPICH-CT for metacomputing exper-

iments. in which applications are distributed across
\IPPs located at different sites: Larsson for studies of
distributed execution of a large computational electro-
magmetics code [17], and Chen and Taylor in studies of
automatic partitioning techniques as applied to finite

element codes [4]. MPICH-G can also be used to im-
plement distributed visualization pipelines and similar
applications in which components are located at differ-
ent sites. In these latter examples, MPICH-G is used
to manage heterogeneous authentication and startup

mechanisms.
in tile rest of this article, we describe the problems

t i~a.t we faced in developing MPICH-G, the techniques

usecl to overcome these problems, and preliminary ex-

perimental results that indicate the costs associated
~vith the MPICH-G implementation.

2 The N“eed for Grid-Enabled Tools

An extensive body of experience shows that the
coupling of geographically distributed computers,
databases. scientific instruments, and peopIe can en-
able interesting new applications. Distributed super-

computing [19], knowledge synthesis [20], online in-
strument control [16], and teleimmersion [6] are just
four examples. However, experience also shows that
the barriers to the construction of such applications
au= considerable. Few programmers take the time to
IIlast cr the intricacies of such grid environments, and
,~\~Y1lLIlell often produce applications that are fragile,

il!~tlport kble. anti perform poorly,

1’l!, ~pecilic problems encountered by the develop-
,,1+ ,J(511(’11grid applications vary widely according to
t II(gri{l eilvironnlellt and application type in question.

Lt”t iw [Jigure 1 to illustrate some of the problems that
IV(I tl;~vc been coucernecl with in the development of

\[[J[(.’[-l-G. ‘rhis figure shows three massively parallel
processi us (YIP P) systems, each const rutted from sym-

2

metric multiprocessor (SIIP) nodes. T]vo of the 31PPs
are located within the same institution and hence are

connected by some form of (hopefully high-speed) local

area network (LA.N), while the third is located at a re-
mote site and hence is reached by a \vide area netlvork
(WAN}. The following is a partial list of the problems
that we may encounter in such an environment.

1

2

3.

4.

5.

6.

The two sites will likely operate different authenti-
cation and authorization mechanisms and impose

different access control policies. .-1 user is unlikely
to have the same user id at the t~vo sites.

The two sites are unlikely to share a. fii~ sw
tern. Hence. specialized techniques are required
to transfer executable and program files between
sites.

The different MPPs may be controlled by different

schedulers with different scheduling policies.

We need to allocate resources concurrently at
multiple sites and establish a single compu-
tational environment (in MPI terms, a single

MPI .COMM.WORLD)that spans those resources. (We
refer to this as the “co-allocation” problem.)

Efficient communication requires that different
communication methods be used in different sit-

uations. Within an SMP. shared-memory com-
munication should be used, whether by using
explicit shared-memory operations or by using
shared memory operations to provide fast imple-
mentations of other abstractions such as message
passing. Between SNIPS within the same >IPP. a
vendor-supplied message-passing library should be

used. Only between MPPs should the universally

available but slow TCP/IP be used. (An exception
to this rule is shown in the upper MPP in Figure 1.
In some cases, a limitation on the number of nodes
that can communicate using the vendor-supplied
library may require the use of TCP/IP even within

an MPP.)

The topology of the overall computational system
needs to be taken into account when implement-
ing communication algorithms. Taking into ac-

count the different TCP/IP performance (in terms
of both absolute speeds and bisection bandtridrhs)
within an hlPP, over a L.I.X, and over a E\-.-l.X.[he
example system features five different cmnlnluni~’a-

tion speed regimes.

hVe believe that the solution to these types of prob-

lem is to develop grid-enabled took that provide etfi-
cient implementations of fami Iiar (or unfamiliar) pro-
gramnling models for use by application developers. [11

~~~~~~~~

JAN052001



-,

TCP/IP ;ver Switch
-. -.

Message Pass&gLibrary Message Passing“Library

Sh&ed memory ‘Shared memory

>fPP

,- wlth

s\IP
nodes

shared gemory Shared memory

—-—_ .—.—---- —-—.———..—...—.

TCP/IP
over LA

Message Passing Library I’ ,----- -- . . . .. . . . . . . .
Message Passing Library

,~h~~d yem~or, , ;
/ Shared memory

MPP ; ‘_ ._ ’_. _. -----
/“ Remore

with 4 ---

SMP <
MPP:. > with

nodes :’1
SMP

Shared memory; ; _Sh~ed gemgy nodes-—. - ;
--4 ..- ,

! -. .-, .- -
—:

1 —-

Figure 1. The structure of a prototypical “computational grid” computing environment, of the type
supported by MPICH-G, See text for details.

developing these implementations, the tool developer

must be concerned not only with translating the pro-
gramming model to the grid environment, but also with

revealing to the programmer those aspects of the grid

environment that impact performance. For example,
a grid-enabled J4P1 might handle automatically issues
of authorization, startup, and process management,
hence addressing the first four points listed above. It
might also incorporate specialized techniques for point-
t.o-point and collective communication in highly hetero-
ge[leous environments, hence addressing points 5 and 6.

Finally, it might also extend the NIPI model to provide
programmers with access to resource location services,
i!lformation about grid topology, group communication
~Jrot,] oh, and quality-of-service management services,
., ,~s t:> enable new programming techniques appropri-
:]1t- for $rid environments.

in principle, such grid-enabled tools could be con-

structeci from scratch. However, the task is greatly
simplified if the programmer has access to appropri-

ate Iow-tevel services. As we explain below, we use the
G Iobus toolkit as a source of such services in our work.

‘“rhe state of the art with respect to such tools is not
very adval]ced. Systems such as Condor [18], NEOS [5],
;LII(I \;etSolve [3] all implement grid-based program-

inil~g lllodels of various sorts. Various implementations

of message passing libraries provide some support for
heterogeneous execution (e.g., p4 ~2] and PVM [14]),

but these systems do not support the flexible use of
alternative low-level communication protocols, inter-
faces to different lNfPP schedulers, or the MP1 stan-
dard. PVNIPI [7] exploits a renaming capability pro-
vided by MP1’s profiling interface to use PVM mech-

anisms to couple vendor-supplied MPIs on different
MPPs. The resulting system supports heterogeneous
execution of MP1 programs but cannot deal with het-
erogeneous startup mechanisms or dynamic selection
of communication methods.

3 Buildhg Blocks

Our grid-enabled YIPI illl[)lellle[ltatiotl i> voi]-

structed from two existing soft\vare systems: S1PICH
and C,lobus. We describe these brieHy here.

3.1 MPICH

ihIPICH [15] is the most widely useci implementat-

ion of the MP1 standard. Its architecture features a

layered design, in which higher-level MPI communica-
tion constructs such as collective operations, communi-
cators, ancl topologies are implemented in ternls of ba-

3



si( [;ol~~tlllllli(:atioll operations provided by an “abstract
~l(,vil.e.’” Various such devices have been designed, en-
tl~lirlg high-performance implementations of A4P1CH

,otl a variety of platforms. W’e exploit this device archi-
t.(~ctLlre in our work, defining a “C-lobus communication

device” that supports the use of multiple low-ievei com-

munication methods in heterogeneous wide area envi-
ronments,

MPICH also defines a uniform startup mechanism

for \IPI programs. For example, the command

mpirun -np 64 myprog

..t ar[,> tile IIPI program myprog as 64 processes,
\Yhrther on a shared-memory multiprocessor (via

fork ). a set of workstations on a local area network
(e.g.. via rsh), or on an NIPP (e.g., via POE commands
on an IBM SP). Our MPICH-G implementation allows

the same command syntax to be used even when start-

ing programs across multiple MPPs of different archi-
tectures. We believe that it is a significant achievement

that we can provide a similarly simple and uniform in-
terface in much more complex grid environments.

3.2 Globus

Globus is a widely used toolkit for building wide
area applications, The toolkit comprises a set of inter-
reiat.ed components, each providing services and asso-
ciated .\PIs that address a distinct aspect of wide area
computing [10]. Components developed to date are

1.

.,z.

3.

4.

.3.

(i

1.

the Nexus communication library, providing sup-

port for multimethod communication;

resource management services, providing uniform
interfaces to local schedulers and support for bro-
kering and co-allocation (see below);

security services, providing support for single sign-
OU, multiway security contexts, and interfaces to

local security services;

file access services, providing staging services and
!uniform interfaces to files, regardless of location;

an Lightweight Directory Ac-
,.ess Protocoi (LDAP)-based information service,
[he Met,acornputing Directory Service (MDS), pro-
viding uniform access to up-to-date information
about Globus resource structure and state;

a th[llt detet:t,ion service, providing a notification
.~~,rlit.e [or faulty processes: and

,,x[’(ul,al>le management services that support
+1aging of e.xecutables to remote computers.

4

Globus has distinct local service. global service. and
client components. .\t GIobus sites. a small set of
servers provide (deliberately simple) Iocul .serczces such
as authentication, resource allocation. and status mow

itoring. In particular, a Globus Resource .~llocation
Manager (G’R.A31) implements a uniform interface to
local resources (computers, networks, etc. ) for aut hen-
tication and allocation. .idditional global services, de-

fined in terms of these local services, provide more so- .

phisticated functionality, such as resource brokering,
co-allocation of resources, ancl fault detection. Finally,
client libraries allow application programs and tools to
invoke local and global services,

G1obus toolkit components are designed to support
the incremental development of gricl-enabled tools and
applications. In principle, the user should be able to
take either an existing or new program and gradually

make it more “grid-aware” by introducing additional
services. Preliminary application experiences suggest
that this incremental development methodology works
well [1O]. Various groups are using a similar methodol-

ogy to apply Globus components in other tool projects
(e.g., [1, 13]); however, MPICH-G is the most sophis-

ticated such system constructed to date.

4 The MPICH-G Library

We briefly describe the techniques used to imple-
ment some of the YIPICH-G capabilities listed in the
introduction.

4.1 Startup: mpirun and the machines File

MPICH provides a standard command for starting
MP1 programs, namely, mpirun. This command spec-
ifies the number of processes that are to be created
and can also provide flags relating to debugging and so

forth.

On a parallel computer such as the IBM SP. the
MPICH implementation of mpirun simply generates

an appropriate job submission command to whatever
scheduler is used to obtain access to the II PP. On the
other hand, in a network of workstations environment.
a machines file is accessed to determine which nla-

chines the NIPI program should be started on. For

example, the following file indicates that one process

should be started on each of dormer and dalek. ancl
two processes on pitcairn.

dormer

dalek
pitcairn 2



-, .

OILr only change to the MPICH startup model is
t fmt \ve generalize the contents of the machines file to

ill{’llide L’esoLIK”e manager (GRAM) names. For exam-
pl(. fhe following fiie names three such resource man-
;,:<,,~s, at tilr~e different sites:

dormer .mcs. anl .gov-fork 8
bonny. isl .edu-fork 8
mot14. ncsa. uluc. edu-lsf 64

The MPICH-G implementation then uses the

Globus information service, iMDS, to perform a simple
formofresource location, accessing MDS to determine
detailed contact information (e.g., port numbers) for

the specified resource managers. Hence, the user need

not be concerned with low-level details regarding the
physical location and interfaces of resources.

The user can build on this simple capability to im-
plement more sophisticated resource location schemes.
For example, rather than specifying node counts in the
machines file, the user can perform an MDS search to
deterinine how many nodes are available on each ma-

{.hine. and can rewrite the machines file appropriately.

Or. the user can perform an M DS search to locate re-
wur(:e managers with particular properties (e. g., idle

nodes and specified network bandwidth) and then place
the names of those systems in the machines file.

~.~ Job submission and Executjon

Once the machines file has been read and resource
manager contacts determined, the MPICH-G mpirun
implement ation calls a Globus-provided funct ion called
globusrun to manage the task of job submission and

execution. This function uses a variety of Globus ser-

vices and libraries, as follows:

Co-allocation. As noted above, the creation of a
(computation that spans multiple MPPs is a difficult

prol>l(?m. We must allocate resources on the selected
,-onlputers. start processes, and link these processes
i]Ito i] computation. Different computers differ widely

[[i t II(Jlnerhanisms used for resource allocation and pro-
,~s> ,,reatio\\. so a first requirement is to negotiate the

<ippropriate mechanisms at each site. A second concern

is that startup can be a timeconsuming and error-prone

a{.’tivity: hence. we require techniques for detecting faii-

ure (e.g.. via timeout) and synchronizing once startup
tw[t}pletes. These two concerns are addressed via the

use of the C;R.A.’vf interface (discussed above) and an
il ppropriate co-allocator library, respectively. MPICH-
(; uses the Dynamically-1.Jpdated Request Online Co-

idloct~tor (DUROC). DUROC submits requests, veri-
lif’s fwrrect startup, ancl provides functions that can

then be used to coordinate the various sul>,jobs so as
to create (in our current case) a single MP1-COMMJJORLD
spanning all processes. The need to reser]r resourrm

at multiple sites simultaneously remains as a problem.
which we are investigating in current \vork.

Authentication and authorizatiorl. .+ significant
obstacle to the use of multiple c~istributed reso~lrces i>
that the user will typically have a clistinct ‘trust re-
lationship” (e.g.. account ), oc even no prior trust re-

lationship at all, at different sites. Hence. starting a

program can be a frustrating process involving nlulti-

ple Iogins. MPICH-G avoids this because the Globus
Security Infrastructure supports single sign-on and au-
tomatic mapping (under site control) to appropriate
local accounts. Public key technology is used to avoid
the transfer of plaintext passwords.

Executable staging. Manual staging of executable

is another painful activity. MPICH-C, overcomes this
obstacle by using the Globus ‘Global .%ccess Secondary
Storage” (G.ASS) service to stage executable to remote
machines. Currently, this technique works only if the
programmer has supplied an appropriate executable for
each remote computer. In future work: the Globus

group plans to investigate automated techniques for
identifying and generating appropriate executable. for
example by using compile servers.

Communication. As described in an earlier pa-

per [8] which focused specifically on multimethod com-

munication in MPICH-G, the N-exus communication
library is used to provide access to multiple com-
munication methods [9]: e.g., TCP/IP in the wide
area, vendor-specific protocols within a computer, and
shared memory within a cluster.

Monitoring, control, stdout. The globusrun util-
ity used by mpirun also provides a number of other use-
ful capabilities. Callbacks providecl by GR.\>ls allow

it to detect and report termination. (.xontrol functions
provided by the C+RAM .API allow it to tern~inatr a

computation in the event of a user signal (control-C)

or if a component fails. Finally, CI.-I,SS nlechanisrns are

used to collect standard output ancl error streams ancl

route these back to the originating terminal.

5 Performance Studies

An empirical evaluation of a \ibrary such as \IPICH-

G should, ideally, address at, least the following issues:

5



51art, upcosts: What is the cost of the authentica-

tion, authorization, resource location/allocation,

and other management mechanisms? Are these

mechanisms scalable?

Comnlunication costs: What is the impact of the

multimethod communication support on point-to-
point and collective communication performance,

for both simple benchmark programs and real ap-
plications. and in both homogeneous and hetero-
geneous environments?

Reliability: ire the management and comrnunica-
1ion mechanisms provided-able to operate reliably

in ~vicle area environments?

\Ye present here preliminary results for point-to-
point communication performance in homogeneous sys-
tems: optimization in this configuration, and other
measurements, are ongoing. We use the “ping-pong”
benchmark programs provided with MPICH [15] to
e~-aluate the performance of MPICH-G. We study per-

formance on an IBM SP2 system at Lawrence Liver-
more National Laboratory (L LNL). This system runs
.%11 4.3.1 and is configured with four-way SMP nodes
with 332 MHz PowerPC 604e processors. This config-

uration provides 1.2 GB/s bandwidth to memory and
150 MB/s switch bandwidth. All communication mea-
surements are bet ween processors on different nodes.

t~e measured performance for five different commu-

Llication libraries:

IB~M-IMP I, the nont breaded IBM implementa-
[Lon of }IPI.

IBNI-MPL. the IBM implementation of MPL,
the original communication library provided on

the IBM SP.

MPICH-mpl, MPICH operating over the IBM
MPL library.

,Nexus. the Globus communication library (also
operating over the IBM MPL library in this situ-
ation).

MPICH-G, MPICH-G operating over the Globus

communication library (which in turn uses the

lB\I MPL library).

111addition, for each of these libraries we measured
pert’t)rlllance when operating over two different bind-
lit~+ L,r the [Bk[ al~d IBM MPL library: one that uses

I I], [liur(’ efficient riser space communication and one
I):tXl,l ,11 ‘1( ‘P/l P. .ilso, for Nexus and MPI~H-~T we
I~\iil[I:It~Yl tile i[npact, of two different values for the

““skip-poll” parameter. as discussed }MIOIV,The results
are presented in Tables 1 and 2.

In brief, we find that when using user space commu-
nication, MPICH-C7 incurs an overhead of 48 ,usecfor
a zero-length message (when skip poll= lOIi) and

achieves 3.5 percent of the peak bandwidth achieved
by IBM’s MP1. These are certainiy not good results.
but nor are they dreadful, and on the basis of previ-

ous studies [12, 8], we believe that we understand the
source of these overheads and know how to eliminate
a significant part of them, by eliminating extra copies,

improving memory management, and streamlining cer-
tain interfaces. Overa.11, we believe that we can achieve

performance close to that of lIPICH-mpl in most sit-
uations.

The user space results for Nexus and SIPICH-mpl
provide some insights into the nature of the overheads.

The zero-byte latency for Nexus is 42 psec, while that
for MPICH-mpl is only 32 psec: this difference reflects
certain known overheads associated with the N’exus
communication model and implemental ion [12]. But
the bulk of the overhead (31 psec) is clearly associated
with the layering of MPICH-G on Nexus, something

that we have not optimized carefully. The bandwidth
numbers for Nexus and MPICH-C, are identical, indi-
cating that the overheads here lie in N-exus. The source
of this overhead is additional copies performed in the
Nexus system on send and receive. These can be cor-
rected, but the necessary optirnizations have not yet
been performed.

When using TCP/IP for communica~ion. MPICH-

G incurs a similar overhead for zero-length messages
(69 psec) but now attains 61 percent of the band-
width achieved by IBM’s MP1. The overheads asso-

ciated with the layering of MPICH-G over Nexus and
the bandwidth behaviors seen for Nexus and MPICH-G

are comparable to those seen in the user space case.

We comment finally on the significance of the skip

poll parameter. As discussed elsewhere [9], the perfor-
mance of multimethod systems that depend on polling
to detect incoming communications can be sensitive to
the frequency with which different interfaces are polled.
In the current case, a user space poll is cheap (less than
one psec), while an 1P poll can cost 10s of microsec-

onds. Hence, a simple round-robin strategy that polls
the two interfaces in sequence will often clelay the pro-
cessing of incoming user space conlrllulli(:at ions. Lve

allow the user to control the polling st~ategy used by

providing a parameter “skip-poil” that specifies how

[nany “fast” polls are performed before a slow poll is
performecl, Hence, a very l:wge skip-poll valut such

as 10,000 i.s a CIOse tlpprOSilllilti Oll to [l It’ cn.w !Vhell

the slow protocol is not, IIWI at dl, tv~lile s!iil)-poll=()

6



“.’*

Table 1. Preliminary performance results for MPICH-G: One-way message times on the LLNL IBMSP2

Communication Skip Latency Time (,usec) vs. Msg Size (bytes)
Library poll (psec) 10 100 lK 10K lOOK 111

User space communication:

IB31-MPI 25
IBll-MPL 24
\IPICH-mpl 32
Xexus 10K 42
MPICH-G 10K 73
h“exus o 161
MPICH-G o 360

TCP/IP-based communication:

IBM~MPI
IBM-MPL
MPICH-mpl
Sexus

MPICH-G

INexus
MPICH-G

27 32 64 284 1745 12714
26 30 63 235 1673 12681/
33 44 7’5 233 1630 12888~
44 48 88 3.56 3944 35252I
76 80 121 363 3249 35813 ~

162 167 224 701 6424 .59886

362 368 443 958 6458 57016

131 I 134 143 251 976 4850 :35272
129 133 141 251 718 4542 35061
184 184 290 393 966 5800 35:348

10K 160 163 173 293 899 6993 b[aai
-----

10K 200 206 218 340 989 7058 58092
0 287 289 294 430 1109 7856 62826
0 530 I544 558 693 1429 8141 62443~

Table 2. Preliminary performance results for MPICH-G:Bandwidths on the LLNL IBM SP2

Communication Skip Latency Bandwidth (KB/see) vs. Msg Size (bytes)
Library poll (psec) 10 100 lK 10K 100K 1M

User space communication:

IBM-MPI 25 349 3034 15142 34381 55935 76809
IBM-MPL 24 370 3219 15396 41401 58358 77005
MPICH-mpl 32 292 2211 12975 41868 59882 75769
Nexus 10K 42 221 1995 10975 27366 24757 27701
MPICH-G 10K 73 128 1217 8067 26896 30051 27268
?Jexus o 161 60 583 4355 13918 15200 16312
MPICH-G o 360 26 265 2201 10184 15121 17127

TCP \IP-based communication:

IBM&PI
IBM-MPL
MPICH-mpl
>’exus
JIPIC’H-G
.Nexus

MP[CH-C:

10K

10K
o

0

131 72 681 3884 10003 20132 27686
129 73 688 3882 13594 21498 278.53
184 52 336 2481 10099 16834 27626
160 59 563 :333110s54 13964~ 16966
200 47 446 28(54 9869 138:3516810
287 33 331 ~~y1 8$01 12430 1.5543
530 17 174 1407 (5833 11994 1.5639

7



“.4-

,x>rresponds to rollncl- robin polling. We see from Ta-
hlt% i :ind 2 t,hat the round-robin strategy performs

.si~llitic’antly worse than skip- poll=O. Fortunately, ex-
perience shows that even quite small skip-poll values
cau provide acceptable overheads while providing ea-
sonable responsiveness for the different methods.

6 Future Work

\\”e are working with colleagues to extend the
\i P1(.(H-(+ implementation in a number of areas,

Shared-memory support. To date, we have ex-
piored the use of just two communication meth-
ods: user-space communications within an MPP and

TC’P/IP between MPPs. On computers such as the
IB31 SP. we can also exploit more efficient shared mem-
ory communications within SNIP clusters, hence pro-

viding a total of three different communication meth-
ods. We are working with colleagues at USC/ISI to
impiement and evaluate this strategy.

Topology-aware communication operations. In
heterogeneous grid environments, collective operations
such as MPI-REDUCE can execute significantly faster
if their implementation takes advantage of knowledge
of the underlying system topology. For example, an
IIPI ~EDUCE operation in the environment of Figure 1

migh~ well first reduce within each Sh4P node, then
~vit,hiu each llPP. and finally across M PPs. In order to

ill~plenlent. such optimization, the .MPICH implemen-
t i{tio{l wquires information about the topology of the
lJILderly-ing machine. Eye are working with colleagues at

LLN-L to identify the required information and will ex-
~enci the C.lobus device with additional functions that
provide this information.

User-1evel communication structures can also take
advantage of topology information. In principle, MP1’s
topology operations provide a basis for providing this
information to applications. We plan to study whether
~hese operations are indeed appropriate, or whether
\l PI extensions are needed to allow programmers to
implement efficient applications in wide area environ-
ments,

Looking further into the future, we are interested
irl esploring more sophisticated techniques suitable for
1r[lf, tricle area operation, for example exploiting Nexus
., II[)I)OL’[ f’o[ lllulticas~. [21] and using network perfor-
Ii!; tll( ’l> illforlllat.ion (e. g., [22]) to adapt a combining
t w, S(rIl~.\,uw i~~response to changing network loads.

NIP I-2 {extensions. The MP[-2 revisions to the i[PI
S[,;lll(ltlc(l ill[r 0(1 UCe 21 Ullnlber of neW features, including

single-sided operations, dynamic process creation and

attachment, and parallel 1/0. .$11three of these exten-
sions can, in principle, be incorporated into llPICH-

G easily: The N-exus communication library used in
MPICH-G provides a single-sided communication op-

eration as a primitive: Globus mechanisms support dy-
namic process creation and at tachrnent; and a remote

1/0 binding for MPI-10 has already been developed.
However, numerous details remain to be workecl out in

each of these areas, and the 31PICH franle~vork itself
must be extended to support these ne\v features.

7 Summary

We have described MPICH-G. an implementation of

the Message Passing Interface that uses services pro-
vided by the Globus toolkit to allow the use of MPI

in wide area environments. MPICH-G masks details

of underlying networks and computer architectures so

that diverse distributed resources can appear as a sin-
gle “MPI_COMM_WORLD.”.Any arbitrary MP1 application
can be started on heterogeneous collections of machines
simply by typing mpirun: authentication, authoriza-
tion, executable staging, resource allocation, job cre-
ation, startup, and routing of stdout and stderr are all
handled for free.

We believe that NIPICH-G is interesting not only
in its own right but also as a demonstration and test
case for Globus services. MPICH-G was constructed by
adapting MPICH, a widely used M PI implementation
for workstations and MPPs. This adaptation involved
the use of various Globus tools. for security, remote file

access, synchronized startup, and multimethod com-
munication. Relatively few changes Lo NPIC’H were
required to support the use of these tools.

MPICH-G passes the lvfPICH test suite and is hence
ready for broad distribution and use. Work is continu-
ing on point-to-point performance optimization, appli-

cation development, and research investigations relat-
ing to collective operation performance, network topol-

ogy information, MP1-2 implementation. and other is-
sues.

Acknowledgments

We gratefully acknowledge the contributions of
Steven Tuecke. Brian Toonen, and .Joe 13ester to [he
design of the MPICH-G system: the nleticulous ~vor!i

performed by O\le Larsson ol~ \IPIL<H-(.; Pert’ornlance
evaluation; ancl the assistance of Bill (.; ropp aild Rusty

Lusk on M PICH i[nplellle[lt~~tic]zl iss[les. \Ve are also

grateful to the members of the Globus projwt t,ean]



>It .Argonue ,Nat,iona.1 Laboratory and the University
()[ %iit,hern California’s Information Sciences Institute
[r,r their help.

rlli~ work was supported in part by the .Mathemati-
cai. Information, and Computational Sciences Division
sLibprogram of the office of Computational and Tech-
nology Research. U.S. Department of Energy, under
Contract LV-31- 109- Eng-38; by the Defense Advanced

Research Projects .%gency under contract N66001-96-
( ‘-s.32:; : and by the .Yational Science Foundation.

References

Il. .Ibramson, R. Sosic, J. Giddy, and B. Hall.
>-imrod: .A tool for performing parameterised sim-
ulations using distributed workstations. In Proc.

~th IEEE Symp. on High Performance Distributed

Computing. IEEE Computer Society Press, 1995.

R. Butler and E. Lusk. Monitors, message, and
clusters: The p4 parallel programming system.
Parallel Computing, 20:547-564, April 1994.

Henri Casanova and Jack Dongarra. Netsolve: A
network server for solving computational science
problems. Technical Report CS-95-313, University
of Tennessee, N“ovember 1995.

.Jian Chen and Valerie Taylor. Mesh partition-
ing for distributed systems. In Proc. 7th IEEE
Symp. on High Performance Distributed Comput-

Tng. IEEE Computer Society Press, 1998.

.JosePll Czyzyk, Michael P, Mesnier, and Jorge J.

\Ior6. The N-etwork-Enabled optimization Sys-

~em (NEOS) Server. Preprint MCS-P615-0996,
.Irgonne National Laboratory, Argonne, Illinois,
1996.

Tom DeFanti and Rick Stevens. Teleimmersion.
In [11], pages 131-156.

G. Fagg, J. Dongarra, and A. Geist. PVMPI pro-
vides interoperability between MPI implementa-
tions. In Proc. 8th SIAM Conf. on Parallel Pro-

cf.ss~ng. SIAM, 1997.

1. Fost,er. J. Geisler, W. Gropp, N. Karonis,
E. Lusk, G. Thiruvathukal, and S, Tuecke. A wide-
awa itnplementation of the Message Passing Inter-

t“:l[e. Parallel C’ornputing, 1998. to appear.

1. I:(>stcr, .J. Geisler. C, Kesselman, and S. Tuecke.
\laliagillg l~]uitiple communication methods in

l}igll-l>erforl[~al~ce networked computing systems.

loulrwl o~ Parullel and Distributed Computing,

-10::1!5-48, 1997.

[10]

11]

12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

9

1, Foster and C. Kessehnan. The C;lobus project:

A status report. In Proceedings of the Hetero-

geneous Computing Workshop. pages 4-18. IEEE

Computer Society Press, 1998.

I. Foster and C. Kesselrnan, editors. The Grid:

Blueprint for a Future Computing infrastructure.
Morgan Kaufmann Publishers, 1999.

I. Foster. C. Kesselrnan, and S. Tuecke. The ~-exus

approach to integrating multithreacling and com-
munication. .Journal of Parallel and DL.str!i]utd

C’ornputzng. 37:70-82, 1996.

D. Gannon. P. Beckman, E. .Jollnson. and
T. Green. Compilat~on Iswes on Dwtr~buted
Memory Systems, chapter HPC’+-t- and the
HPC++Lib Toolkit. Springer Verlag, 1997.

A. Geist, A. Beguelin, J. Dongarra. \V. Jiang.

B. Manchek, and V. Sunderam. PVM: Parallel
Virtual Machine-A User’s Guide and Tutorial

for Network Parallel Computing. MIT Press. 1!394.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. .%
high-performance, portable implementation of the

MPI message passing interface standard. Parallel

Computing, 22:789-828, 1996.

William Johnston. Realtime widely distributed in-
strumentation systems. In [11],pages 75– 10:3.

One Larsson. Implementation and performance
analysis of a high-order CEM algorithm in paral-
lel and distributed environments. Master’s thesis,

University of Houston, 1998.

M. Litzkow. M. Livny, and M. JIutka. Condor -
a hunter of idle workstations. In Proc. 8th Intl

Conf. on Distributed Computing Systems, pages
104-111, 1988.

Paul Messina. Distributed supercomputing appli-
cations. In [11],pages 55–73.

Reagan Moore, Chaitanya Baru, Richard Mar-
ciana, Arcot Rajasekar, and Michael JVan. Data-

intensive computing. In [11],pages 10F5–129.

L. Moser, P. Melliar-Smith, D. .+ga.rwal. R. Bud-
hia, and C. Lingley-PapadopouIos. Totem: .1
fault-tolerant multicast group co~nmunication sys-
tem. Communications of the .4 C’.W, 39(4), 1996.

R. W’olski. Forecasting net}vork perforlliallce to
support dynamic scheduiiug usili~ tile [Ietwwrk
weather service. In Pro,. (ill~ IEljl; ,S’{/[1/p.on

High Performance Dtstrtbuted ( ‘o[r~p{~t~ll{l.Port-
land, Oregon, 1997. IEEE Press.


