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1 Introduction 
Contemporary microprocessors provide a rich set of integrated performance counters 

that allow application developers and system architects alike the opportunity to gather 
important information about workload behaviors. These counters can capture instruction, 
memory, and operating system behaviors. Current techniques for analyzing data produced 
from these counters use raw counts, ratios, and visualization techniques to help users 
make decisions about their application source code. 

While these techniques are appropriate for analyzing data from one process, they do 
not scale easily to new levels demanded by contemporary computing systems. Indeed, the 
amount of data generated by these experiments is on the order of tens of thousands of 
data points. Furthermore, if users execute multiple experiments, then we add yet another 
dimension to this already hotty picture. This flood of multidimensional data can swamp 
efforts to harvest important ideas from these valuable counters. 

Very simply, this paper addresses these concerns by evaluating several multivariate 
statistical techniques on these datasets. We find that several techniques, such as statistical 
clustering, can automatically extract important features from this data. These derived 
results can, in turn, be feed directly back to an application developer, or used as input to a 
more comprehensive performance analysis environment, such as a visualization or an 
expert system. 

2 Microprocessor Hardware Performance Counters 
Modern microprocessors include integrated hardware support for non-intrusive 

monitoring of a variety of processors and memory system events, commonly referred to 
as hardware counters [3, 91; this capability is very useful to both computer architects [2] 
and applications developers [lS]. These counters fill a gap that lies between detailed 
microprocessor simulation and software instrumentation. Software instrumentation can 
introduce perturbation into an application and the measurement process itself. On the 
other hand, these counters have relatively low perturbation and can provide insightful 
information about processor and memory-system behavior. Even though this information 
is statistical in nature, it does provide a window into certain behaviors that are 
realistically impossible to gather otherwise. For instance, on IBM's Power3 
microprocessor, these events include various categories of instructions, cache misses, 
branch predictions, memory coherence operations, and functional unit utilization. 

Several tools and microprocessors have added additional functionality to simple 
event counting. Intel's Itanium processors [6] have features that allow monitoring based 
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on an instruction address range, a specific instruction opcode, a data address range, 
and/or the privilege level. In addition, the Itanium supplies event address registers that 
record the instruction and data addresses of data cache misses for loads, the instruction 
and data addresses of data TLB misses, and the instruction addresses of instruction TLB 
and cache misses. 

DEC/Compaq implemented another useful strategy for hardware counters: instruction 
sampling within the microprocessor. Using this approach, a performance-monitoring tool, 
such as ProfileMe [4] or DCPI [l], could arbitrarily choose to measure performance 
characteristics as they flowed through the processor pipeline. The tool could, then, gather 
this information over the execution of an application and attribute performance problems 
to certain instructions. 

call f-start-section(l,O, ierr) 
call hydxy( ddd, dddl, ithread) 
call deltat (*I Finished X sweep" ,2) 
call f-end-section(rank, l,O,ierr) 
BARRIER 
call flag-clear 
BARRIER 
call f-start-section(2,0,ierr) 
call hydyz( dddl, ddd, ithread) 
call deltat ( ' 1  Finished Y sweep", 2) 
call f-end-section(rank, 2,0,ierr) 
BARRIER 
call flaq clear 

Figure 1: Sample code segment from function runhyd3 of sPPM. 

2.1 Counting Hardware Events 
Our approach to using hardware counters rests on bracketing targeted code regions 

yvith directives that program the counters to capture events of interest, start and stop the 
counters, and store the counter values. Users can insert these directives several ways: 
manually or by using a compiler, a binary editor, or dynamic instrumentation. Hardware 
counters do require the appropriate operating system and library support to attribute 
counts appropriately to the proper processes and threads. 

1 2 2 0135138668 7593760051 2207456335 9172755 73699055 3590374684 2060311042 1230463969 

2 1 2 8291791110 7421240463 2334628952 8509892 72074918 3540521698 2060023498 1230670879 
2 2 1 8405106757 7645055609 2415396992 14655896 72705214 3708799229 2104739001 1240530500 
2 2 2 8381061956 7523753702 2377276020 8606055 72608329 3553200776 2084495857 1256915516 

2 1 1 am29304 7 5 ~ 1 ~  2401195595 1 4 ~ x 9  72302972 37173zmm 207~53081 1233604083 

Table 1: Counter values from code segment. 

Figure 1 shows a code segment fi-om sPPM [ 1 13 that has been instrumented with high 
level library routines written on top of MPX [lo] and PAP1 [3] in order to capture eight 
hardware counter values: total processor cycles, total instructions, cycles stalled waiting 
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for memory accesses, floating point divide instructions, L1 cache misses, floating point 
instructions, load instructions, and store instructions. 

As Figure 1 illustrates, every execution of this sequential code segment will generate 
one instance of counter values for each MPI task. Therefore, applications that execute 
this code segment millions of times will generate millions of instances of counter values. 
Table 1 shows the raw counter value table that is generated fiom the code segment in 
Figure 1, using two MPI tasks. The G column lists the instrumentation identifiers that 
represent different regions of the code. The S column lists instances of these regions. 
Clearly, in real experiments, this data management problem can become intractable! 

3 Multivariate Statistical Techniques for Performance Data 
As we illustrated in Section 2, each instrumentation point for an application can 

generate a vast number of hardware counter values. Multiple experiments can aggravate 
this issue even further. To analyze this data, we turn to multivariate statistical techniques 
to help focus the user's attention on the important metrics and the distribution of those 
metrics. 

3.1 Performance Metric Spaces 
For further analysis, we model these values as points in a multidimensional space. To 

make this notion more formal, consider a set of k dynamic performance metrics, 
hardware counters in our case, measured on a set of P parallel tasks, on a set of g 
instrumentation regions, and on s samples. Abstractly, one can then view these events as 
defining a collection of these points that describe parallel system characteristics. 
Following [14], if Ri denotes the range of metric k, we call the Cartesian product 

. 

M =  R1-x R2 x ... x Rk 

a performance metric space. Thus, the ordered k-tuples 

(Vi E R1; V2 E R2; ... ; Vk E R$ (1) 
are points in M. It is important to note that this definition of the metric space does not 
include the dimensions of instrumentation identifier, parallel task identifier, or 
measurement instance. Furthermore, this model assumes that this higherdimension data 
can be down-sampled into this space as appropriate. For instance, we collect all the points 
for one instrumentation region across all tasks and across all measurements and then 
project it into this metric space. This situation would generate k x P x s points. While this 
trivial example illustrates our formalization, we expect to use our techniques on much 
larger systems where k > 10, g > 10, P >> 10, and s >> 10. 

The goal of our analysis techniques is now clear; we must reduce this massive 
number of measurement points and the dimensionality of the metric space to a 
comprehendible scale. Traditional multivariate statistical techniques warrant investigation 
as vehicles for understanding this data. In fact, projection pursuit [14] and clustering [12] 
have been applied to understanding real-time performance data; this previous work 
strongly suggests that such techniques will be useful for managing hardware counter data. 
These multivariate statistical techniques allow users to draw inferences fkom observations 
with multiple variables (dimensions) and they include dimension reduction and 
classification. 
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3.2 Data Preparation 
Raw data as generated by reading the hardware counters directly can provide useful 

information; however, in the context of performance analysis, derived metrics are 
important. For example, the raw metric for number of cycles supplies a useful estimate of 
how long a code region executed; however, the derived metric of number of instructions 
divided by the number of cycles (IPC or instructions per cycle) can directly emphasize 
code regions that are performing poorly. On the other hand, raw metrics are necessary to 
help gauge the overall importance of code regions per se. For instance, the IPC of a code 
region that accounts for only minuscule numbers of cycles during the application 
execution is irrelevant. 

3.3 Clustering 
Clustering is a rudimentary, exploratory technique that is helpful in understanding the 

complex nature of multivariate relationships [7]. It provides a familiar means for 
assessing dimensionality, detecting outliers, and suggesting attractive hypotheses about 
relationships between the data. Cluster analysis makes no assumptions about the number 
of clusters or the cluster structure. It relies only on a metric that calculates the similarities 
or distances between data points. There have been a wide variety of clustering algorithms 
proposed. Major differences are whether particular methods simply partition data points 
into a given number of groups or build more complicated cluster (or data point) 
hierarchies. 

In the context of hardware counter data, we propose both hierarchical and non- 
hierarchical methods will help users identify equivalence classes of data points and an 
‘important’ subset of entire performance metrics that make more contribution to the 
existence of those classes. 

We demonstrate how hierarchical algorithms give users insights about overall cluster 
structure of a data set by means of dendrogram, while nohierarchical methods, such as 
the k-means algorithm, provide an efficient method to explain the importance of each 
metric on a cluster configuration by using F-ratio of each metric (Section 4.4). F-ratio is a 
technique for univariate analysis of variance that is defined as Between-ClusferVariabli@. 

Hence, metrics that vary greatly among different clusters and remain the same in the 
same cluster yields higher F-ratio. 

K-means and F-ratio can also be employed when the decision on number of clusters 
is not obvious. This situation happens often when users do not have reasonable prior 
knowledge about target application’s behavior. K-mean and F-ratio methods provide a 
means by which a system can automatically partition data points into a number of clusters 
as to maximize the between-cluster variability relative to the within-cluster variability. 

Within - ClusterVariablity 

3.4 Factor Analysis 
Factor analysis is a multivariate technique that makes it possible to describe the 

covariance relationships among many variables in terms of a few underlying quantity, 
factors. In the context of hardware counter space, we propose it will reduce the 
dimensionality of our performance metric space, M = [A1 x R2 x ... x Rk 3, by assembling 
highly correlated metrics in a peer group while separating uncorrelated ones into the 
other groups. (e.g. [ R, , R, , R, 1, x[ R, ]x.. .x [ Ri Rj R, I). This grouping can guide users 
to choose a right set of metrics for refining their code optimization efforts. 
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In the factor analysis model, our metrics space M can be rewritten as 

R, -vl =I& +l12F2 +...+ll,Fm+~l 
R, -0, = I 2 &  +lZ2F2 +...+ l,,,,Fm+~, 

R, - v, = lplF, + 1,,F2 + . . . + l,,Fm + E, 

Where I;I: is i'*common factor, Ri jfhmetrics, v, mean of Ri, and coefficient lji is 

the loading of Ri on the factor 4.. As this notation suggests, grouping R s  that have 
higher loadings for a particular F will yield a group whose R's are highly correlated. 

3.5 Principal Component Analysis 
define. 

4 Evaluation 
We empirically evaluated our techniques on an operational prototype with two 

applications. We scale each application up to 128 tasks. As Figure 1 illustrates, we first 
instrument the application and collect hardware counter data on the target platform. We 
then clean, merge, and prepare this data for statistical analysis. Next, we apply several 
statistical techniques to the prepared data. In the future, we expect to feed the results from 
these analyses into a comprehensive performance analysis environment or automated 
performance tool. 

4.1 Instrumentation and Data Collection 
We manually instrument our target applications with source code annotations. Each 

instrumentation point identifies a code region to capture hardware counter metrics as 
Figure 1 illustrates. Hence, each application has g instrumented code regions as defined 
in Section 3.1. For these experiments, we assume that each region captures the same set 
of k hardware metrics. 

In this framework, our tool can either write the each sample for each region to a 
tracefile during execution or accumulate the samples for each region and write the 
accumulated metrics to a file at termination. In the former context, tracefiles would grow 
at a rate proportional to k x g x s for each parallel task. We implemented both modes, but 
still, we use the latter technique, which generates only k x g measurement points for each 
parallel task, here to prevent an explosion of data and measurement overhead in the 
application. Our statistical techniques remain valid for accumulated data; however, this 
selection has the drawback that accumulated measurements can hide certain performance 
phenomena. 

At termination of the application experiment, each parallel task P generates a local 
file. Our prototype merges these P local files into one global file, containing all 
accumulated measurements for an application, and having size proportional to k x g x P. 
With all these raw metrics for one application now in one file, we can easily apply our 
statistical techniques to this file with a filter. This filter also manipulates the raw metrics 
for data cleaning and generating useful derived metrics as described in Section 3.2. 
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4.2 Platform 
We ran our tests on an IBM SP system, located at Lawrence Livermore National 

Laboratory. This machine is composed of sixteen 222 MHZ IBM Power3 8-way S M P  
nodes, totaling 128 CPUs. Each processor has three integer units, two floating-point 
units, and two loadstore units. Its 64 KB L1 cache is 128 way associative with 32 byte 
cache lines and L1 uses a round-robin replacement scheme. The L2 cache is 8 MB in 
size, which is four-way set associative with its own private cache bus. At the time of our 
tests, the batch partition had 15 nodes and the operating system was AIX 4.3.3. Each 
S M P  node contains 4GB main memory for a total of 64 GB system memory. A Colony 
switch--a proprietary IBM interconnect--connects the nodes. We compiled the various 
tests with the IBM XI, and KAI Guide compilers using IBM's MPI library in user-space 
mode. Our test jobs ran on dedicated nodes, although other jobs were concurrently using 
the network. 

4.3 Applications 
We evaluate our proposed techniques on two scalable applications. Each application 

has different computational and communication characteristics [ 131. SPPM, for example, 
has large blocks of floating point computation with infrequent, large messages, while 
SMG2000 is at the other end of the spectrum, having frequent, small messages with 
smaller blocks of computation. 

sPPM [I 11 solves a 3-D gas dynamics problem on a uniform Cartesian mesh, using a 
simplified version of the Piecewise Parabolic Method. The algorithm makes use of a split 
scheme of X, Y,  and Z Lagrangian and remap steps, which are computed as three 
separate sweeps through the mesh per timestep. Message passing provides updates to 
ghost cells from neighboring domains three times per timestep. OpenMP provides thread- 
level parallelism within MPI tasks. 

Swee~3D [S, 81 is a solver for the 3-D, time-independent, particle transport equation 
on an orthogonal mesh and it uses a multidimensional wavefront algorithm for "discrete 
ordinates" deterministic particle transport simulation. Sweep3D benefits from multiple 
wavefi-onts in multiple dimensions, which are partitioned and pipelined on a distributed 
memory system. The three dimensional space is decomposed onto a twodimensional 
orthogonal mesh, where each processor is assigned one columnar domain. Sweep3D 
exchanges messages between processors as wavefronts propagate diagonally across this 
3-D space in eight directions. 
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Figure 2: Dendrogram for a section of sPPM using raw metrics. 

4.4 Clustering 

4.4.1 Agglomerative Hierarchical Method 
This method gives users insights about overall cluster structure that exist in a data 

space by constructing dendrograms. Figure 2 shows the dendrogram for one instrumented 
section of an sPPM experiment with 8 MPI tasks and 8 OpenMP threads per task. Since 
sPPM exploits parallelism with message passing for inter-node communication and 
OpenMP within shared memory for thread level parallelism, it is expected to have at least 
two natural clusters. AHM clearly identifies in Figure 2 the existence of two classes; one 
housing all 56 slave threads and the other cluster containing the 8 master threads. 

Figure 3 illustrates the dendrogram of the same section of sPPM using derived 
metrics. As expected, the configuration does not change much fkom Figure 2, suggesting 
that the two clusters are performing similarly and any changes to code for either the 
master thread or the slave thread will propagate to its peers. Statistical techniques only 
with raw metrics would not immediately provide this type of perspectives. 

Figure 4 shows the dendrogram for the raw metrics of a section of Sweep3d for an 
experiment using 64 MPI tasks. In this case, three clusters are sufficiently different. Our 
initial results show that because Sweep3d decomposes the global 3-D problem onto a 2-D 
orthogonal mesh for processor assignment, the assignment creates two different 
equivalence classes: one for internal processors (right), and one for comer and edge 
processors (center and left). Other techniques, such as projecting clusters (and data 
points) into principal component space, should be used to identify cluster configuration. 
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Figure 3: Dendrogram for a section of sPPM using derived metrics 

Figure 4: Dendrogram for sweep section of sweep3d using raw metrics. 
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4.4.2 k-means clustering and F-ratio 
While AHM gives a general idea about cluster structure, it is not entirely convenient 

to compare clusters and compute the importance of an individual metrics that yield the 
particular cluster configuration. Using k-means clustering and F-ratios, we ordered 
metrics for the same section on sPPM by their F-ratio in Table 2. It suggests that 
PAPI-MEM-SCY (Cycles Stalled Waiting for Memory Access), PAPI-SR-INS (Store 
instructions executed), and PAPI-L1-TCM (L,1 total cache misses), are the three major 
reasons that we have two distinct clusters. 

Metrics 
PAPl. M EM .SCY 
PAPI.SR.INS 
PAPI.Ll .TCM 
PAPI.TOT.IIS 
PAPl. LD . INS 
PAPI.FP.INS 
PAPI .TOT.CYC 
PAPI .FDV.INS 

F-ratio 
7.91 4255 
5.124050 
5.097693 
3.488066 
3.473341 
2.498332 
1.673567 
0.1 61 107 

Table 2: Metrics ordered by F-ratio size for a section of sPPM. 

4.5 Factor Analysis 
Table 3 shows the result of factor analysis on the same section of sPPM. Each 

column represents loadings of metrics for each factor. As it suggests, it is reasonable to 
group together those metrics with bigger loadings per column. 

. 

Metric Factor1 

PAPI.BR.PRC 0.000 
PAPI.Ll .DCM 0.969 

PAP1.BTAC.M 0.799 

PAP1.M EM. WCY 0.957 
PAPI.SR.INS 0.000 

PAPLLDJNS -0.658 

PAPI.FXU.IDL -0.244 

PAPI.FP.INS -0.974 

Factor2 Factor3 
0.519 0.541 
0.000 0.792 
0.13 -0.161 
0.883 -0.290 
0.000 0.324 
0.199 0.000 
0.000 0.000 
0.690 0.000 

Table 3: Factor Analysis of sPPM (with three factors assumed). 

By setting a somewhat arbitrary threshold, 0.5, we are able to make four groups: 
{PAPI.Ll .DCM, PAPI.BTAC.M, PAPI.FP.INS, PAPLMEM.WCY} , {PAPI.FXU.IDL, 
PAPI.SR.INS}, {PAPI.BR.PRC} and PAPI.LD.INS. We verified the metrics in the 
same group are highly correlated by scanning correlation matrix. Users can now select a 
representative metric per group for the further analysis. 

5 Conclusions 
Scalable computing platforms will generate tremendous volumes of performance 

data, especially when monitoring low-level, frequent events like those produced by 
microprocessor performance counters. Developers will need new techniques to help them 
gain insight into this massive dataset. Traditional multivariate statistical techniques can 
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play a prominent role in this effort by reducing the dataset dimensionality and classifling 
similar datapoints. Our experiments on several applications demonstrate the feasibility of 
this approach and highlight several useful implementation strategies. For example, our 
experiments with sPPM and Sweep3d clearly confined that clustering on both raw and 
derived metrics can allow a user to understand the performance implications across all 
tasks in the application. We hope to feed results from this collection of statistical analysis 
techniques directly to the user, or to a sophisticated performance analysis system, such as 
a visualization or an expert system. 
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PAPI-FMA-INS FMA instructions completed (PM-EXEC-FMA) 
PAPI-TOT-IIS Instructions issued (PM-INST-DISP) 
PAPI-TOT-I NS 
PAPI-INT-INS Integer instructions 

Instructions completed (PM-I NST-CMPL) 

(PM-FXUO-PROD_RESULT,PM-FXUl-PROD-RESULT,PM-FXU2-PROD-R 
ESULT) 

PAPI-FP-INS Floating point instructions (PM-FPUO-CMPL,PM-FPUI-CMPL) 
PAPI-LD-INS Load instructions (PM-LD-CMPL) 
PAPI-SR-INS Store instructions (PM-ST-CMPL) 
PAPI-BR-INS Branch instructions (PM-BR- CMPL) 
IPAPI-FLOPS I Floating point instructions per second I - 

I(PM CYC.PM FPUO CMPL,PM FPUI CMPL) 
PAPITOT_CYC I Total cycles (PM CYC) - -  . -  
IPAPI-IPS I Instructions per second (PM-CYC,PM-lNST-CMPL) - - - - 

PAPI-LST-INS I Loadlstore instructions completed (PM-LD-CMPL,PM-ST-CMPL) 
PAPI SYC INS I Svnchronization instructions comDleted (PM SYNC) - -  . -  I -  

lPAPl FDV INS I Floating mint divide instructions (PM FPU FDIV) I 
I . -  - - -  - .  

lPAPl-FSQ-lNS I Floating point square root instructions (PM FPU FSQRT) 
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