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ABSTRACT
The running times of many computational science applications are
much longer than the mean-time-to-failure of current high-perfor-
mance computing platforms. Therefore, to run to completion, these
applications must tolerate hardware failures.

Checkpoint-and-restart (CPR) is the most commonly used
scheme for accomplishing this - the state of computation is saved
periodically on stable storage, and when a hardware failure is de-
tected, the computation is restarted from the most recently saved
state. Most automatic CPR schemes in the literature can be classi-
fied as blocking, system-level checkpointing schemes because they
take core-dump style snapshots of the computational state when all
the processes are blocked at global barriers in the program. Un-
fortunately, a system that implements this style of checkpointing is
tied to a particular platform; in addition, it cannot be used if there
are no global barriers in the program.

In our research project, we are exploring an alternative called
non-blocking application-level checkpointing. In our approach, pro-
grams are transformed by a pre-processor so that they become self-
checkpointing and self-restartable on any platform; there is also no
assumption about the existence of global barriers in the code.

In this paper, we describe our implementation of non-blocking
application-level checkpointing. We present experimental results
on both a Windows cluster and the Lemieux system at the Pitts-
burgh Supercomputer Center, and argue that these results demon-
strate both the platform-independence and the scalability of our ap-
proach.

1. INTRODUCTION
The high-performance computing community has largely ignored

the problem of implementing software systems that can tolerate
hardware failures. This is because until recently, most parallel
computing was done on relatively reliable big-iron machines whose
mean-time-between-failures (MTBF) was much longer than the ex-
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ecution time of most programs. However, the burgeoning size and
complexity of parallel machines is increasing the probability of
hardware failures, making it imperative that parallel programs tol-
erate such failures.

The most popular technique for accomplishing this is called
checkpoint-and-restart (CPR for short). Most programmers imple-
ment CPR manually by (i) identifying points in the program where
the amount of state that needs to be saved is small, (ii) determin-
ing what data must be saved at each such point, and (iii) inserting
code to save that data on disk and restart the computation after fail-
ure. For example, in a protein-folding code usingab initio meth-
ods, programmers save the positions and velocities of the bases
(and a few variables such as the time step number) at the end of
each time step. To ensure a consistent view of global data struc-
tures, this approach ofmanual application-level checkpointingre-
quires global barriers at the points where state is saved. Although
barriers are present in parallel programs that are written in a bulk-
synchronous manner [11], many other programs such as the HPL
benchmark [15] and some of the NAS Parallel Benchmarks do not
have global barriers.

A different approach to CPR, developed by the distributed sys-
tems community, issystem-levelcheckpointing, in which all the
bits of the computation are periodically saved on stable storage.
This is the approach used in the Condor system [14] for taking
uniprocessor checkpoints, for example. The amount of saved state
can be reduced by using incremental state saving, but it is usually
many orders of magnitude more than is saved by manual application-
level checkpointing. For parallel programs, the problem of taking
a system-level checkpoint reduces to the uniprocessor problem if
there are global barriers where state can be saved and there are no
messages in flight across these barriers. Without global synchro-
nization, it is not obvious when the state of each process should
be saved so as to obtain a global snapshot of the parallel compu-
tation. One possibility is to use coordination protocols such as the
Chandy-Lamport [7] protocol.

The relative advantages and disadvantages of manual application-
level checkpointing (ALC) and automatic system-level
checkpointing (SLC) can be summarized as follows. Manual ALC
requires programmer intervention, but it has the advantage that the
resulting programs are self-checkpointing and self-restartable on
any platform, and usually save only a small amount of data to disk.
SLC is automatic, but systems that use SLC are platform-specific
and usually save a lot more data at a checkpoint than programs that
use ALC.

In principle, one could get the best of both worlds withautomatic
application-level checkpointing. This requires a pre-compiler that
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can automatically transform a parallel program into one that can
checkpoint its own state and restart itself from such a checkpoint.
To handle programs without global barriers, we need a protocol for
coordinating checkpointing by different processes.

In this paper, we describe the implementation of such a system,
and evaluate its scalability on large multiprocessor platforms.

Figure 1 is an overview of our approach. TheC3 (Cornell Check-
point (pre-)Compiler) reads almost unmodified C/MPI source files
and instruments them to perform application-level state-saving; the
only additional requirement for programmers is that they must in-
sert a#pragma ccc checkpoint at points in the application
where checkpoints might be taken. At runtime, some of these prag-
mas will force checkpoints to be taken at that point, while oth-
ers will take a checkpoint there only if a timer has expired or if
some other process has initiated a global checkpoint. The output
of this precompiler is compiled with the native compiler on the
hardware platform, and is linked with a library that constitutes a
co-ordination layerfor implementing the non-blocking coordina-
tion. This layer sits between the application and the MPI library,
and intercepts all calls from the instrumented application program
to the MPI library. Note that MPI can bypass the co-ordination
layer to read and write message buffers in the application space
directly. Such manipulations, however, are not invisible to the pro-
tocol layer. MPI may not begin to access a message buffer until
after it has been given specific permission to do so by the applica-
tion (e.g. via a call toMPI Irecv). Similarly, once the application
has granted such permission to MPI, it should not access that buffer
until MPI has informed it that doing so is safe (e.g. with the return
of a call toMPI Wait). The calls to, and returns from, those func-
tions are intercepted by the protocol layer.

This design permits us to implement the coordination protocol
without modifying the underlying MPI library, which promotes
modularity and eliminates the need for access to MPI library code,
which is proprietary on some systems. Furthermore, the instru-
mented programs are self-checkpointing and self-restarting on any
platform. The entire runtime system is written entirely in C and
use only a very small set of system calls. Therefore, theC3 system
is portable among different architectures and OSs; currently, it has
been tested on x86 and PPC Linux, Sparc Solaris, x86 Win32, and
Alpha Tru64. This is in contrast to a typical system-level CPR sys-
tem, which needs to deal with the specifics of a machine’s register
file, stack layout, argument passing convention, etc.

The rest of this paper is organized as follows: In Section 2, we
will enumerate some of the problem involved in providing ALC for
MPI applications. In Section 3, we will present our basic proto-
col for non-blocking, coordinating ALC. This protocol is based on
results in our earlier papers [4, 5], but it incorporates several sig-
nificant improvements and extensions that were developed during
our first complete implementation. In particular, the approach to
coordinating checkpoints is completely different. In Section 4, we
will expand the basic protocol to cover advanced features of MPI.
In Section 5, we describe how each process saves its computational
state. In Section 6, we present experimental performance results
for the C3 on several systems and several applications. In Sec-
tion 7, we compare our work with related work in the literature. In
Section 8, we present our conclusions and discuss our future work.

2. DIFFICULTIES IN APPLICATION-
LEVEL CHECKPOINTING OF MPI PRO-
GRAMS

In this section, we describe the difficulties with implementing
application-level, coordinated, non-blocking checkpointing for MPI
programs. In particular, we argue that existing protocols for non-
blocking parallel checkpointing, which were designed for system-
level checkpointers, are not suitable when the state saving occurs at
the application level. In Section 3, we show how these difficulties
are overcome with our approach.

2.1 Terminology
In our system, a global checkpoint can be initiated by any pro-

cess in the program. To participate in taking the global checkpoint,
every other process saves its local computational state, and some
book-keeping information on stable storage. The collection of lo-
cal computational states and book-keeping information is called a
recovery line.

In our approach, recovery lines do not cross each other. The exe-
cution of the program can therefore be divided into a succession of
epochswhere an epoch is the interval between two successive re-
covery lines (by convention, the start of the program is assumed to
begin the first epoch). Epochs are labeled successively by integers
starting at zero, as shown in Figure 2.
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Figure 2: Epochs and message classification

It is convenient to classify an application message into three cat-
egories depending on the epoch numbers of the sending and receiv-
ing processes at the points in the application program execution
when the message is sent and received respectively.

DEFINITION 1. Given an application message from process A
to process B, leteA be the epoch number of A at the point in the ap-
plication program execution when the send command is executed,
and leteB be the epoch number of B at the point when the message
is delivered to the application.



• Late message:If eA < eB, the message is said to be a late
message.

• Intra-epoch message:If eA = eB , the message is said to be
an intra-epoch message.

• Early message:If eA > eB, the message is said to be an
early message.

Figure 2 uses the execution trace of three processes namedP , Q
and R to show examples of these three kinds of messages. The
source of the arrow represents the point in the execution of the
sending process at which control returns from the MPI routine that
was invoked to send this message. Similarly, the destination of the
arrow represents the delivery of the message to the application pro-
gram. An important property of the protocol described in Section 3
is that an application message can cross at most one recovery line.
Therefore, in our system,eA andeB in Definition 1 can differ by
one at most.

In the literature, late messages are sometimes calledin-flight
messages, and early messages are sometime calledinconsistentmes-
sages. This terminology was developed in the context of system-
level checkpointing protocols; in our opinion, it is misleading in
the context of application-level checkpointing.

2.2 Delayed State-saving
A fundamental difference between system-level checkpointing

and application-level checkpointing is that a system-level check-
point may be taken at any time during a program’s execution, while
an application-level checkpoint can only be taken when program
execution encounters accc checkpoint pragma.

System-level checkpointing protocols, such as the Chandy-
Lamport distributed snapshot protocol, exploit this flexibility with
checkpoint scheduling to avoid the creation of early messages—
during the creation of a global checkpoint, a processP must take
its local checkpoint before it can read a message from processQ
that was sent afterQ took its own checkpoint. This strategy does
not work for application-level checkpointing, because processP
might need to receive an early message before it can arrive at a
point where it may take a checkpoint.

Therefore, unlike system-level checkpointing protocols which
typically handle only late messages, application-level checkpointing
protocols must handle both late and early messages.

2.3 Handling Late and Early Messages
We use Figure 2 to illustrate how late and early messages must

be handled.
Suppose that one of the processes in this figure fails after Global

Checkpoint 2 is taken. For processQ to recover correctly, it must
obtain the late message that was sent to it by processP prior to
the failure. Therefore, we need mechanisms for (i) identifying late
messages and saving them along with the global checkpoint, and
(ii) replaying these messages to the receiving process during recov-
ery. In our implementation, each process uses aLate-Message-
Registry to save late messages. Each entry in this registry con-
tains the messagesignature,

< sending node number, tag, communicator >

and the message data. There might be multiple messages with the
same signature in the registry, and these are maintained in the or-
der in which they are received. Once recording is complete, the
contents of thisLate-Message-Registry are saved on stable
storage.

Early messages, such as the message sent from processQ to pro-
cessR pose a different problem. On recovery, processR does not

expect to be resent this message, so processQ must suppress send-
ing it. To handle this, we need mechanisms for (i) identifying early
messages, and (ii) ensuring that they are not resent during recovery.
In our implementation, each process uses aEarly-Message-
Registry to record the signatures of early messages. Once all
early messages are received by a process, theEarly-Message-
Registry is saved on stable storage. During recovery, each pro-
cess sends relevant portions of itsEarly-Message-Registry
to other processes to tell them which messages need to be sup-
pressed. Each process constructs aWas-Early-Registry from
the information it receives from all other processes, and suppresses
the matching message sends during recovery.

Early messages pose another more subtle problem. In Figure 2,
the saved state of processR at Global Checkpoint 2 may depend on
data contained in the early message from processQ. If the contents
of that message depend on the result of a non-deterministic event
at Q, such as a wild-card receive, that occurred afterQ took its
checkpoint, that event must be re-generated in the same way during
recovery.

Therefore, mechanisms are needed to (i) record the non-determin-
istic events that a global checkpoint depends on, so that (ii) these
events can be replayed during recovery.

2.4 Problems Specific to MPI
In addition to the problems discussed above, problems specific

to MPI must be addressed.
Many of the protocols in the literature such as the Chandy-

Lamport protocol assume that communication between processes
is FIFO. In MPI, if a process P sends messages with different tags
or communicators to a process Q, Q may receive them in an order
different from the order in which they were sent. It is important
to note that this problem has nothing to do with FIFO behavior or
lack thereof in the underlying communication system; rather, it is a
property of the order in which an application chooses to receive its
messages.

MPI also supports a very rich set of group communication calls
called collective communication calls. These calls are used to do
broadcasts, perform reductions, etc. In MPI, processes do not need
to synchronize to participate in any collective communication call
other than barrier. Therefore, the problem with collective calls is
that in a single collective call, some processes may invoke the call
before taking their checkpoints while other processes may invoke
the call after taking their checkpoints. Unless something is done,
only a subset of the processes will re-invoke the collective call dur-
ing recovery, which would be incorrect.

Finally, the MPI library has internal state that needs to be saved
as part of an application’s checkpoint. For example, when a pro-
cess posts a non-blocking receive, the MPI library must remember
the starting address of the buffer where the data must be written
when it arrives, the length of the buffer, etc. If a process takes
a checkpoint in between the time it posts a non-blocking receive
and when the message is actually received by the application layer,
the checkpoint must contain relevant information about the pending
non-blocking receive so that the message can be received correctly
after recovery. Previous work has investigated modifying the MPI
library code [17], or providing a specifically designed implementa-
tion of the library [1], but these strategies are not portable.

3. A NON-BLOCKING, COORDINATED
PROTOCOL FOR APPLICATION-
LEVEL CHECKPOINTING

We now describe the coordination protocol we use for coordi-
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nated, application-level checkpointing. The protocol is indepen-
dent of the technique used by processes to save their computational
state. To avoid complicating the presentation, we first describe the
protocol for blocking point-to-point communication only. In Sec-
tion 4, we describe how advanced features of MPI such as asyn-
chronous communication, arbitrary datatypes, and collective com-
munication can be handled by using these mechanisms.

3.1 High-level Description of Protocol
At any point during execution, a process is in one of the states

shown in the state transition diagram of Figure 3. We call these
statesmodesin our description. Each process maintains variables
namedEpoch andMode to keep track of its current epoch and
mode.

In addition, each process maintains a number of variables to
capture the state of the communication operations to determine
whether it has received all outstanding messages from other pro-
cesses. Each process maintains an arraySend-Count containing
one integer for each process in the application;Sent-Count[Q]
is the number of messages sent from the local process to Q in the
current epoch. Furthermore, a process maintains a set of coun-
ters to capture the number and type (late, intra-epoch, early) of all
received messages. These variables are updated at every communi-
cation operation as shown in Figure 4, and are explained later.

The square boxes in Figure 3 show the actions that are executed
by a process when it makes a state transition; pseudo-code for these
actions is shown in Figure 5. These states and transitions are de-
scribed in more detail next.

Run During normal execution, a process is in theRun mode. As
described above, it incrementsSent-Count[Q] when it
sends a message to process Q; when it receives an early mes-
sage, it adds it to itsEarly-Message-Registry.

A process takes a checkpoint when it reaches a pragma that
forces a checkpoint. Alternatively, it may get a control mes-
sage calledCheckpoint-Initiatedfrom another process which
has started its own checkpointing; in this case, the process
continues execution until it reaches the next pragma in its

own code, and then starts its checkpoint. These conditions
are described in the code for the pragma shown in Figure 5.

To take a checkpoint, the function calledchkpt
StartCheckpoint in Figure 5 is invoked. For now, it is
sufficient to note that this function saves the computational
state of the process, and itsEarly-Message-Registry
on stable storage, and sends aCheckpoint-Initiatedmessage
to every other process Q, sending the value of
Sent-Count[Q] with this message. It then re-initializes
the Sent-Count array and theEarly-Message-
Registry, and transitions to theNonDet-Logstate, begin-
ning a new epoch.

NonDet-Log In this mode, the process updates counters and reg-
istries as in theRun mode, but it also saves non-deterministic
events and late messages in theLate-Message-
Registry for replay during recovery.

In addition, the signature (but not the data) of each intra-
epoch message is saved in theLate-Message-
Registry. This enables the non-determinism of wild-card
receives (MPI ANY SOURCE and/orMPI ANY TAG) to be
replayed correctly on recovery.

When the process gets aCheckpoint-Initiatedmessage from
all other processes, it knows that every process has started a
new epoch, so any message it sends from that point on will
not be an early message. Therefore, it terminates the logging
of non-deterministic events and transitions to the
RecvOnly-Log mode. It must also perform this transi-
tion if it receives a message from a process Q that has itself
stopped logging non-deterministic events; intuitively, this is
because it knows that Q knows that all processes have taken
their local checkpoints.

The second condition for performing the transition is a lit-
tle subtle. Because we make no assumptions about message
delivery order, it is possible for the following sequence of
events to happen. Process P stops logging non-deterministic
events, makes a non-deterministic decision, and then sends a
message to process Q containing the result of making this de-
cision. Process Q could use the information in this message
to create another non-deterministic event; if Q is still logging
non-deterministic events, it stores this event, and hence, the
saved state of the global computation is causally dependent
on an event that was not itself saved. To avoid this problem,
we require a process to stop logging non-deterministic events
if it receives a message from a process that has itself stopped
logging non-deterministic events.

RecvOnly-Log In this state, the process continues to log late mes-
sages in theLate-Message-Registry.

When the process receives all late messages from the previ-
ous epoch, it invokeschkpt CommitCheckpoint, which
is shown in Figure 5. This function writes theLate-
Message-Registry to stable storage. The process then
transitions to theRun state.

Restore A process recovering from failure starts in theRestore
state, and invokeschkpt RestoreCheckpoint, which
is shown in Figure 5. It sends every other process Q the sig-
natures of all early messages that Q sent it before failure, so
that these sends can be suppressed during recovery. Each
process collects these signatures into aWas-Early-
Registry. During recovery, any message send that matches



chkpt MPI Send()

If (Mode=NonDetLog)
Check for control messages
If (all nodes have started checkpoints)

Mode:=RecvOnly-Log

If (Mode!=Restore)
PiggyBackData:=(Mode,Epoch)
MPI Send(<original send parameters>)
Sent-Count[Target]++

Else /* Mode must beRestore*/
If (parameters match entry in Was-Early-Registry)

Remove entry from Was-Early-Registry
If (Late-Message-Registry is empty) and

(Was-Early-Registry is empty)
Mode:=Run

return MPISUCCESS
Else

PiggyBackData:=(Mode,Epoch)
MPI Send(<original send parameters>)
Sent-Count[Target]++

chkpt MPI Recv()

If (Mode!=Restore)
If (Mode=NonDetLog)

Check for control messages
If (all nodes have started checkpoints)

Mode:=RecvOnly-Log

MPI Recv((<original recv parameters>)

If (MsgType=Early)
Early-Received-Counter[Source]++
Add to Early-Message-Registry

If (MsgType=Intra-epoch)
Received-Counter[Source]++
If (Sender is Logging) and (mode=NonDetLog)

Add signature to Late-Message-Registry
If (MsgType=Late)

Late-Received-Counter[Source]++
Add message to Late-Message-Registry

Else /* Mode must beRestore*/
If (parameters match a message in Late-Message-Registry)

Restore message from disk
Delete entry in Late-Message-Registry
If (Late-Message-Registry is empty) and

(Was-Early-Registry is empty)
Mode:=Run

Else
If (parameters match an entry in Late-Message-Registry)

Restrict parameters to those in the registry
Delete entry in Late-Message-Registry
If (Late-Message-Registry is empty) and

(Was-Early-Registry is empty)
Mode:=Run

MPI Recv(<modified recv parameters>)
Else

MPI Recv(<original recv parameters>)
Received-Counter[Source]++
If (Message is from next epoch,i.e., is early)

Early-Received-Counter[Source]++
Add Message to Early-Message-Registry

Else
Received-Counter[Source]++

Figure 4: Wrapping Communication calls

#pragma ccc checkpoint

If (mode=Run)
Check for control messages
If (checkpoint forced) or

(timer expired) or
(at least one other node has started a checkpoint)

Call chkpt StartCheckpoint
If (all nodes have started checkpoint)

If (no late messages expected)
Mode:=Run

Else
Mode:=Recv-Log

Else
Mode:=NonDet-Log

chkpt StartCheckpoint()

Advance Epoch
Create checkpoint version and directory
Save application state
Save basic MPI state

Number of nodes, local rank, local processor name
Current epoch
Attached buffers

Save handle tables
Includes datatypes and reduction operations

Save and reset Early-Message-Registry
SendCheckpoint-Initiatedmessages to every node Q with Sent-Count[Q]
Prepare counters

Copy Received-Counters to Late-Received-Counters
Copy Early-Received-Counters to Received-Counters
Reset Early-Received-Counters

chkpt CommitCheckpoint()

Save and reset Late-Message-Registry
Commit Checkpoint to disk
Close checkpoint

chkpt RestoreCheckpoint()

Initialize MPI
Query last local saved checkpoint committed to disk
Global reduction to find last checkpoint committed on all nodes
Open Checkpoint
Mode:=Restore

Restore basic MPI state
Number of nodes, local rank, local processor name
Current epoch
Attached buffers

Restore handle tables
Includes datatypes and reduction operations

Restore message registries
Restore Late-Message-Registry
Restore Early-Message-Registry
Distribute Early-Message-Registry entries to respective
target nodes to form Was-Early-Registry
Reset Early-Message-Registry

If (Late-Message-Registry is empty) and
(Was-Early-Registry is empty)

Mode:=Run

. . . jump to checkpointed location . . .

. . . resume execution . . .

Figure 5: Protocol actions



a signature in this registry is suppressed, and the signature is
removed from the registry.

Similarly, if a message receive matches a message in the
Late-Message-Registry, the data for that receive is
received from this registry, and the entry for that message is
removed from the registry. In addition, the signatures stored
in theLate-Message-Registry are used to fill in any
wild-cards to force intra-epoch messages to be received in
the order that they were received prior to failure.

When the Was-Early-Registry and the Late-
Message-Registryare empty, recovery is complete, and
the process transitions to theRun state.

3.2 Piggybacked Information on Messages
Because MPI does not provide any FIFO guarantees for mes-

sages with different signatures, the protocol layer must piggyback
a small amount of information on each application message to per-
mit the receiver of a message to determine the state of the sending
process at the time the message was sent. These piggybacked val-
ues are derived from theEpoch andMode variables maintained
by each process. The protocol layer piggybacks these values on all
application messages. The receiver of the message uses this piggy-
backed information to answer the following questions.

1. Is the message a late, intra-epoch, or early message?
This is determined by comparing the piggybacked epoch with
the epoch that the receiving process is in, as described in Def-
inition 1.

2. Has the sending process stopped logging non-determinstic
events?
No, if the piggybackedmodeis NonDet-Log, and yes other-
wise.

A detailed examination of the protocol shows that further econ-
omy in piggybacking can be achieved if we exploit the fact that a
message can cross at most one recovery line. If we imagine that
epochs are colored red, green, and blue successively, we see that
the integerEpoch can be replaced byEpoch-color, which can
be encoded in two bits. Furthermore, a single piggybacked bit is
adequate to encode whether the sender of a message has stopped
logging non-deterministic events. Therefore, it is sufficient to pig-
gyback three bits on each outgoing message. For simplicity, we do
not show these optimizations in the pseudo-code.

4. ADVANCED MPI FEATURES
The basic protocol described in Section 3 applies to all blocking

point-to-point communication. In this section, we describe how
we extend these mechanisms to implement advanced MPI features
such as non-blocking communication, complex datatypes, and col-
lectives.

4.1 Non-blocking Communication
MPI provides a set of routines to implement non-blocking com-

munication, which separates the initiation of a communication call
from its completion. The objective of this separation is to permit
the programmer to hide the latency of the communication opera-
tion by performing other computations between the time the com-
munication is initiated and the time it completes. MPI provides
non-blocking send and receive calls to initiate communication, and
it provides a variety of blocking wait or non-blocking test calls to
determine completion of communication requests.

Extending the Basic Protocol
Non-blocking communication does not complete during a single
call to the MPI library, but is active during a period of time be-
tween the initiation and the completion of the communication. Dur-
ing this time, MPI maintains a request object to identify the active
communication. If a checkpoint is taken between the time the pro-
cess initiates a non-blocking communication and the time that this
communication completes, the protocol layer has to ensure that the
request object is restored correctly during recovery.

Communication
Blocking Non−Blocking

Communication

P

Q

Send

Recv

Isend

Irecv Wait

Wait

Figure 6: Mapping the base protocol onto non-blocking com-
mination

To extend our protocol to non-blocking communication, non-
blocking send operations execute the send protocol described in
Section 3, while the receive protocol is executed within theTest
andWait calls. To handleTest andWait calls, we must store
additional information in the request objects created by the non-
blocking receive calls. To stay independent of the underlying MPI
implementation, we implement a separate indirection table for all
requests. For each request allocated by MPI, we allocate an entry
in this table and use it to store the necessary information, including
type of operation, message parameters, and the epoch in which the
request has been allocated. In addition, we store a pointer to the
original MPI request object. The index to this table replaces the
MPI request in the target application. This enables our MPI layer
to instantiate all request objects with the same request identifiers
during recovery.

At checkpoint time, the request table on each node contains all
active requests crossing the recovery line and hence all requests that
need to be restored during a restart from that recovery line. How-
ever, at this time we do not know which of the open receive requests
will be completed by a late message. This is important, since late
messages are replayed from the log during restart and hence should
not be recreated. Therefore, we delay the saving of the request table
until the end of the checkpoint period when all late messages have
been received. During the logging phase, we mark the type of mes-
sage matching the posted request during each completedTest or
Wait call. In addition, to maintain all relevant requests, we delay
any deallocation of requests until after the request table has been
saved.

During recovery, all requests allocated during the logging phase,
i.e., after the recovery line, are first deleted to roll the contents of
the request table back from the end of the checkpoint period to the
recovery line. Then, all requests that have not been completed by a
late message are recreated before the program resumes execution.

Dealing with Nondeterminism
As described in Section 3, our protocol contains a phase that logs
any potential non-determinism. For non-blocking communication,
this has to include the correct recording of the number of unsuc-
cessful tests as well as the logging of the completed indices in calls
containing arrays of requests.

For this purpose, we maintain a test counter for each request to



record the number of unsuccessfulTest or Wait operations on
this request. This counter is reset at the beginning of each check-
pointing period and saved at the end of the checkpointing period
as part of the request table. At recovery time, aTest call checks
this counter to determine whether the same call during the original
run was successful. If not, i.e., the counter is not zero, the counter
is decremented and the call returns without attempting to complete
the request. If, however, the original call was successful, i.e., the
counter has reached zero, the call is substituted with a correspond-
ing Wait operation. This ensures that theTest completes as in
the original execution. Similarly, this counter is used to log the
index or indices ofMPI Wait any andMPI Wait some and to
replay these routines during recovery.

Note that this replacement ofTest calls with Wait calls can
never lead to deadlock, since theTest completed during the orig-
inal execution, and hence a corresponding message either has al-
ready arrived or is expected to arrive. TheWait is therefore guar-
anteed to complete during recovery.

4.2 Handles for Datatypes
MPI provides routines to define application-specific datatypes.

These datatypes can then be used during communication requests
to specify message payloads. To support datatypes in our protocol,
we use an indirection table similar to the request table to store both
the original MPI datatype handle and the information that was used
during the creation of that datatype. During recovery, this infor-
mation is used to recreate all datatypes before the execution of the
program resumes.

This process is complicated by the fact that MPI datatypes can be
constructed using other, previously constructed datatypes, resulting
in a hierarchy of types. We keep track of this hierarchy within the
datatype table by storing the indices of the dependent types with
each entry. In addition, we ensure that datatypes are not actually
deleted until both the datatype itself and all types depending on it
have been deleted. This ensures that during a restore all intermedi-
ate datatypes have can be correctly reconstructed.

The information about the datatype hierarchy is also used for
any message logging or restoration. This is necessary, since MPI
datatypes can be represent non-contiguous memory regions. In
both cases, the datatype hierarchy is recursively traversed to iden-
tify and individually store or retrieve each piece of the message.

4.3 Collective Communication
MPI offers a variety of collective communication primitives. The

main problem with collective communication calls is that some
processes may execute the call before taking their checkpoints while
other processes may execute the call after taking their checkpoints.
Unless something is done, only a subset of the processes will there-
fore participate in the collective communication call during recov-
ery, which is erroneous.

Although we could convert each collective communication call
to a set of point-to-point messages and apply the protocol described
in Section 3 to these messages, we do not do this because it is im-
portant to permit the application to use the native, optimized col-
lective calls.

Handling Collective Communication
The approach we take is similar to our approach for non-blocking
communication calls in the sense that we apply the protocol only
to the start and end points of each individual communication stream
within a collective operation, without affecting the actual data trans-
fer mechanisms in the underlying MPI layer.

We show an example of this approach in Figure 7.MPI Gather
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Figure 7: Example of collective communication:MPI Gather

aggregates data from all processors (marked as “In”) into a single
buffer on node (marked as “Out”). At the call site on each process,
we first apply the send protocol shown in Figure 4. After the neces-
sary protocol updates have been made, the protocol layer uses the
original MPI Gather operation to carry out the communication
and thereby takes advantage of potential optimizations.

At the root node (in this case process Q), the protocol, after
receiving the communication by callingMPI Gather, performs
counter and registry updates for each communication stream by ap-
plying the receive protocol described in Figure 4. This enables the
protocol to determine if part of the communication is late or early
and apply the necessary protocol mechanisms only to those mes-
sage parts, as shown on the right of Figure 7 for the late communi-
cation from P to Q.

During recovery, we emulate collectives using point-to-point calls
and apply the the protocol as describe above to each individual
communication stream within each single collective operation. Once
the complete application has recovered, we switch back to using
the original collective calls. Therefore, any performance penalty is
restricted to the short phase of process recovery.

Reduction Operations
The approach described above cannot be applied directly to re-
duction operations, such asMPI Reduce,MPI Allreduce, and
MPI Scan. These routines aggregate the message payload based
on a user-provided reduction operation before returning the data to
the user. Hence, it is no longer possible to log individual messages,
which is a requirement of the base protocol.

For MPI Allreduce however, it is sufficient to store the fi-
nal result of the operation at each node and replay this from the
log during recovery. This operation involves an all-to-all com-
munication scheme, and as a consequence, each communication
process will have outstanding early and late messages during the
MPI Allreduce call. Hence, all communication is completed
either before a checkpoint or during nondeterministic logging. This
ensures that the complete collective operation is repeated exactly as
during the original run and provides the same result.

Similarly MPI Scan can be implemented by logging the result
of the routine. The use of the prefix operator results in a strictly
ordered dependency chain between processes. This guarantees that
communication forMPI Scan is crossed at most once by a recov-
ery line. At recovery, the first process to callMPI Scan is restored
from a logged value, while all following processes can be recovered
by recomputing along this dependency chain based on the logged
data.

In contrast to these two routines,MPI Reduce does not have
similar properties and hence parts of the communication contribut-
ing to the final result can be intra-epoch messages. The payload
of these messages can change during a restore, and, as a conse-
quence, simply logging the final result and replaying this during
recovery is insufficient. To compensate for this behavior, we first
send all data to the root node of the reduction using an indepen-



dentMPI Gather and then perform the actual reduction. This
provides the protocol with the required individual messages from
all processes and allows a correct replay on recovery.

4.4 Communicators, Groups, and Topologies
Our protocol layer currently does not support arbitrary commu-

nicators, groups, and topologies. An extension providing such sup-
port, however, is straightforward and is currently under develop-
ment. Similarly to datatypes, any creation or deletion has to be
recorded and stored as part of the checkpoint. On recovery, we read
this information and replay the necessary MPI calls to recreate the
respective structures.

5. STATE SAVING
The protocol described in Sections 3 and 4 is independent of the

way in which the local computational state is saved by each pro-
cess. For completeness, we describe the implementation of state-
saving in our system.

Roughly speaking, the state of an individual process consists
both of its data and its execution context. To provide CPR, the
C3 system utilizes a pre-compiler to instrument certain points in
an application’s code where there are changes to either its set of
variables (and objects) or to its execution context.

This inserted code usually consists of a call to a routine in theC3

utility library that registers the change to the application’s state. For
example, as a local variable enters scope, the inserted code passes
a description of that variable to the utility library, where it is added
to the set of variables in scope. When it leaves scope, the variable’s
description is removed from that set. In this manner, the inserted
code, when executed dynamically, serves to maintain an up-to-date
description of the processes’ state.

As mentioned before, theC3 system requires that the program-
mer specify the positions in the application where CPR may occur,
by marking them with a#pragma statement. Because the set of
such locations is necessarily finite, the pre-compiler only needs to
instrument the code when changes to the application’s state cross
such a position.

When it is time to take a checkpoint, theC3 system uses the
description of the process state that it had maintained to write the
state to the checkpoint file. It then stores the description to the
checkpoint file as well. When restarting, first the description is
read, and then it is used to reconstruct the application’s state from
the information saved within the checkpoint file.

Although the checkpointing mechanism used byC3 is portable,
the checkpoints are not:C3 saves all data as binary, irrespective
of the data’s type. This was the result of a design philosophy that
favors efficiency (not needing to convert data to a neutral format)
and transparency (not confining programmers to a subset of C with
limited pointers) to portability. Because all data is saved as binary,
on restart, theC3 system must ensure that all objects and variables
are restored to their original addresses, otherwise pointers would
no longer be correct after a restart. For stack allocated variables,
this is accomplished by “padding” the stack before handing control
to main. For dynamically allocated objects,C3 provides its own
memory manager.

6. PERFORMANCE
To evaluate the quality ofC3, we would have liked to compare

its performance with that of a more established system. However,
there is no other parallel checkpointing system that is available for
our target platforms. Therefore, we performed experiments to an-
swer the following questions.

• How do checkpoint files produced byC3 compare in size
with those produced by other systems (on sequential proces-
sors)?

• How much overhead does theC3 system add to an applica-
tion when no checkpoints are taken?

• How much overhead does theC3 system add to an applica-
tion when checkpoints are taken?

We focused on the NAS Parallel Benchmarks (NPB), which are
interesting to us because, with the exception of the MG bench-
mark, they do not contain calls toMPI Barrier in the compu-
tations. Several of the codes callMPI Barrier immediately be-
fore starting and stopping the benchmark timer, but only MG calls
MPI Barrier during the computation.

The experimental results that we present below are preliminary
and they will be significantly expanded in the final version of the
paper.

6.1 Checkpoint Sizes
To evaluate the checkpoint sizes ofC3, we compared the sizes of

the checkpoint files produced byC3 and Condor [14], arguably the
most popular SLC system in high-performance computing. Since
Condor only checkpoints sequential applications, we have mea-
sured the checkpoint sizes produced on uniprocessors.1

Table 1 shows the sizes of the checkpoint files produced byC3

and Condor for the NAS Parallel Benchmarks (NPB’s) for both So-
laris and Linux.

Solaris A SUN V210 with a two 1GHz UltraSPARC IIIi proces-
sors, 1 MB L2 cache, and 2 GB RAM, running Solaris 9.

Linux A Dell PowerEdge 1650, with a 1.26GHz Intel Pentium III
processor, 512K L2 cache, and 512MB of RAM, running
Redhat Linux 8.0.

Size in megabytes
O.S. Bench Class Condor C3 Reduction
Solaris BT A 308.85 306.39 0.80%

CG B 429.89 427.44 0.57%
EP A 3.46 1.00 71.07%
FT A 421.28 418.69 0.61%
IS A 100.45 96.00 4.43%
LU A 46.99 44.54 5.21%
MG B 436.99 435.48 0.34%
SP A 82.09 79.63 2.99%

Linux BT A 307.13 306.39 0.24%
CG B 428.17 427.44 0.17%
EP A 1.74 1.00 42.29%
FT A 419.43 418.69 0.17%
IS A 96.74 96.00 0.76%
LU A 45.27 44.54 1.61%
MG B 435.24 435.55 -0.07%
SP A 80.36 79.63 0.91%

Table 1: Condor andC3 checkpoint sizes

The sizes of the checkpoint files are given in megabytes, and
the column labeled “Reduction” is the relative amount that theC3

checkpoints are smaller than the Condor checkpoiunts.
1CoCheck [17] is a SLC system based on Condor for MPI applica-
tions, but it does not run on any of our target platforms.



These results show that in almost all cases, the checkpoints pro-
duced by theC3 system are smaller than those produced by Con-
dor. This is primarily because theC3 system saves only live data
(memory that has not been freed by the programmer) from the heap.
BecauseC3 is an ALC system, the checkpoint files can be further
reduced by applying compiler analysis and optimizations. This is
not possible with an SLC system like Condor.

6.2 Overhead Without Checkpoints
To measure the overhead of using the fault-tolerance protocol de-

scribed in Section 3, we ran experiments on two high-performance
parallel machines.

Velocity 2 The Velocity 2 cluster at the Cornell Theory Center
consists of 128 dual processor 2.4GHz Intel P4 Xeon nodes.
Each processor has a 512KB L2 cache. and runs Windows
Advanced Server 2000. Each node has 2 GB of RAM and
a 72GB local disk. The nodes are connected with Force10
Gigabit Ethernet.

Lemieux The Lemieux system at the Pittsburgh Supercomputing
Center consists of 750 Compaq Alphaserver ES45 nodes.
Each node contains four 1-GHz Alpha processors and runs
the Tru64 Unix operating system. Each node has 4 Gbytes of
memory and 38G local disk. The nodes are connected with a
Quadrics interconnection network.

Tables 2 and 3 show the running times of some of the NPB’s
for Velocity 2 and Lemieux, respectively. We were not able to get
sufficient time on these machines to complete all the NPB’s, so we
show performance results for only the benchmarks we were able
to run. The column labeled “Original” shows the running time in
seconds of the original benchmark application. The column labeled
“C3” shows the running time of the application that has been com-
piled and run using theC3 system. For these runs, no checkpoints
are taken. The column labeled “Relative” shows the relative over-
head of using theC3 system. This overhead comes from executing
the book-keeping code inserted by the pre-compiler, and the piggy-
backing and bookkeeping done by our MPI protocol layer.

Code Class Procs Original C3

(Nodes) Runtime Runtime Relative
CG D 128 (64) 1746.06 1787.54 2.38%
SP D 81 (81) 2406.00 2517.75 4.64%

144 (72) 2114.86 2218.38 4.89%
LU D 64 (64) 2092.50 2114.38 1.05%

128 (64) 1861.97 1904.56 2.29%

Table 2: Runtimes on Velocity 2 without checkpoints

Code Class Procs Original C3

(Nodes) Runtime Runtime Relative
LU D 64 (16) 1490.87 1707.78 14.55%

256 (64) 396.35 466.37 17.67%
1024 (256) 128.54 145.69 13.34%

Table 3: Runtimes on Lemieux without checkpoints

The overheads measured on Lemieux are higher than we would
like. Our preliminary studies show that these overheads are present
in the sequential code as well, which suggests that the performance
problems are present in the state-saving mechanism and not in the

protocol layer. We are investigating this further, and we will report
on the improved results in the final paper.

Nevertheless, we are encouraged by these results because they
show that the overhead added by usingC3 does not grow signifi-
cantly as the number of processors in increased. Furthermore, the
overheads measured on Velocity 2 are small and less than 5% in all
cases. These results suggest that the protocol is scalable.

6.3 Overhead With Checkpoints
Our final set of experiments are designed to measure the addi-

tional overhead of taking checkpoints.
Tables 4 and 5 show the run-times and absolute overheads in

seconds of taking checkpoints for the same applications shown in
Tables 2 and 3. The meaning of the configurations is as follows.

Configuration #1. The run-times of theC3 generated code with-
out taking any checkpoints. These run-times are the same as
shown in column “C3” of Tables 2 and 3, and serve as the
baseline for measuring the overhead of checkpointing.

Configuration #2. The run-times of theC3 generated code when
computing one checkpoint during the application run but with-
out saving any checkpoint data to disk.

Configuration #3. This configuration is the same as #2, except
that it includes the cost of saving application state to the local
disk on each node.

The difference between Configurations #2 and #3 is that #3 in-
cludes the cost of the parallel checkpointing protocol (i.e., con-
structing the recovery line, logging late messages, determining the
early messages, and termination) and the cost of saving the appli-
cation state to local disk, while #2 includes only the cost of the
parallel checkpointing protocol.

These results show that the cost of taking a checkpoint is small.
To put these results into perspective, if we scale the running times
appropriately, then we see that the maximum overhead when check-
pointing once an hour is 1.11% and the maximum overhead when
checkpointing once a day is 0.05%.

In some cases, taking checkpoints actually improves the perfor-
mance of the fault-tolerant application. One possible explanation
for this is that the overheads that we are measuring are within range
of measurement error. If this is the case, then the cost of check-
pointing these applications is essentially zero. Further experiments
will determine whether or not this is the case.

As we mentioned earlier, Configuration #3 measures the cost of
writing the application state to each node’s local disk. In a produc-
tion system, writing checkpoint files to local disk does not ensure
fault-tolerance, because when a node is inaccessible, its local disk
usually is too. However, writing directly to a non-local disk is usu-
ally not a good idea because the network contention and communi-
cation to off-cluster resources can add significant overhead. A bet-
ter strategy that is used by some systems [18] is for the application
to write checkpoints to a local disk and then for an external dae-
mon to asynchronously transfer these checkpoints from local disk
to an off-cluster disk. Very often a second, possibly lower perfor-
mance, network is used to avoid contention with the application’s
messages.

At present, we have not implemented such a daemon, so we can-
not measure its cost. However, it is worth noting that any parallel
checkpointing system will require such a system, so this is a source
of overhead that will be present in all these systems.

6.4 Discussion



Configurations
Code Class Procs #1 #2 #3

(Nodes) Runtime Runtime Absolute Runtime Absolute
CG D 128 (64) 1787.54 1806.51 18.97 1827.19 39.65
SP D 81 (81) 2517.75 2519.76 2.01 2526.08 8.33

144 (72) 2218.38 –∗ –∗ 2258.38 40.00
LU D 64 (64) 2114.38 2136.39 22.01 2125.26 10.88

128 (64) 1904.56 1875.81 -28.75 1861.70 -42.86
∗These results were unavailable at the time of submission

Table 4: Runtimes on Velocity 2 with checkpoints

Configurations
Code Class Procs #1 #2 #3

(Nodes) Runtime Runtime Absolute Runtime Absolute
LU D 64 (??) 1707.78 1705.21 -2.57 1722.81 15.03

256 (??) 466.37 461.44 -4.93 471.87 5.50
1024 (256) 145.69 147.24 1.55 152.24 6.55

Table 5: Runtimes on Lemieux with checkpoints

The experimental results reported here are preliminary and for
the final version of this paper, we plan to include results from ad-
ditional, larger applications. While theC3 system has been suc-
cessfully used to checkpoint and restart sequential versions of all
of the NAS codes, as reported in Table 1, we are still debugging
some of the parallel versions. We will report on all of the parallel
performance of all of the NAS codes in the final version.

Also, we have used our system to add checkpointing to the
SMG2000 code from the ASCI Purple benchmarks [6]. The re-
sulting code runs successfully, but we have not reported its results
because we are still debugging its restart.

For the final version of this paper, we also plan on reporting re-
sults for High Performance LINPACK [15]. HPL is the benchmark
used for computing performance for the Top500 Supercomputer
Sites and is extremely scalable.

7. RELATED WORK
While much theoretical work has been done in the field of dis-

tributed fault-tolerance, few systems have been implemented for
actual distributed application environments.
High-availability Systems In the distributed systems community,
fault-tolerance has been studied mainly in the context of ensuring
zero downtime for critical systems such as web-servers and air-
traffic controller systems [13]. The problem of tolerating faults in
the context of high-performance computing is fundamentally dif-
ferent in nature because the objective is to minimize the expected
time to completion of a program, given some probability of failure.
Distributed systems techniques, such as fail-over or replication of
computations, are not useful in this context because they reduce the
resources available to the computation between failures. Alvisi et
al [9] is an excellent survey of techniques developed by the dis-
tributed systems community for recovering from fail-stop faults.
System-level CheckpointingCondor is used widely for sequential
system-level checkpointing on Unix systems [14]. The CoCheck
system [17] provides the functionality for the coordination of dis-
tributed checkpoints, relying on Condor to take system-level check-
points of each process. In contrast to our approach, CoCheck is in-
tegrated with its own MPI implementation, and assumes that collec-
tive communications are implemented as point-to-point messages.
We believe that our ability to inter-operate with any MPI implemen-
tation is a significant advantage. A blocking coordinated system-

level checkpointing solution is described in [18].
Message-loggingThere is an entire class of recovery protocols
calledmessage-logging protocols, of which the Manetho system [8]
is an exemplar. In message-logging, processes that survive a hard-
ware failure are not rolled back; instead, only the failed processes
are restarted, and surviving processes help them recover by replay-
ing messages they sent to the restarted processes before failure.

Manetho uses an approach called causal message-logging. Be-
cause a Manetho process logs both the data of the messages sent
and the non-deterministic events that these messages depend on,
the size of those logs may grow very large if used with a pro-
gram that generates a high volume of large messages, as is the case
for most scientific programs. While Manetho can bound the size
of these logs by occasionally checkpointing process state to disk,
programs that perform a large amount of communication would
require very frequent checkpointing to avoid running out of log
space. Furthermore, since the system requires a process to take a
checkpoint whenever these logs get too large, it is not clear how to
use this approach in the context of application-level checkpointing.
Note that although our protocol, like the Chandy-Lamport protocol,
also records message data, recording happens only during check-
pointing, and not during normal execution. Another difference is
that Manetho was not designed to work with any standard mes-
sage passing API, and thus does not need to deal with the complex
constructs – such as non-blocking and collective communication –
found in MPI.
Manual Application-level Checkpointing Several systems have
been developed to make ALC easier to program. The Dome (Dis-
tributed Object Migration Environment) system [3] is a C++ library
based on data-parallel objects. SRS [19] allows the programmer to
manually specify the data that needs to be saved as well as its distri-
bution. On recovery the system uses this information to recover the
program’s state and redistribute the data on a potentially different
number of processors.
Automatic Sequential Application-level CheckpointingPorch [16]
supports portable ALC for programs written in a restricted sub-
set of C. It generates runtime meta-information that provides size
and alignment information for basic types and layout information,
which allows the checkpointer to convert all data to a universal
checkpoint format. The APrIL system [10] uses techniques sim-
ilar to Porch, but uses heuristic techniques for determining the type



of heap objects.
Reducing Checkpoint SizeBeck and Plank [2] used a context-
insensitive live variable analysis to reduce the amount of state infor-
mation that must be saved when checkpointing. The CATCH [12]
system uses profiling to determine the likely size of the checkpoints
at different points in the program. A learning algorithm is then used
to choose the points at which checkpoints should be taken so that
the size of the saved state is minimized while keeping the check-
point interval optimal.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have shown that application-level non-blocking

coordinated checkpointing can be used to add fault-tolerance to
C/MPI programs. We have argued that existing checkpointing pro-
tocols are not adequate for this purpose and we have developed a
novel protocol to meet the need.

We have presented a system that can be used to transform C/MPI
programs to use our protocol. This system uses program transfor-
mation technology to transform the application so that it will save
and restore its own state. We have shown how the state of the un-
derlying MPI library can be reconstructed by the implementation
of our protocol.

The protocols presented in this paper offer significant improve-
ments and enhancements to those presented in [4] and [5]. These
changes came as a result of our first complete implementation of
the protocols. The performance results presented in this paper show
that our implementation delivers scalable performance on two very
different state-of-the-are supercomputing systems.

The ultimate goal of our project is to provide a highly efficient
checkpointing mechanism for MPI applications. One way to mini-
mize checkpoint overhead is to reduce the amount of data that must
be saved when taking a checkpoint. Previous work in the compiler
literature has looked at analysis techniques for avoiding the check-
pointing of dead and read-only variables [2]. This work focused
on statically allocated data structures in FORTRAN programs. We
would like to extend this work to handle the dynamically allocated
memory in C/MPI applications. We are also studying incremental
checkpointing approaches for reducing the amount of saved state.

Another powerful optimization is to trade off state-saving for re-
computation. In many applications, the state of the entire compu-
tation at a global checkpoint can be recovered from a small subset
of the saved state in that checkpoint. The simplest example of this
optimization is provided by a computation in which we need to
save two variablesx andy. If y is some simple function ofx, it is
sufficient to savex, and recompute the value ofy during recovery,
thereby trading off the cost of saving variabley against the cost of
recomputingy during recovery. Real codes provide many oppor-
tunities for applying this optimization. For example, in protein-
folding usingab initio methods, it is sufficient to save the positions
and velocities of the bases in the protein at the end of a time-step
because the entire computation can be recovered from that data.
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