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ABSTRACT
As clusters are widely accepted as cost-effective infrastruc-
tures for many scientific and commercial applications, im-
proving the deliverable performance and reducing the en-
ergy consumption of such systems has become a pressing
issue. In this paper, we exploit the feasibility of achiev-
ing these objectives through efficiently scheduling the com-
municating processes of parallel applications. In this con-
text, we conduct an in-depth evaluation of a broad spec-
trum of scheduling alternatives for clusters. These include
the widely used batch scheduling, local scheduling, gang
scheduling, all prior communication-driven coscheduling al-
gorithms, and a newly proposed HYBRID coscheduling algo-
rithm. In order to provide ease of implementation and porta-
bility across many cluster platforms, we propose a generic
framework for deploying any coscheduling algorithm. We
have implemented four prior coscheduling algorithms (Dy-
namic Coscheduling (DCS), Spin Block (SB), Periodic Boost
(PB), and Co-ordinated Coscheduling (CC)) and the HY-
BRID coscheduling using this framework on a 16-node, Myrinet-
connected Linux cluster that uses GM as the communication
layer. In addition, we use PBS as the batch scheduler and
a previously proposed gang scheduler (SCore) to analyze all
classes of scheduling techniques.

Performance and energy measurements using several NAS
and LLNL benchmarks on the Linux cluster provide sev-
eral interesting conclusions. First, although batch schedul-
ing is currently used in most clusters, all blocking-based
coscheduling techniques such as SB, CC and HYBRID and
the gang scheduling can provide much better performance
even in a dedicated cluster platform. Under high system
load, these coscheduling schemes can provide orders of mag-
nitude reduction in average response time and much better
performance-energy behavior compared to the PBS scheme.
Second, in contrast to some of the prior studies, we observe
that blocking-based schemes like SB and HYBRID can pro-
vide better performance than spin-based techniques like PB

on a Linux platform. Third, the proposed HYBRID schedul-
ing provides the best performance-energy behavior and can
be implemented on any cluster with little effort. All these
results suggest that blocking-based coscheduling techniques
are viable candidates to be used instead of batching scheme
for significant performance-energy benefits.

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling; D.4.8 [Perfor-
mance]: Measurements; C.2.4 [Distributed Systems]:
Distributed Applications

General Terms
Experimentation, Performance Measurement, Scheduling

Keywords
Coscheduling, Linux Cluster, Myrinet, Batch Scheduling,
Gang Scheduling, Energy Consumption

1. INTRODUCTION
Cluster systems [4], built using commodity off-the-shelf (CO-
TS) hardware and software components, are becoming in-
creasingly more attractive for supporting a variety of scien-
tific and business applications. Most supercomputer plat-
forms, university computing infrastructures, data centers
and a myriad of other applications use clusters [46]. These
clusters are used either as dedicated Beowulf systems or as
non-dedicated time-sharing systems in solving parallel ap-
plications. As the wide-spred use of these systems spanning
from a few nodes to thousands of nodes (like IBM ASCI [29]
and MCR Linux Cluster [46] in LLNL) continues, improv-
ing the performance and energy efficiency becomes a critical
issue. While improving the performance has always been
the main focus, some recent studies indicate that maintain-
ing these data centers and supercomputers requires enor-
mous amount of power [28]. Typical power requirements
range from about 1.5 megawatt for a data center to about
18 megawatts for some of the supercomputers [7, 26, 46]. A
more recent projection for running a PFlop system is about
100 megawatts [7]. A conservative estimate of the annual
operational budget of a PFlop system (assuming $10 per
megawatt) comes to about millions of dollars! Thus, even
a small reduction in the energy consumption without com-
promising the deliverable performance will have significant
financial impacts.



One viable approach to enhance the performance-energy be-
havior of clusters is to use an efficient scheduling algorithm
since it has a direct impact on system performance. The pos-
sible alternatives span from simple batch scheduling [17, 15]
and native local scheduling to more sophisticated techniques
like gang scheduling [15, 16, 19, 14] or communication-driven
coscheduling [42, 6, 33]. Most of the universities, govern-
ment labs and commercial installations still use some form
of batch scheduling [20, 1] for their research, development,
and testing clusters.

In local scheduling, processes of a parallel job are indepen-
dently scheduled by the native OS scheduler on each node,
without any effort to coschedule them. Although simpler
to implement, local scheduling can be very inefficient for
running parallel jobs that need process coordination. Gang
scheduling, on the other hand, uses explicit global synchro-
nization to schedule all the processes of a job simultaneously,
and has been successfully deployed in commercial Symmet-
ric Multi-Processing (SMP) systems. To some extent, this
has been shown viable for dedicated cluster systems [19, 14].
Recently, a few coscheduling alternatives such as Dynamic
Coscheduling (DCS) [42], Implicit Coscheduling (ICS) [6],
Spin Block (SB) [33], Periodic Boost (PB) [33] and Co-
ordinated Coscheduling (CC) [3] have been proposed for
clusters. These coscheduling techniques rely on the commu-
nication behavior of the applications to schedule the com-
municating processes of a job simultaneously. Using efficient
user-level communication protocols, such as U-Net [13], Ac-
tive Messages [48], Fast Messages [35] and VIA [12], has
been shown to be quite efficient in a time-sharing environ-
ment. However, to the best of our knowledge, none of these
coscheduling techniques have yet made their way into real
deployments.

The motivation of this paper is to enhance the deliverable
performance and reduce the energy consumption of dedi-
cated clusters through efficient scheduling. In this context,
we attempt to investigate the following issues: (i) How does
the communication-driven coscheduling techniques compare
against the batch scheduling?; (ii) How does the coschedul-
ing techniques compare against gang scheduling?; (iii) Can
we design/identify some coscheduling techniques, which can
be used instead of a batch scheduler to enhance performance-
energy behavior?; and (iv) What about the implementation,
portability and scalability issue for deploying these schemes
on different hardware and software platforms?.

To address these concerns, we conduct an in-depth evalua-
tion of a broad spectrum of scheduling alternatives for clus-
ters. These include a widely used batch scheduler (PBS) [1],
local scheduling, gang scheduling, all prior communication-
driven coscheduling algorithms, and a newly proposed HY-
BRID coscheduling algorithm. In order to provide ease of
implementation and portability across many cluster plat-
forms, we propose a generic framework for deploying any
coscheduling algorithm by providing a reusable and dynam-
ically loadable kernel module. We have implemented four
prior coscheduling algorithms (Dynamic Coscheduling (DCS),
Spin Block (SB), Periodic Boost (PB), and Co-ordinated
Coscheduling (CC)) and the HYBRID coscheduling using
this framework on a 16-node, Myrinet-connected [9] Linux
cluster that uses GM as the communication layer. We have

ported a previously proposed gang scheduler (SCore) [19] to
our platform for comparison with other schemes.

Unlike the other coscheduling schemes, our proposed HY-
BRID coscheduling scheme adopts a mixed approach of the
gang scheduling and communication-driven coscheduling. Like
gang scheduling, it attempts to coschedule the parallel pro-
cesses of a job. However, the coscheduling is not explicit
as in the gang scheduling and the processes need not be
coscheduled for the entire execution time. Similarly, like
communication-driven coscheduling schemes, the HYBRID
scheme tries to approximately coschedule only the commu-
nicating processes. But, unlike the former techniques, it
does not depend on the explicit message arrival or waiting
hint for coscheduling. We achieved this by applying differ-
ent scheduling policies to the computation and communica-
tion phases of a program. We boost the priority of all the
communicating processes at the beginning of a communica-
tion phase hoping that they are all coscheduled, and lower
their priority at the end of communication. This is done
at the MPI level by detecting the communication activities.
For the computation phase, the processes are scheduled by
the local Linux scheduler. The main advantage of the HY-
BRID coscheduling scheme is its simplicity and portability.
Since this scheme is implemented in the parallel program
level (e.g.: MPI), it does not require modifications to a NIC
firmware and user-level communication. Thus, it can be
ported to another platform with little effort.

We conduct an extensive measurement-based study of all
scheduling techniques using several NAS and LLNL bench-
marks on the Linux cluster. The main objective functions
here are the average response time and total energy con-
sumption. For the power/energy measurements, we use the
WT210 [49] measurement tool. In addition, we also analyze
the impact of memory swapping on coscheduling algorithms.
We believe that this is the first effort that not only does a
comprehensive performance analysis of all scheduling tech-
niques, but also considers power and other factors into the
overall equation.

This paper provides several interesting conclusions. First
and foremost, the most important observation is that we can
achieve significant performance improvements by deploying
a suitable communication-driven coscheduling instead of the
widely used batch scheduling. For example, schemes like
HYBRID, CC and SB can reduce the average response time
orders of magnitude compared to a batch scheduler under
heavy load. Second, blocking-based schemes like HYBRID,
CC and SB perform significantly better than the spin-only
based schemes like PB or DCS, contrary to some previous
results [33, 43]. They can provide competitive or even bet-
ter performance than gang scheduling. Third, the proposed
HYBRID scheme is the best performer and can be imple-
mented on any communication layer with minimal effort.
Fourth, it is possible to devise a memory-aware coschedul-
ing technique, which can avoid expensive memory swapping,
and can still perform better than a batch scheduler. Finally,
the improved efficiency of a scheduling algorithm translates
to energy conservation or better performance-energy ratio.
Our experiments show that under heavy load, the HYBRID
scheme is 60% better energy-efficient compared to the batch
scheduler. All these performance and energy results strongly



support the case for using a coscheduling algorithm in ded-
icated clusters.

The rest of this paper is organized as follows: In Section 2,
we provide a summary of all the prior scheduling techniques
for clusters. Section 3 outlines the generic framework that
can be used for implementing any coscheduling scheme. The
HYBRID coscheduling algorithms is explained in Section 4.
The performance results are analyzed in Section 5, followed
by the concluding remarks in the last Section.

2. BACKGROUND AND RELATED WORK
In this section, we summarize batch scheduling, gang schedul-
ing and communication-driven coscheduling techniques.

2.1 Batch Scheduling
Batch scheduling is the most popular policy to manage ded-
icated clusters for running non-interactive jobs. NQS [15],
Maui [44], IBM LoadLeveler [20], and PBS [1] are widely-
used batch schedulers. OpenPBS and PBSPro are the open
source version and commercial version of PBS, respectively.
Typically, a batch scheduler is used for large scientific ap-
plications to avoid memory swapping. The disadvantages of
batch scheduling are low utilization and high response time
[40]. To solve these problems, various backfilling techniques
[51, 30] have been proposed, where a job, which is not at
the head of the waiting queue, is allowed to run by bypass-
ing other jobs. In this paper, we use the OpenPBS in our
cluster system.

2.2 Gang Scheduling
The gang scheduling (Explicit coscheduling) is an efficient
coscheduling algorithm for fine-grained parallel processes.
It has two features: (i) all the processes of a parallel job,
called a gang, are scheduled together for simultaneous exe-
cution using one-to-one mapping, and (ii) context switching
is coordinated across the nodes such that all the processes
are scheduled and de-scheduled at the same time. The ad-
vantage of a gang scheduler is faster response time because
the processes of a job are scheduled together, while its dis-
advantage is the global synchronization overhead needed to
coordinate a set of processes. Gang scheduling has been
mainly used in supercomputers (GangLL [24] is currently
used in ASCI machines.). In cluster environments, SCore-D
[19] is the first implementation in a Linux cluster.

2.3 Communication-Driven Coscheduling
Unlike the gang scheduling, with a communication-driven
coscheduling like DCS [42], SB [33], PB [33] or CC [3], each
node in a cluster has an independent scheduler, which coor-
dinates the communicating processes of a parallel job. All
these coscheduling algorithms rely primarily on one of the
two local events (arrival of a message and waiting for a mes-
sage) to determine when and which process to schedule. For
example, in SB [6, 33], a process waiting for a message spins
for a fixed amount of time before blocking itself, hoping that
the corresponding process is coscheduled at the remote node.
DCS [42] uses an incoming message to schedule the process
for which the messages are destined. The underlying idea
is that there is a high probability that the corresponding
sender is scheduled at the remote node and thus, both pro-
cesses can be scheduled simultaneously. In the PB scheme

[33], a periodic mechanism checks the endpoints of the paral-
lel processes in a round-robin fashion and boosts the priority
of one of the processes with un-consumed messages based on
some selection criteria. The recently proposed CC scheme
[3] is different in that it optimizes the spinning time to im-
prove performance at both the sender and receiver. With
this scheme, the sender spins for a pre-determined amount
of time waiting for an acknowledge from the Network Inter-
face Controller (NIC). On the receiver side, a process waits
for a message arrival within the spin time. If a message
does not arrive within this time, the process is blocked and
registered for an interrupt from the NIC. In a regular inter-
val, a process that has the largest number of un-consumed
incomming message, is scheduled to run next.

All prior coscheduling schemes have been evaluated on non-
dedicated small clusters and have arrived at different conclu-
sions. For example, PB was shown to be the best performer
on a Solaris cluster [33], while CC and SB provided better
performance than PB and DCS on a Linux cluster. How-
ever, none of these techniques have been evaluated against
the batch and gang schedulings to determine their feasibility
for use in dedicated clusters.

3. A COSCHEDULING FRAMEWORK
To implement a communication-driven coscheduling scheme,
we usually need to modify the NIC’s device driver and firm-
ware, and the user-level communication layer. As shown
in Figure 1 (a), a scheduling policy is mainly implemented
in the device driver to decide which process should be ex-
ecuted next (typically by boosting its priority). Next, the
mechanism module is implemented in the NIC firmware and
user-level communication layer to collect the information
required by the device driver. Thus, implementation of a
coscheduling algorithm requires significant amount of effort
and time. Moreover, this effort needs to be repeated when-
ever we move to another platform.

This observation motivates us to propose a generic frame-
work in which, a policy can be standardized and reused
as a stand-alone kernel module, and proper interfaces can
be outlined to implement the boosting mechanisms in the
firmware, whenever required. Thus, the overall idea is to
cleanly abstract a coscheduling policy from its underlying
implementation mechanism so that both can be treated in-
dependently.

We now describe implementation of our scalable and reusable
framework in a bottom-up fashion. As shown in Figure 1
(b), our design logically comprises of two layers. At the low-
est layer (layer 1), we implemented a kernel scheduler patch
(Linux 2.2, Linux 2.4) that provides flexibility for the system
software developers to change their local scheduling policies
through an independently loadable kernel module, which is
built upon a previous effort by Rhine at HP labs [38]. Next,
we developed a dynamically loadable kernel module [37],
called SchedAsst, at layer 2, and several re-usable coschedul-
ing policies are implemented in this module. Every time the
local Linux scheduler is invoked by the system, before mak-
ing a selection from its own runqueue [10], the SchedAsst se-
lects the next process to run based on certain criteria, and
returns its recommendation to the native scheduler. The
criteria for selection is our policy, and is clearly specific to



(a) Traditional Approach (b) Generic Approach

Figure 1: Traditional and the Generic Coscheduling Frameworks

the coscheduling technique enforced. The native scheduler
optionally verifies the recommendation of the SchedAsst for
fairness before making a final selection decision. The final
decision is then conveyed back (optionally) to the SchedAsst
for its book-keeping.

This design clearly gives us several advantages. First, our
framework can be reused to deploy and test several coschedul-
ing mechanisms on a Linux cluster with minimal effort. Sec-
ond, the coscheduling module can be tied in easily with any
user-level communication infrastructure (VIA, IBA, U-Net,
GM, FM, AM etc.), providing us the flexibility and gener-
ality. Finally, by adhering to the standard interface for im-
plementing a coscheduling mechanism, the driver/firmware
writers can easily and independently provide coscheduling
support.

Using the framework, we have implemented four prior co-
scheduling schemes (DCS, PB, SB and CC) and the newly
proposed HYBRID coscheduling, which will be discussed in
the next Section. The coscheduling policies are implemented
in SchedAsst in Figure 1 (b). We also modified the GM [32]
device driver and firmware to add the mechanism modules
to gather communication information. GM has one comple-
tion queue for all acknowledgments from a NIC; including
the send completion and recv completion. To implement
SB correctly, we had to divide the single completion queue
of GM into a send completion queue and a receive comple-
tion queue, and use the SB mechanism only for the recv
completion queue. For DCS, we added a module to the NIC
firmware that compares a current process to the correspond-
ing process of the message and notifies the discrepancy to
the SchedAsst. All these implementations in GM required
considerable effort.

4. HYBRID COSCHEDULING
We propose a new coscheduling scheme, called HYBRID co-
scheduling, which combines the intrinsic merits of both gang
scheduling and communication-driven coscheduling. Execu-
tion of a parallel process consists of two phases; computa-
tion and communication. The global scheduler of a gang

scheduling coschedules all processes of a parallel job dur-
ing its entire execution, and thus, suffers from high global
synchronization overhead. Ideally, global synchronization is
not necessary during its computation phase. On the other
hand, all communication-driven coscheduling schemes try to
approximately coschedule only in the communication phase.
For example, DCS and PB use a boosting mechanism for
the process, which receives a message from the correspond-
ing node and SB employs a spin-block mechanism at the
receiver side. Thus, unlike the gang scheduler, coscheduling
is implicit here.

The HYBRID coscheduling imitates the gang scheduling
policy without using global synchronization when a process
is in the communication phase. We achieve this by locally
boosting the priority of a process when it enters a communi-
cation phase as illustrated in Figure 2 hoping that all other
corresponding processes are also coscheduled. The processes
return to the normal state at the end of the communica-
tion phase. We implemented this boosting mechanism in
SchedAsst of our coscheduling framework.

Figure 2: HYBRID Coscheduling Mechanism

The HYBRID coscheduling algorithm introduces two design



issues. One is to differentiate between the computation and
communication phases in a parallel program and the other is
the fairness problem caused by the boosting mechanism be-
cause priority boosting of a specific process is likely to cause
starvation of the other processes in the same node. First, to
schedule a process differently depending on the computation
and communication phases, we add the boosting code only
in the collective communication functions of the Message
Passing Interface (MPI) (e.g.: MPI Barrier, MPI Alltoall,
MPI Allreduce, etc.), which is used as the massage passing
layer in our programming model. It is also possible that
a compiler recognizes the communication part in a paral-
lel program and inserts the boosting code automatically at
compile time to get better performance. This is a future
research topic. We do not insert the boosting code in point-
to-point MPI functions because these are faster than col-
lective communication and thus, the performance gain will
be minimal. Second, to guarantee fairness, the HYBRID
coscheduling uses immediate blocking mechanism. There-
fore, a process that waits for a reply, is immediately blocked
if the message has not been received.

The first advantage of the HYBRID coscheduling scheme is
its simplicity and portability. The HYBRID scheme can be
implemented simply at the parallel program level. Thus,
it can be deployed on a communication layer such as VIA,
GM and TCP/IP without requiring any modifications of the
system software. Second, the proposed policy eliminates
many overheads of other communication-driven coschedul-
ing schemes. A typical communication-driven coschedul-
ing scheme monitors the communication activities and a
coscheduling module decides on which process to be boosted
based on the communication activity. Thus, it incurs some
processing overhead, while the HYBRID coscheduling can
eliminate this overhead. In DCS, when a NIC receives a
message, it checks the current running process. If the mes-
sage is not destined for the current running process, the NIC
raises an interrupt for an appropriate process. The number
of interrupts would be high for fine-grained communication.
Third, the HYBRID mechanism eliminates the possible de-
lay between a message arrival at a node and the actual boost-
ing of the process, because the priority is already boosted
whenever a process enters the communication phase. In SB
and CC, a receiver process waits for a pre-determined pe-
riod for a reply hoping that the corresponding process at a
remote node is also currently running. If the reply does not
arrive within this time, it releases the CPU then blocks itself.
Hence, the CPU time can be wasted spinning if the sender
and receiver processes are not coscheduled. This penalty can
be eliminated in HYBRID coscheduling because it blocks the
process immediately if there is no reply from the correspond-
ing node.

5. PERFORMANCE EVALUATION
In this section, we evaluate the performances of four types
of scheduling techniques (local scheduling, gang, batch and
communication-driven coscheduling) in our 16-node cluster
using NAS and LLNL benchmarks. In addition, we inves-
tigate the memory swapping effect and measure the energy
consumption of each scheduling scheme.

5.1 Experimental Platform and Workload

Our experimental testbed is a 16-node Linux (version 2.4.7-
10) cluster, connected through a 16-port Myrinet [9] switch.
Each node is an Athlon 1.76 GHZ uni-processor machine,
with 1 GBytes memory and a PCI based on-board intel-
ligent NIC [9], having 8 MB of on-chip RAM and a 133
MHZ Lanai 9.2 RISC processor. We used Myrinet’s GM
implementation (version 1.6.3) [32] over Myrinet’s NIC as
our user-level communication layer and Myrinet’s MPICH
(version 1.2.5..9) implementation [31] over GM as our par-
allel programming library. GM supports two communica-
tion mechanisms; (i) non-blocking and (ii) blocking. In
CC/SB and HYBRID schemes, we use the blocking mecha-
nism of GM. On this platform, we measured application-to-
application one-way latency to be around 9.7µsec, averaged
over 100,000 ping-pong short messages. This includes pro-
tocol processing overheads on both the sender as well as the
receiver ends.

We use primarily NAS Parallel benchmarks (version 2.3)
[34] to evaluate the performance of all scheduling schemes
in this paper. The NAS Parallel benchmarks consist of eight
applications and we use all programs except FT because it
needs the F90 fortran compiler that is not currently available
in our platform. In addition, we use the sPPM program from
LLNL and BlockSolve95 code in ANL. BlockSolve95 [25] is a
parallel program to solve sparse linear problems for physical
models and sPPM [27] benchmark is a program to solve 3D
gas dynamics models on a uniform Cartesian mesh.

In this paper, we use Score-D (version 5.4) with PM (version
2) [45] as the user-level communication to get the result of
gang scheduling. On the same Myrinet NIC, we use GM
for the batch scheduling (PBS) and communication-driven
coschedulings and use PM for the gang scheduling (SCore).
The performance of GM and PM is very close and thus,
the performance comparison between gang scheduling and
others is valid. (We compare the execution time of a single
NAS application based on GM and PM, and the difference
is less than 2%.)

NAS Communi- Execution Time (sec)
Benchmarks cation Class Class Class

Intensity A B C
CG High 1.3 49.2 186.0
IS High 1.0 2.4 10.9
SP Medium 34.5 152.5 607.1
MG Medium 2.4 61.5 191.0
BT Low 53.1 435.3 995.4
LU Low 32.2 148.7 604.9
EP Very low 7.9 31.3 126.2

(a) Each NAS Benchmark Application

Benchmarks Communication Execution
Intensity Time (sec)

sPPM Low 2726
BlockSolve95 Medium 941

(b) sPPM and BlockSolve95

Table 1: Execution Time of NAS Benchmarks,
sPPM and BlockSolve95 in 16 Processors

In order to better understand the results of this paper, we



summarize the execution time of each NAS application from
CLASS A to CLASS C, sPPM and BlockSolve95 in Ta-
ble 1 on our 16-node cluster. Moreover, Table 1 shows
the communication intensity of each benchmark since the
performance is related to the communication intensity in
communication-driven coscheduling techniques.

In a real system, a parallel program arrives at a cluster and
waits in the waiting queue if it cannot be allocated immedi-
ately. After a certain amount of queuing time, it is assigned
to the required number of processors. We imitate the arrival
pattern of jobs in a real system by randomly generating sev-
eral jobs with varying problem sizes (CLASS A, B and C)
and different number of processors per job (The number of
processors is selected from 4, 8, 9 or 16 as per the NAS
application requirements.). These jobs arrive at the clus-
ter with exponentially distributed inter-arrival times (Inter-
arrival time distribution analysis of LLNL and several uni-
versity workloads [50] showed an exponential fit.). In this
experiment, we consider the average response time per job
as the performance metric, where the response time is the
sum of the queuing time and execution time.

We consider two different types of job allocation: PACKING
and NO PACKING. In the NO PACKING case, parallel pro-
cesses of a job are randomly allocated to the available nodes
in the system, while in the PACKING scheme, contiguous
nodes are assigned to a job to reduce the system fragmenta-
tion and increase the system utilization. Note that PACK-
ING is the default configuration in PBS [1] and SCore [1,
19]. The Backfilling technique [51, 30], which is widely used
in batch scheduling, is another method to reduce the system
fragmentation. We performed experiments with the backfill-
ing technique in our testbed and the results of PBS with and
without backfilling are very close (within 2%). The reason
backfilling did not have significant performance difference is
because of the characteristics of the NAS benchmark. The
backfilling method is very useful when the system has many
fragments that can be used for small jobs. But the number
of required processors for the NAS benchmarks is usually 2N

or N2. In addition, our 16-node Linux cluster is relatively
small to capture the backfilling effect.

In our experiments, we limit the maximum Multi Program-
ming Level (MPL) to three for the gang scheduling and all
communication-driven coschedulings, and we limit the total
size of simultaneously running programs to fit the memory
(1GBytes) because our default analysis does not consider
memory swapping. The memory swapping issue is dealt
with in the next section separately. We also implemented
an allocator for the communication-driven coscheduling al-
gorithms, and for the batch and gang schedulings, we use
the allocation modules provided by PBS and SCore.

5.2 Comparisons of All Scheduling Techniques
Figure 3 depicts the average response time comparison of
all scheduling techniques under heavy and moderately light
workloads. The results are obtained by running 100 mixed
applications from the NAS benchmarks as described earlier.
In addition, we also collect results with and without packing.
Figure 3 (a) depicts the response time results when the sys-
tem is highly loaded (the average job inter-arrival time is 100
seconds), whereas the results of Figure 3 (b) are obtained

in a lightly loaded condition (the average job inter-arrival
time is 250 seconds). Performance measurements on ASCI
Blue-Pacific at LLNL [50] with gang scheduling indicated
that the system under heavy load experiences long queuing
time, which could be as high as six times of the execution
time. Thus, our heavy load experiments represent a typical
dedicated cluster environment in a smaller scale.

In Figures 3 (a) and (b), we see that the PACKING scheme
helps improving the performance as expected. The average
performance gain with PACKING in Figure 3 (a) is about
25% compared to the NO PACKING case. In the batch
scheduling (PBS) [1] and gang scheduling (SCore) [19], we
do not have the results without PACKING, since these two
schemes use PACKING as the default mode. In Figure 3
(a), the result of the Native Local Scheduler (NLS) with
NO PACKING shows the worst response time and PB with
NO PACKING and PBS follow next. The batch scheduling
(PBS) has the longest waiting time and this confirms the
weakness of a batch scheduler.

As expected, in Figure 3 (a), the response time of each
scheduling scheme is much longer than that in Figure 3 (b).
In Figure 3 (a), the response times increase due to large
waiting times, but in Figure 3 (b), the difference between
the execution times of the scheduling schemes is more pro-
nounced. Although the two figures show different charac-
teristics, the overall trend of the response times is the same.
First of all, the batch scheduling (PBS) has the lowest exe-
cution time, followed by the HYBRID scheme, and then the
gang scheduling (SCore) and CC/SB, which have similar ex-
ecution times (The performance results of CC, SB and that
of the blocking scheme available with GM are almost iden-
tical and thus, we do not plot them separately.). The most
striking observation in these figures is that the HYBRID
coscheduling scheme has the lowest response time among
all scheduling schemes. The average response time per job
with the HYBRID scheme reduces as much as 300% com-
pared to PBS and by 20% compared to the gang scheduler
under heavy load. The main reason the HYBRID scheme
performs better than SCore is because it avoids the global
synchronization overhead of gang scheduling. In addition,
nodes spend some spinning time waiting for a message in
SCore. Also, the gang scheduling (SCore), CC and SB out-
perform PBS in both figures.

Another interesting result is that the blocking-based cosche-
dulings (HYBRID, CC and SB) have better performance
than the non-blocking based coschedulings (DCS and PB).
This is because the blocking technique allows other processes
in the ready state to proceed and this improves the response
time as well as the throughput. Especially, the blocking-
based mechanisms significantly outperform the PB scheme,
contrary to some earlier results [33, 43, 5]. In [33] and [43],
PB was shown as the best performer on a Solaris cluster
through measurements and by an analytical model. In an-
other simulation study [5], it was observed that simple block-
ing techniques were more effective in some cases than the
spin-based techniques. However, our results indicate that
blocking-based mechanisms (HYBRID and CC/SB) consis-
tently perform better across all workloads in our cluster.

The main reason for this is the choice of the local scheduling
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Figure 3: Performance Comparison of Different Scheduling Techniques (100 jobs, No Memory Swapping,
MPL=3)

algorithm. The earnings-based Linux scheduler uses a sim-
ple, counter controlled mechanism to restrict the amount of
CPU time a process receives (within a bounded time, de-
fined by an epoch). This ensures fairness to all processes
in the same class [10]. On the other hand, priority-based,
Multi-level Feedback Queue (MFQ) schedulers (as in Solaris,
Windows NT) use a priority decay mechanism [41], where
a process, after receiving a time slot, is placed in a lower
priority queue and hence, cannot receive CPU time unless it
bubbles up to the highest level. Thus, the amount of time a
process receives is not as tightly controlled as it is in Linux.
This means that if a process is made to remain in the high-
est level priority queue (which is the case in [33] for PB), it
is difficult to ensure fairness. In contrast, in Linux, even if a
temporary boost is given (to the PB scheme) on a message
arrival, this boost cannot be continuously effective. This is
because once the process uses its share of time slots, it can
no longer be scheduled until all other processes also expire
their time slots in the current epoch.

Figure 4: Response Time Comparison with Long-
running Problems (20 jobs)

We conducted another set of experiments using BlockSolve95
[25], sPPM [27] and LU from the NAS benchmark by vary-

ing the problem size and the number of processors. These
are relatively long-running applications with low communi-
cation [47]. We generated 20 jobs mixed from these applica-
tions with an average inter-arrival time of 500 seconds and
MPL was limited to three. Figure 4 shows the response time
of PBS, SCore, CC/SB and HYBRID schemes. Again, HY-
BRID exhibits the best performance followed by CC/SB,
gang and PBS. Even for these low communication applica-
tions, batch scheduling suffers from the largest waiting time.

Figure 5: Performance Comparison with Different
Problem Sizes (20 jobs)

Next, we perform a scalability test of the coscheduling tech-
niques with various problem sizes. We use three largest
classes of NAS workloads; A, B and C, and randomly gener-
ate 20 jobs in each CLASS with varying number of required
processors for a job. In this experiment, we only test five
scheduling schemes (CC, SB, HYBRID, PBS and SCore),
because HYBRID and CC always outperform PB and DCS
techniques. Figure 5 shows the average response time of
the three workloads for different coscheduling schemes. In
CLASS A, the response times are very close, although the
result of the batch scheduling shows higher waiting time.
Since the execution times in CLASS A are too short, when-
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Figure 6: Average Execution Time for Different CLASSes of Applications

ever a new job arrives at a cluster, it can start almost im-
mediately. It makes the MPL as low as one. In CLASS B,
batch scheduling (PBS) shows the worst performance due to
maximum queuing time, despite its shortest execution time.
In CLASS C, all four schemes show more noticeable results,
since the problem sizes are large enough to affect the per-
formance. The response time of the HYBRID scheme shows
about 12% improvement compared to SCore and about 10%
lower than that of CC/SB. Comparing the result of HY-
BRID with that of PBS, we get 65% improvement.

Now, we focus on the performance variation when the com-
munication intensities of the workloads change. In all 16
nodes, we simultaneously run three identical programs from
CLASS C. In this experiment, we only consider the comm-
unication-driven coscheduling techniques and the gang sche-
duling because MPL in batch scheduling is always one. Since
the three applications start and end almost at the same time,
there is no waiting time. Therefore, we use average execu-
tion time as the performance metric for this experiment.
In Figures 6 (a), (b) and (c), the HYBRID scheme always
shows the shortest execution time for all NAS benchmarks.
We omit the EP results here because the average execu-
tion times of all schemes are almost the same due to mini-
mal communication in the EP application. The observation
in this experiment reconfirms the fact that blocking-based
coschedulings are better than spin-based coschedulings.

The NAS benchmarks in Figures 6 (a), (b) and (c) are
grouped to show the difference properly. The trends of the
results in Figure 6 are related to the communication inten-
sities. CG, which has the highest communication intensity,
shows the most distinguishable results between the blocking-
based and the spin-based coschedulings. Although IS is also
a high communication intensity program, its execution is
too small to show noticeable difference between the schedul-
ing policies. MG and SP, which are medium communication
intensity programs, also show significant difference between
the two groups of coscheduling schemes, while the execution
time difference between the two groups for BT and LU (low
communication intensity) is minimal.

5.3 Memory-Aware Allocation
In the previous experiments, we restricted the MPL to 3 to
fit all the programs in the memory for gang scheduling and
all coscheduling schemes. In a more general setting, the pro-
grams may compete with each other for the system memory
if the total memory requirement exceeds the system mem-

ory size. To maximize the performance of parallel jobs, it
is obvious that the programs should be memory resident to
avoid memory swappings. This is the main reason why most
dedicated clusters use a batch scheduler since they run large
memory resident jobs and avoid expensive disk activities [2].
Some researchers [8, 39] have considered memory constraints
only for a gang scheduler, but to the best of our knowledge,
no previous study has been done for the communication-
driven coscheduling. Therefore, in this section we analyze
the performance implications when the parallel jobs are al-
located considering the memory requirements.

NAS The Number Maximum
Benchmark of Memory
Application Processors Requirement

(MBytes)
SP 4 354
SP 9 176
SP 16 111
BT 9 473
BT 16 272
MG 8 456
MG 16 228
IS 4 428
IS 8 214
IS 16 107

Table 2: Maximum Memory Requirements of NAS
Benchmarks (CLASS=C)

Table 2 shows the maximum memory requirements of the
NAS benchmarks, obtained using a system monitoring tool.
In all NAS benchmarks, these values do not change during
execution. Since the maximum MPL is three in our exper-
iments, if the total memory requirement of three simulta-
neous running programs is larger than the system memory
size, memory swapping is triggered. In this experiment, we
use a workload consisting of randomly generated 20 jobs
shown in Table 2. These 20 jobs are generated with an av-
erage inter-arrival time of 100 seconds. We consider two
scenarios; memory-aware and no memory-aware allocation.
The no memory-aware allocation scheme does not check the
memory requirements. Thus, the maximum MPL is always
three. In the memory-aware allocation scheme, the allocator
considers both the memory and CPU availability using the
pre-determined memory information in Table 2. Execution
of a job is delayed if the memory requirement of the job ex-
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Figure 7: Response Time Comparison with Memory-Aware Allocation (20 jobs)

ceeds the available memory. So, the maximum MPL can be
less than three. In this experiment, the maximum memory
size allocated for the parallel programs is 900 Mbytes, and
the remaining 100 Mbytes is reserved for the Linux Operat-
ing System (OS). We implement a memory-aware allocation
module for the allocator used in the previous section. For
the gang scheduling, we use the allocation modules provided
by SCore.

Figure 7 (a) depicts the average response time with different
scheduling schemes. This figure includes just one result for
the batch scheduling (PBS), because its MPL is always one.
The first observation is that PBS outperforms all schedul-
ing schemes with no memory-constraint. This is because
the memory size of any NAS benchmark used in this ex-
periment is smaller than the system memory. Therefore, no
memory swapping occurs in batch scheduling. The average
performance gain with the memory-aware allocation scheme
is over 35% compared to the no memory-aware allocation.
Again, the HYBRID scheme shows the best performance
and its response time is 20% lower compared to the batch
scheduling. Note that the performance difference between
PBS and HYBRID is not as high as in the previous graphs
because here, only 20 jobs are tested for this experiment
instead of 100 jobs due to long execution time of CLASS
C applications. The difference will be large if 100 jobs are
tested. Moreover, the MPL is less than 3 due to memory-
constraints. The coscheduling schemes would perform much
better at higher workloads with high MPL and when there
is no memory swapping.

The speed-up ratio of no memory-aware allocation to memory-
aware allocation is presented in Figure 7 (b). The execution
time and waiting time speedup ratios of CC/SB and HY-
BRID are the highest, and it implies that more performance
gain is possible using the memory-aware allocator for the
blocking-based schemes. Usually, memory swapping occurs
when a process consumes its time quantum, but if a blocking
mechanism is used, a process is likely to be context-switched
out before completing its time quantum. Therefore, a block-
ing scheme may induce more memory swappings if the pro-
grams are not memory resident.

The main conclusion of this experiment is that the commu-
nication-driven coschedulings (CC, SB and HYBRID) should
deploy a memory-aware allocator to avoid expensive disk ac-
tivities. With this, it can outperform a batch scheduler.

5.4 Power Usage Comparison
While achievable performance is still the main issue in high
performance systems, energy conservation is also becoming
a serious concern because of the enormous amount of power
required to maintain such infrastructures. As stated in the
introduction, the operational power budget for maintaining
a supercomputer may run into millions of dollars [28, 7, 26].
Thus, any viable approach for energy-efficient computing
should be considered seriously. In this section, we examine
the impact of all scheduling schemes, discussed previously,
on the overall energy consumption in our 16-node cluster.

We use a power measurement device WT210 [49], manufac-
tured by Yokogawa Electric Corporation, in this experiment.
The device can measure power consumption of 6 nodes per
unit time. We collect the average power consumption every
5 seconds from six randomly chosen nodes and then project
the overall energy consumption of the whole cluster. Our
cluster does not have the functionality of Advanced Power
Management (APM) [22] or Advanced Configuration and
Power Interface (ACPI) [23], which provides energy saving
techniques in a machine. A single node in the cluster con-
sumes about 219.10 watts when it is idle, and we refer to
this as the idle power consumption. When a node is busy, it
consumes an additional 18.839 watts, termed as busy power
consumption in this paper.

Table 3 presents the total energy consumption of the dif-
ferent schemes in completing a workload of 100 mixed jobs
from the NAS benchmarks. This is the same workload that
was used to plot Figure 3 (a) in Subsection 5.2. In Table
3, the total energy consumption consists of two parts; idle
energy and busy energy. The table reveals that the batch
scheduling (PBS) has the highest energy consumption due
to its longest waiting time, which translates to the corre-
sponding idle energy. We observe that in addition to be-
ing able to provide better performance, the blocking-based



Alloca-
tion

Schemes

Sche-
duling

Schemes

Energy Node Total
Consump- Utili- Runn-

tion zation ing
(MJoule) (%) Time

Busy Idle (sec)

NO PA-
CKING

NLS 9.40 86.63 96 24710
PB 9.25 86.52 96 24679
DCS 8.63 81.90 96 23361

CC/SB 4.24 65.56 94 18700
HYBRID 4.98 62.88 94 17938

PACK-
ING

NLS 8.60 81.32 91 23198
PB 8.20 79.42 92 22655
DCS 7.66 74.69 92 21305

CC/SB 4.56 58.02 91 16549
HYBRID 4.82 56.38 91 16083

GANG 2.99 61.42 95 17520
BATCH 4.35 94.55 63 26971

Table 3: Total Running Time, Utilization and En-
ergy Consumption of the Scheduling Techniques
(100 Jobs)

coschedulings are quite energy-efficient. The HYBRID and
CC/SB schemes exhibit 60% and 50% better performance-
energy ratio, compared to the batch scheduling. Also, the
gang scheduler is equally energy-efficient like the CC and
SB schemes.

In addition, we measured the average utilization of individ-
ual nodes of the cluster during the execution of the 100 jobs.
This results show that all scheduling schemes except PBS
keep the node utilization at least 90%. Using this average
node utilization, we can use the following simple equation
to estimate the total energy consumption of any scheduling
scheme:

E = (B + X × U) × N × T , where

E : total energy consumption
B : idle power consumption per node
X : busy power consumption per node
U : average node utilization
N : the number of nodes in a cluster
T : total program running time.

B and X are system dependent and in our case, B and X
are 219.10 watts and 18.968 watts, respectively. Using the
above equation, we calculated the energy consumption of
all scheduling schemes and compared these values with the
measured energy, shown in Table 3. The difference between
the measured data and from the equation is within 3% across
all the techniques. This analysis implies that we can get an
accurate estimate of energy consumption if we know the
system/node utilization and program execution time.

Figure 8 shows the total energy consumption trend of 20
jobs as a function of problem size. Obviously, the energy ef-
ficiency due to an efficient scheduling scheme increases as the
problem size increases from CLASS A to CLASS C. With the
long running CLASS C applications, the HYBRID scheme

Figure 8: Variation of Energy Consumption with
Problem Size

showed the best energy behavior followed by CC/SB and
gang scheduling. Compared to the batch scheduler, the to-
tal energy consumption with these coscheduling schemes will
decreases as the system load (in terms of number of jobs)
increases.

Finally, Table 4 depicts the energy consumption of the memory-
aware allocation experiment, which was discussed in Section
5.3. These results along with that of Figure 7 (a) indicate
that by avoiding the disk swapping activities, we benefit
both in terms of performance and energy.

Alloca-
tion
Schemes

Sche-
duling
Schemes

Energy Node Total
Consump- Utili- Runn-

tion zation ing
(MJoule) (%) Time

Busy Idle (sec)

NO
MEMORY-
AWARE

NLS 9.20 91.68 97 26151
PB 7.84 79.09 92 22559

DCS 6.92 69.05 91 19695
CC/SB 4.73 89.55 87 25545

HYBRID 4.16 59.94 90 17098
GANG 6.19 61.27 99 17477

MEMORY-
AWARE

NLS 7.59 74.19 97 21164
PB 7.09 70.44 66 21551

DCS 7.57 75.55 81 20092
CC/SB 3.99 45.59 79 13003

HYBRID 3.84 43.90 78 12522
GANG 4.24 50.85 94 14505

BATCH 5.12 51.62 99 14724

Table 4: Total Running Time, Utilization and Mea-
sured Energy Consumption of Memory Allocation
Schemes (20 Jobs)

The implications of this energy analysis study are the follow-
ing: First, let us assume that a typical dedicated computer
center like in LLNL or in any university computing facility
runs some N number of jobs in a day using a batch sched-
uler like PBS [1] or LoadLeveler [20]. If we use the proposed
HYBRID scheme or any other blocking-based coscheduling
scheme (for that matter a gang scheduler), we can complete
those jobs in much less time, implying that the system can



be virtually shut down or can be in a power saving mode.
One can argue that most centers probably would not shut
down their system. In that case, using one of these efficient
scheduling techniques, we can improve the system through-
put, and thus, will achieve better performance-energy be-
havior. Supercomputers like the ASCI system are usually
heavily loaded with many waiting jobs. An efficient sched-
uler will certainly help in this scenario. Second, since the re-
sponse time difference between the batch scheduling and the
three coscheduling schemes (HYBRID, CC and SB) is large,
even we can use more sophisticated energy saving technique
like dynamic voltage scaling (DVS) [11] at each node. This
would save energy without degrading performance compared
to a batch scheduler. Finally, we can completely shut down
(or use to a sleep mode) a subset of the cluster nodes and
can still run the applications without performance penalty
using an efficient coscheduling scheme. Looking into these
alternatives is essential for energy-aware computing.

6. CONCLUSIONS
The motivation of this paper is to improve the deliverable
performance and energy consumption of clusters through ef-
ficient scheduling of parallel jobs. In this context, we have
conducted an experimental evaluation of several scheduling
alternatives that include batch processing, local scheduling,
gang scheduling, four prior communication-driven coschedul-
ings, and a new coscheduling technique, called HYBRID,
on a 16-node Linux cluster. For ease of implementation
and portability, we have proposed a generic coscheduling
framework, and have implemented all prior coscheduling al-
gorithms (DCS, SB, PB and CC) and the HYBRID scheme
using the framework on top of Myrinet’s communication
layer, GM. We use SCore as the gang scheduler and PBS
as the batch scheduler in this study. Using NAS and a few
other applications, we have conducted a comparative anal-
ysis of the average response time and energy consumption
of all scheduling techniques. This is probably the first ef-
fort that covers an in-depth performance-energy analysis of
a broad spectrum of scheduling techniques.

The main conclusions of this paper are the following: First,
although most clusters use variations of batch processing,
we can get significant performance improvement by switch-
ing to a coscheduling mechanism like HYBRID, SB or CC.
Our results on the 16-node platform showed up to 300%
reduction in the average response time with the proposed
HYBRID scheme. We should get this type of improvement
also on large clusters as long as the system is relatively
loaded with mixed workloads. A gang scheduling technique
like Score, which is currently used in several installations,
can also provide better performance than a batch sched-
uler. However, the proposed HYBRID scheme outperformed
it in all the experiments. Second, contrary to some pre-
vious results [33, 43], we recommend using blocking-based
scheduling techniques (HYBRID, SB and CC) instead of
the spin-only based techniques (DCS and PB) since the for-
mer schemes consistently outperformed the later techniques.
Third, the proposed HYBRID scheme is the best performer
and can be implemented on any platform with only modi-
fication in the message passing layer (i.e: MPI). SB is also
a feasible technique that needs little effort for implementa-
tion. In view of this, the proposed framework is quite useful
and can be used to implement more sophisticated techniques

like CC for providing more customized scheduling. Fourth,
like batch scheduling, any new technique deployed on a clus-
ter should avoid expensive memory swapping. Finally, the
improved efficiency of a scheduling algorithm translates to
better performance-energy ratio, which could be used to ex-
plore several avenues to reduce the high maintenance cost.
All these performance and energy results strongly support
the case for using coscheduling algorithms in dedicated clus-
ters.

We plan to expand our research in several directions. We
would like to implement our framework on large and dif-
ferent platforms like Gigabit Ethernet [18], Quadrics [36]
and IBA [21]. This would require implementing the frame-
work in the Ethernet device driver and other NICs. Then,
we would conduct measurements on large platforms using
LLNL workloads. Moreover, we would like to investigate the
performance-energy trade-offs more carefully by using Dy-
namic Voltage Scaling (DVS) and sleep mode for the cluster
nodes.
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