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Abstract

Thefile-bundlecaching problem arises frequently in sci-
entific applications where jobs need to process several files
simultaneously. Consider a host system in a data-grid that
maintains a staging disk or disk cache for servicing jobs of
file requests. In this environment, a job can only be ser-
viced if all its file requests are present in the disk cache.
Files must be admitted into the cache or replaced in sets
of file-bundles,, i.e. the set of files that must all be pro-
cessed simultaneously. In this paper we show that tradi-
tional caching algorithms based on file popularity measures
do not perform well in such caching environments since they
are not sensitive to the inter-file dependencies and may hold
in the cache non-relevant combinations of files. We present
and analyze a new caching algorithm for maximizing the
throughput of jobs and minimizing data replacement costs
to such data-grid hosts. We tested the new algorithm us-
ing a disk cache simulation model under a wide range of
conditions such as file request distributions, relative cache
size, file size distribution, etc. In all these cases, the results
show significant improvement as compared with traditional
caching algorithms.

1 Introduction

A data-grid [2] defines an environment of the GRID
model of computing that encompasses the management of
large numbers of data sets that result from current scientific
experiments and observations and are also likely to result in
future scientific research. Specific examples of such collab-
oratory research activities are the Particle Physics Data Grid
(PPDG) [5] and the Earth Science Grid (ESG) [4]. The gen-
eral model of computing within these research communities
can be characterized as:

• having globally geographically dispersed locations
of experimental laboratories and/or observatories that
constitute widely distributed and heterogeneous data
sources;

• maintaining different models of storage resources, e.g.,
Mass Storage Systems (MSS) from different vendors
and Storage Area Networks (SANs).

• Computing on high performance computing systems
that are located at sites far removed from the sites of
the researchers and data resources.

The applications in these domains, typically referred to
as data intensive applications, require not only high per-
formance computing resources, but timely high speed ac-
cess to the data resources (generally maintained in units of
data files), that are needed at the computational resources.
To access these large heterogeneous distributed data over
wide area network, there is the need to implement strate-
gies that significantly improve the data access performance
under different models of computing. Techniques for effi-
cient and optimal data access in these environments involve
implementation of good file request schedules, application
of optimal file caching (or data staging), usage of strategic
data replication and pre-fetching, and application of effi-
cient cache and replica replacement algorithms.

Caching techniques, in particular, have been used gen-
erally to improve the performance of storage hierarchies in
computing systems. In the data-grid environment, special-
ized middle-ware services, such as Storage Resource Man-
ager (SRM) [12] and Storage Resource Brokers(SRB) [11],
provide the intermediary services for caching or staging
files required by data intensive jobs. An SRM provides
service by holding, for some duration of time, data that
are requested by multiple clients, providing a uniform con-
sistent interface to clients making file requests to hetero-
geneous MSS, masking intermittent link failures and data
transfer disruptions that would otherwise have to be han-
dled by clients. The file caching activities of an SRM and
cache replacement are the main issues we focus on in this
paper.

A Storage Resource Manager (SRM), runs on a host, or
a cluster of machines, that receives job requests submitted
to a data-grid. Each file can be very large (of the order of
few to tens of gigabytes), and typically resides in an MSS
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that is either local or remote. An SRM maintains a large ca-
pacity disk cache, of the order of hundreds of gigabytes to
tens of terabytes. The disk cache is used to retain those files
that are read from or are to be written to Mass Storage Sys-
tems and is shared by multiple jobs. An SRM’s host that
consists of a cluster of machines may have its disk cache
distributed over independent disks of the cluster nodes. The
use of a storage resource manager is analogous to the use
of a proxy-server and/or a reverse proxy in web-caching ex-
cept that SRMs deal with very large data files. In particu-
lar, a large number of file requests may be batched in one
job. As a result, SRMs contend with file accesses that in-
cur significant long delays in accessing and processing files
over wide area networks. The notion of a job being pro-
cessed at an SRM involves simply migrating the data that
are requested to the computational resource, possibly with
some transformations applied. The transformation carried
out may simply be a filtering process that restricts the data
to the subset that satisfies some query condition. Similar
related services are rendered by a Storage Resource Broker
(SRB). In general, the operation of an SRM is governed by
a set of policies such as thethe job service (or scheduling)
policy, the file caching policy,and thecache replacement
policy.

1.1 Problem Definition and Motivating Examples

We address the problem of cache replacement for disk
caches, where replacements occur in file-bundles, in the
context of an SRM. The result is equally applicable to stag-
ing disks of mass storage systems and storage area networks
(SAN). Consider a sequence of jobs that make requests for
files at an SRM where each job is comprised of file requests.
The requests are serviced in some order:first come first
serve (FCFS), shortest job first (SJF), etc. A cacheC of
some fixed sizes(C), is available for storing a subset of all
the requested files. A job is served only if all the files that
it needs are already in the cacheC, otherwise the requested
files of the job must be retrieved from a Mass Storage Sys-
tem, located either locally or at a remote site, and at a much
higher cost in time, intoC. The problem being addressed
here is the following. Given that each job requires all its
requested files to be in cache before service begins, what is
an optimal cache replacement policy to achieve the maxi-
mum throughput, or alternatively minimize the volume of
data transfers, under a limited cache space.

There are many papers [1, 6, 8, 13, 14, 16] that describe
and analyze caching and replacement policies. The main
concern of most of these efforts is the maintenance of apop-
ular set of files in the cache in order to maximizehit-ratios
and minimize expected access costs for files requested but
not found in the cache. The assumption used by these works
is that each request is associated with exactly one file. The

problem discussed in this paper is different and more gen-
eral than these earlier works. In our case each arriving re-
quest may need to load multiple files simultaneously into
the cache rather then one file at a time.

This work is motivated by file caching problems arising
in scientific and other data management applications that in-
volve multi-dimensional data [8, 15]. The main common
characteristic of such applications is that they deal with ob-
jects that have multiple attributes (10 to 500), and often par-
tition the data such that values for each attribute (or a group
of attributes) are stored in a separate file (vertical partition-
ing). Subsequent analysis and data mining jobs that operate
on this data often require that several of these attributes are
compared or combined together for further computation. In
relational database terminology, this is equivalent to com-
puting a multi-way join. An m-way join requires thatm
files must be in cache at the same time making it necessary
to make cache loading and replacement decisions based on
file-bundles rather then a single file at a time.

One example of an application where this problem arises
is High Energy and Nuclear Physics (HENP) data analysis.
The data sources are from experiments that consist of ac-
celerating subatomic particles to nearly the speed of light
and forcing their collision. A small part of the particles col-
lide head on and produce a large number of sub-particles.
Each such collision (called an event) has multiple attributes
such as the total energy of the event, momentum, number
of particles of each type etc. Typically the values for at-
tributes are stored in separate files where each file stores
values of an attribute across multiple events. These files are
subsequently analyzed by physicists who may wish to look
at several attributes simultaneously in order to select some
subset of ”interesting events.

Another example of this situation is simulation programs
of climate modeling. These programs produce multiple
time steps where each time step may have many attributes
such as temperature, humidity, three components of wind
velocity etc. For each attribute, its values across all time
steps are stored in a separate file. Subsequent analysis
and visualization of this data requires matching, merging
and correlating of attribute values from multiple files (see
Fig. 1).

A third example of simultaneous retrieval of multiple
files comes from the area of bit-sliced indices for query-
ing high dimensional data [15]. In this case, a collection
of N objects (such as physics events) each having multi-
ple attributes, is represented using bitmaps in the follow-
ing way. The range of values of each attribute is divided
into sub-ranges (also called bins). A bitmap is constructed
for each sub-range with a 0 or 1 bit indicating whether an
attribute value is in the required sub-range. The bitmaps
(each consisting ofN bits before compression) are stored in
multiple files, one file for each sub-range of an attribute.
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Figure 1. Illustration of vertical partitioning of
climate simulation data

Range queries are then answered by performing boolean
operations among these files. Again, in this case all files
containing bit slices relevant to the query must be read si-
multaneously to answer the query.

The solution to the problem discussed in this paper
serves as a fundamental building block in the design of ef-
ficient cache service policies. Given an available space in
the cache and a collection of requests currently waiting in
the admission queue, the goal is to load files into the avail-
able space in the cache to maximize the number of requests
that can be serviced and consequently minimize the average
response time of the jobs. Alternatively, since the cost (in
time) to retrieve files into the cache is unusually high, we
can solve to minimize the average volume of data read into
the cache per request for a given workload trace.

1.2 Performance Metrics

Cache replacement algorithms are key to the implemen-
tation of a good caching system. Not only should this be
evaluated in an almost negligible time relative to the time
it takes to cache an object, but it should optimize, in some
sense, some measure of a performance metric. The typical
performance metrics in cache replacement algorithms are
thehit ratio, themiss ratio, thebyte hit ratio, and thebyte
miss ratio. A good cache replacement policy maximizes the
hit ratio (or minimizes themiss ratio) or alternatively max-
imizes thebyte hit ratio(or minimizesbyte miss ratio).

Consider a workload of a sequence ofN jobs R =
〈r1, r2, . . . rN〉, where each jobr i = { fi}makes a request for
only one file fi . We denote the size of the filefi by s( fi).
Of the N requests let the set of files found in the cache be
H whereh is its cardinality, i.e.,h = |H|. The hit ratioρhit ,
is defined asρhit = h/N. The miss ratioρmiss is defined as
1−ρhit = 1−h/N. The byte hit ratioρbyte−hit is defined as
ρbyte−hit = (∑i∈H s( fi))/(∑ j∈Rs( f j )) and the byte miss ratio
ρbyte−miss is defined as 1−ρbyte−hit .

Numerous techniques have been proposed for optimal
cache replacement all of which are geared towards either
maximizing thehit ratio or thebyte hit ratio. These tech-
niques generally retain in the cache either the most fre-
quently referenced objects or the most recently referenced
objects. The former effectively evicts the least frequently
used object (i.e., the LFU-policy), the latter evicts the least
recently used object (i.e., the LRU-policy). Algorithms in
web-caching try to minimize thebyte miss ratio[1, 14].

Our algorithms are based on an analysis of the problem
that maximizes the throughput of jobs, i.e., number of jobs
serviced per unit time, while also minimizing thebyte miss
ratio. We compare our results with some earlier works on
caching, using thebyte miss ratioas our performance metric
for most of the experiments. We also show how the results
are impacted when queues of waiting jobs are taken into
consideration.

1.3 Main Results

The main results of this paper are:

1. Identification of a new caching problem, that arises fre-
quently in scientific applications that deal with verti-
cally partitioned files.

2. Derivation of a new cache replacement algorithm (Opt-
FileBundle), that is simple to implement. Unlike, ex-
isting cache replacement algorithms in the literature,
we track thefile-bundlesthat were requested in the past
to determine what combinations of files should be re-
tained or evicted from the cache. This results in a much
lower cache miss-ratio under a wide range of condi-
tions tested.

3. Results of extensive simulation runs that compare the
OptFileBundlealgorithm withLandlord[16] cache re-
placement consistently show thatOptFileBundlegives
a much lower average volume of data transfers per re-
quest with file requests observing either Uniform or
Zipf distributions.

4. The heuristic algorithmOptCacheSelectused byOpt-
FileBundleis an approximation algorithm to an inter-
esting combinatorial problem whose exact solution is
NP-Hard. For this algorithm, we derive tight bounds
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from the optimal solution and show that the value of
the solution produced is a factor of at most(1−e−1/d)
from the optimal one whered is the maximum number
of requests that use the same file.

The rest of the paper is organized as follows. In Sec-
tion 2 we present the application environment in the context
of a data-grid. In Section 3, a greedy heuristic algorithm,
called OptFileBundleis presented. The theoretical foun-
dation of theOptFileBundlealgorithm is presented in Sec-
tion 4 where characteristics of the algorithm, e.g., its bounds
from the optimal solution, are discussed. In Section 5, a
simulation of theFile-Bundle Cachingis presented using
theOptFileBundlecaching algorithm. The performance of
our proposed algorithm is compared with one of the best
performing existing caching algorithms that does not use
file-bundles in its replacement decisions. The results of the
experiments carried out are also discussed in this section.
We conclude in Section 6 with summary and directions for
future work.

2 Data-Grid and Storage Resource Man-
agers

Distributed scientific applications anticipated in the next
several years would require access to large amounts of data
of the order of hundreds of terabytes to tens of petabytes.
The envisioned model of managing and accessing the data
is through what is currently referred to as data grids where
the data repositories are maintained in mass storage systems
and are accessed from different locations by large commu-
nities of scientists. The term data-grid generally imply any
distributed network infrastructure of storage resources and
repositories of huge amounts of data coming from scien-
tific experiments in the following disciplines: High Energy
Physics, Biology, Earth Observation Systems and Astro-
physics. The idea is to support scientific explorations that
require intensive computations and analyses of large-scale
shared databases across widely distributed scientific com-
munities.

The role of an SRM is depicted in Figure 2. Its primary
function is both as a proxy server and a reverse proxy server
according to their specialized usage. For example a disk re-
source manager (DRM), manages disk resource only while
a hierarchical resource manage (HRM) manages data flow
into and out of Mass Storage Systems. In either case, it
attempts to deliver, in a timely manner to a computational
resource, the data being requested. The file requests are
batched in the form of jobs and the service rendered is pre-
scribed by either the job or the policy of the SRM. There
are different models for servicing jobs.

One File at a Time: This model of service requires that,
for each job, only one of the number of possible files
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Figure 2. An SRM in the Context of a Data-Grid

being requested needs to be serviced at a time and this
could be in some defined order or in any order.

OneFile-Bundle at a Time: The termFile-Bundle refers
to the set of files that a job expects to be available in
cache for it to run. The job may actually by consid-
ered as composed of tasks (or sub-jobs), where each
task requests a file-bundle and the job completes after
executing all its tasks. The number of files in a bundle,
i.e., thefile-bundlesize, varies from bundle to bundle.

An optimal service policy for the first model of service
was addressed in [8]. We consider here theFile-Bundle at a
Timewhen jobs are percieved as a sequence of independent
tasks. Byoptimal servicewe mean one that either maxi-
mizes the throughput of jobs or minimizes the average vol-
ume of data replaced in the cache per request.

2.1 Related Work

Storage resource managers and component prototypes
are already in service [12, 11]. Techniques for transferring
large data files and database objects over wide area net-
works have been the subject of extensive research studies
for many years in distributed and federated databases [10].
One major idea resulting from these early works is that
improved response times are achieved with extensive data
replication, caching and data staging [13, 9] on proxy
servers. A close analogous environment from which one
could draw some experience and relate it to thefile-bundle
problem is in web-caching. For example, web-caching [1,
14], address similar cache replacement policies except that
the scale of data sizes and transfer delays considered are on
a much smaller scale than those in a data-grid environment.
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3 A Caching Algorithm Based on File Bun-
dles

The main idea behind our caching strategy is to load the
cache with a set of files such that the probability that an
arriving request can find all the files it needs in the cache is
maximized. We will illustrate the difference between this
strategy and caching policies based on file popularity with
a small example shown in Fig. 3. For a given cache state
and a requestr, we will say that the cache supportsr or
alternatively thatr is a request-hit if all files needed byr are
found in the cache.

Example: Let us assume that we have six possible re-
questsr1, r2, ..., r6 each associated with one or more
files fromF = f1, f2, ... f7 as shown by the lines con-
necting requests to their associated files in Fig. 3. Fur-
ther, let us assume that all files are of the same size,
the cache can hold only three files, and all six requests
are equally likely,i.e. probabilty of16 that any of the
requests is the next one to arrive. Each row in Ta-
ble 1 shows the probablity of the event that a file is
requested by a random request. Note that the sum of
probabilities is more than 1 as the events are not mu-
tually exclusive. We note that the most popular file is
f5 as 4 requests out of the six possible requests need
it. This is followed by filesf6 and f7 each needed by 3
of the requests. Each row in Table 2 shows request-hit
probabilities,i.e., the probablity that a random request
will find all the files it needs in the cache under some
cache content. Only 5 cases of cache content out of
the 35 cases (possible ways of choosing 3 files from 7)
are shown. We note that keeping the 3 most popular
files (row 1 of the table) does not lead to the largest
request-hit probability. The best request-hit probabil-
ity is represented in the cache of Fig. 3 and by the
second row of the table with a request-hit probability
of 1

2 as keeping filesf1, f3, f5 in the cache results in a
request-hit for 3 out of the six possible requests.

The previous example illustrates the need for caching
strategies that take into account request-hits rather thansim-
ple file-hit based algorithms. We will now proceed to de-
scribe our caching algorithm.

At the heart of our caching strategy is an algorithm called
OptCacheSelectthat determines the files that must be re-
placed. It takes into account file sizes and request type dis-
tributions and will be described in more detail below. The
result produced byOptCacheSelectis a new set of files
loaded into the cache that attempt to maximize request-
hit probability. The algorithm is a greedy heuristic that
attempts to achieve a good approximation to an NP-hard
problem that is a generalization of the Knapsack problem.

File No of File request
Requests probability

f1 2 1/3
f2 1 1/6
f3 2 1/3
f4 1 1/3
f5 4 2/3
f6 3 1/2
f7 3 1/2

Table 1. File request probabilities

Cache contents Requests Request-hit
Supported probability

f5,f6,f7 r6 1/6
f1,f3,f5 r1,r3,r5 1/2
f1,f5,f6 r3 1/6
f3,f5,f6 r5 1/6
f1,f2,f3 - 0

Table 2. Request-hit probabilities

r1 r6r5r4r3r2

f1 f7f6f5f4f3f2

f1 f3 f5Cache

Requests

Files

Figure 3. Example of file selection

Some theoretical results about the complexity of the prob-
lem and analysis of the effectiveness of the approximation
are given in Section 4

The OptCacheSelectalgorithm gets as its input a data
structureL(R) containing full information about a collec-
tion of all historical requestsR. The data structureL(R)
is initially empty and gets updated with each request pro-
cessed. For lack of space we will not present here the ex-
act implementation ofL(R), which is basically a hash-table
with pointers to other structures, but rather describe its con-
tents. For each requestr i ∈R that was served by the system
we store inL(R) the following information:

• An associated valuev(r i). In our current implementa-
tion v(r i) is simply a counter incremented by 1 each
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time this request appeared so far, but it can also reflect
request priority or some other measure of importance.

• the setF(r i) of files requested byr i and the size of each
such file.

We need the following additional definitions in the de-
scription of the algorithm. We denote the size of a cache
C by s(C). For a file fi , let s( fi) denote its size and let
d( fi) represent the number of requests served by it. The
adjusted size of a filefi , denoted bys′( fi), is defined as
its size divided by the number of requests it served, i.e.,
s′( fi) = s( fi)/d( fi).

The adjusted relative value of a request, or simply its rel-
ative value,v′(r j), is its value divided by the sum of adjusted
sizes of the files it requests, i.e.

v′(r j ) =
v(r j )

∑ fi∈F(r j ) s′( fi)

The algorithmOptCacheSelect(L(R),S(C)) attempts to
select an optimal set of files that fits in the cache in order to
serve a subset ofRwith the highest total value. It does so by
servicing requests in decreasing order of their adjusted rela-
tive values skipping requests that cannot be serviced due to
insufficient space in the cache for their associated files. The
final solution is the maximum between the value of requests
loaded and the maximum value of any single request. The
justification for the comparison performed in this latter step
is given in Appendix A. The intuition behind usingv′(r j ) as
a measure for ranking requests is thatv′(r j ) increases with
an increase in request popularity and degree of sharing of
its files with other requests. On the other hand, it decreases
when the amount of cache resources used byF(r j ) grows.

Note: In practice we can even do better by recomputing
v′(r j) for all requestsr j not selected yet (and resorting) fol-
lowing Step 2. This is done by setting to 0 the size of files
in F(r j) that are already in the cache. The reason for this is
that these files will not incur any additional cache resources.
This leads to an increase in adjusted value for requests that
share files with the last selected request.

We are now in a position to describe the main steps of our
caching algorithm,OptFileBundle, as illustrated in Fig. 4.
Initially the cache is empty, whenever a new requestrnew

arrives all its missing files (files requested by it but not cur-
rently in the cache) are loaded into the cache (Fig. 4a). At
some point the cache fills up (Fig. 4b) and a caching re-
placement decision must be taken when a new request,rnew,
arrives.

All files requested byrnew that are not currently present
in the cache must be must loaded into the cache and some
other files currently in the cache must be evicted in order
to make space for them (Fig. 4c). We reserve sufficient
space for the new files requested byrnew and then call on
algorithmOptCacheSelectdescribed above to decide on the

input : A data structureL(R) as described
above and a cacheC of sizes(C)

output : The solutionG - a subset of the
requests inR whose files must be
loaded into the cache.

Step 0: /* Initialize */
G← φ; //set of requests selected
s(C′)← s(C) ; // s(C′) keeps track of unused
cache size
Step 1: Sort the requests inR in decreasing or-
der of their relative values and renumber from
r1, . . . , rn based on this order
Step 2:
for i← 1 to n do

if s(C′)≥ s(F(r i)) then
Load the files inF(r i) into the cache
s(C′)← s(C′)−s(F(r i)) ; // update un-
used cache size
G← G ∪ r i ; // add requestr i to the
solution

end
end
Step 3:Compare the total value of requests inG
and the highest value of any single request and
choose the maximum.

Algorithm 1: Algorithm OptCacheSelect
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Figure 4. The steps of algorithm OptFileBun-
dle

optimal files that must be maintained in the remaining part
of the cache to maximize request-hit probability (Fig. 4d).

The algorithmOptFileBundleworks as follows:

4 Complexity Analysis of the Algorithms

As OptCacheSelectis attempting to maximize request-
hit probability and the value of each request approximates
its populatity it follows that the fundamental problem that
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input : A new requestrnew, a data structure
L(R) including information about
requestsR = {r1, . . . rn}, their val-
uesv(r j), the setsF(r i), a cacheC
of size s(C) ,F(C) the set of files
currently in the cache, and the sizes
s( fi) of all files requested by mem-
bers ofR.

output : The solutionG - a set of files that
must be loaded intoC

Step 1:ComputeS, the amount of space needed
by files in F(rnew) that are not currently in the
cacheC
Step 2: Call OptCacheSelect(L(R),s(C)-S)and
store its solution inF(Opt)
Step 3: Load into the cacheC the files in
F(Opt)\F(C)
Step 4: Update the data structureL(R) with all
relevant information aboutrnew

Algorithm 2: Algorithm OptFileBundle

theOptCacheSelectalgorithm is trying to solve can be pre-
sented as follows:

Given a collection of requestsR= {r1, r2, . . . , rn}, each
with associated valuev(r i), defined over a set of filesF =
{ f1, f2, . . . , fm}, each with sizes( fi) and a constants(C),
find a subsetR′ of the requests,R′ ⊆ R, of maximum total
value such that the total size of the files needed byR′ is at
mosts(C).

We will call this the File-Bundle Caching (FBC) prob-
lem. It is easy to show that in the special case that each
file is needed by exactly one request theFBC problem is
equivalent to the well-known knapsack problem. The cache
C is the knapsack and its size,s(C) represents the knapsack
capacity, each request corresponds to an item of valuev(r i)
and weight equal to the total size of the files needed byr i ,
i.e., size ofF(r i). It is more interesting to note that theFBC
problem is NP-hard even for the restricted case that each re-
quest has exactly 2 files of equal size. This is done by reduc-
tion from the Densek−subgraph (DKS) problem [3]. An
instance of the DKS problem is defined as follows: Given
a graphG = (V,E) and a positive integerk, find a subset
V ′ ⊆ V with |V ′| = k that maximizes the total number of
edges in the subgraph induced byV ′. Given an instance of a
DKS problem, the reduction to an instance ofFBC is done
by making each vertexv ∈ V correspond to a filef (v) of
size 1. Each edge(x,y) in E corresponds to a request for
two files f (x) and f (y). A solution to theFBC instance
with a cache of sizek corresponds to a solution to the in-
stance of the DKS where thek files loaded into the cache
correspond to vertices of the subgraphV ′ in the solution of

the DKS instance. We also note that any approximation al-
gorithm for theFBC problem can be used to approximate a
DKS problem with the same bound from optimality. Cur-
rently the best-known approximation for the DKS problem
[3] is within a factor ofO(|V|1/3−ε) from optimum for some
ε > 0. It is also conjectured in [3] that an approximation to
DKS with a factor of(1+ ε) is NP-hard. Let us defined as
the maximum number of requests that need the same file.
For example in the system described in Fig. 3d = 4 as f5 is
used by 4 different requests. In Appendix A we prove that
the total value of the requests loaded byOptCacheSelectis
within a factor of at most12(1−e−1/d) from the value of an
optimal solution. This can be stated as:

Theorem 4.1. The total value of requests supported by the
cache as loaded by algorithmOptCacheSelectis within a
factor of 1

2(1−e−1/d) of the optimal value of v(OPT).

We can show that methods similar to the ones used in
[7] can improve this bound by a factor of 2 to(1−e−1/d)
at higher computational cost. This is done by construct-
ing a candidate solution consisting of selectingk requests
for some small fixedk (k = 2 is a valid choice) and com-
plementing it by runningOptCacheSelecton the remaining
space in the cache and remaining requests. Iterating this
procedure over all possible choices ofk requests and select-
ing the solution with highest value among all these candi-
date solutions results in the above improved bound.

5 The Simulation Model and its Environment

We designed a simulation model to explore how theOpt-
FileBundle algorithm compares with theLandlord algo-
rithm [1, 16]. For that purpose, we implemented a version
of Landlordwhere each job makes a request for a set of files
rather than a single file as in the original implementation.
The implementation is described below in Algorithm 3. The
simulation program,cacheSim, was written inC++ with
extensive use of STL. Using a cluster of two 1.6 GHz dual
Opterons with 2GB of RAM each, we ran a large number
of experiments to study the behaviour of the proposed al-
gorithms for different combinations of parameters. These
experiments consumed over 1000 hours of CPU time. The
main performance metric used is thebyte miss ratioand this
was observed for different workload distributions, and vary-
ing cache sizes. We note here that we mesaure cache sizes
by the number of requests that can be accommodated in the
cache. This is a slight departure from the general method of
reporting results in which the absolute cache size is speci-
fied.
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input : A new request,rnew, a cacheC of
sizes(C), F(C). the set of files cur-
rently in cache.

output : The solutionG - a subset of the files
in F(C) that must be evicted from
the cache to make room forrnew.

Step 0: Maintain a value credit[f] ∈ [0,1] with
each itemf in the cache.
Step 1:ComputeS, the amount of space needed
by files in F(rnew) that are not currently in the
cacheC.
Step 2: ComputeF(C′) = F(C)\F(rnew), the
subset of files in cacheC which are not requested
by rnew.
Step 3:
while s(rnew) > s(C)−s(F(C)) do

for f ∈ F(C′) do
Find the minimum credit;

end
Decrease all credits by the minimum credit;
Evict from the cache the subset of itemsf
such that credit[f] = 0;

end
Step 4: Bring F(rnew) into the cache and∀g ∈
F(rnew) set credit[g]← 1;

Algorithm 3: Algorithm Landlord

5.1 Workload Characterization

Although file-bundle is the mode of file request in most
data intensive scientific analysis, efforts have not be made
to derive workload traces and logs of caching activities. The
log traces maintained by most scientific centers are mainly
for one file at a time requests. Even in web-caching envi-
ronments, the log traces are still on per file basis.

In the absence of runtime measured workload character-
istics, we constructed a simulated workload consisting of a
given set of jobs, with each job requesting a random num-
ber of files from the pool of available files. The parameters
chosen for our simulated workload are as close as possible
to observed real experiments that log single file requests at
a time. Given a defined cache size, the size of each file was
generated randomly between a minimum size of 1MB and
a maximum size expressed as a percentage of defined cache
size that varied from 1% to 10%. The set of files requested
by each job was chosen randomly from the list of available
files such that the total size of the files requested was smaller
than the available cache size. Each simulation run consists
of submitting a number of jobs (typically 10000) in order to
study the effects of the various parameters.

5.2 Simulation Parameters

There are several parameters that can be varied to ob-
serve different affects on the performance measures. We
describe some of the major ones varied in our simulations:

Request Size:This refers to the total size of files needed
by a request. Assuming a cache of a fixed size, the av-
erage request size determines the number of requests
that can be supported in the cache at any given time.
The more requests that are already in cache, the more
likely that files requested by an incoming job are al-
ready present in cache. Conversely, assuming a fixed
request our results translate to studying the effect of
varying the cache size.

Popularity Distribution: The popularity distribution of
requests for typical workloads is hard to characterize in
the case of file bundles since each request draws a ran-
dom combination of files and two requests are identical
only if their file requests are the same. As a result we
examine the effects of the two extreme distributions: a
purely random distribution, and a Zipf distribution.

Incoming Queue Length: Instead of processing a job in
first come first serve order, one can also consider ag-
gregating the jobs in an admission queue of a given
length, and admit the next job to be processed accord-
ing to some fair effective scheduling algorithm, i.e.,
one that avoidsrequest lockoutbut at the same time
minimizes thebyte miss ratio

Request History Length: As shown in this paper, theOpt-
FileBundlealgorithm determines the optimal requests
to be loaded based on the history of all requests ever
made. Computationally this gets to be expensive as the
number of requests increases. We studied the effect of
truncating the history length to consider only the re-
quests supported by the cache while obtaining the re-
quest popularity and the degree of file sharing from the
global history.

5.3 Simulation Results

We present some results of simulation runs with variabil-
ity in some representative parameters such as varying cache
size and different request distributions.

Computational costs for each iteration are a function of
many factors, but depend strongly on the average number
of requests served by the cache, and for theOptFileBundle
algorithm by the number of requests in the history. As the
number of requests increases, the computational costs be-
come expensive. As such, we studied the effect of truncat-
ing the history length. A variety of approaches were ex-
plored, from arbitrarily limiting the history to the requests
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Figure 5. Effect of varying the history length
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Figure 6. Byte miss-rate for small files.
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Figure 7. Byte miss-rate for large files.
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Figure 8. Effect of varying the cache size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

by
te

 m
is

s 
ra

tio

Number of requests

q1
q2
q5

q10
q100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

by
te

 m
is

s 
ra

tio

Number of requests

q1
q2
q5

q10
q100

(a) Random distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

by
te

 m
is

s 
ra

tio

Number of requests

q1
q2
q5

q10
q100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

by
te

 m
is

s 
ra

tio

Number of requests

q1
q2
q5

q10
q100

(b) Zipf distribution.

Figure 9. Effect of varying the queue length

in the cache to a full history of all requests ever processed
are retained. As shown in Fig. 5, the effects of such trun-
cation are negligible, and subsequent simulations were run
using only the truncated history limited to the requests in
the cache. This approach has the advantage that, for a given
set of parameters, computational costs stay constant per it-
eration.

The first set of experiments performed involved job pop-
ularity distributions. A random (or uniform) popularity dis-
tribution means that every request from the pool of available
requests is equally likely to be requested, whereas Zipf’s
distribution assigns a probability of selection proportional
to 1

i to theith most popular request. In addition, we varied
the size of the incoming requests, implicitly varying the size
of the cache.

Figures 6(a) and 6(b) compare thebyte miss ratiofor ran-
dom and Zipf request distributions. In both cases the cache
replacement based onOptFileBundlealgorithm performs
better than theLandlordalgorithm in the sense that the byte
miss ratio is much lower. The superiority ofOptFileBundle
overLandlord is even more significant for smaller file sizes

as illustrated in Figures 6(a) and 6(b). In the graphs of both
Figures 6 and 7, we also observe that the values of thebyte
miss ratioare much lower for Zipf’s distribution of requests
than for random distributions.

The overall effect of varying the request size (and im-
plicitly the cache size) is shown in Fig. 8. As the cache
is able to serve more requests the amount of data moved
into the cache for each request is smaller. This difference
in the amount of data moved into the cache, betweenOpt-
FileBundlecache replacement andLandlord, is even more
pronounced for Zipf request distribution.

Another set of experiments we performed involved ag-
gregating the requests in a processing queue of varying
length instead of processing each request in first come first
serve (FCFS) order. Once the queue is full, we first serve
the request of highest relative value in the queue using
OptFileBundleand repeat this process on the remaining
requests in the queue until it becomes empty. Fig. 9(a)
and Fig. 9(b) show the effects of varying the processing
queue length from 1 to 100 (shown as q1,q5,..,q100) for
incoming random and Zipf request distributions, respec-
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tively. The effect of queuing incoming requests is minor for
uniform request distribution and the small increase in effi-
ciency doesn’t justify the additional computational costsin
this case. However, the effect of queuing is more significant
for Zipf request distribution as a queue of size 100 creates a
much lowerbyte miss ratioas compared with smaller queue
sizes.

6 Conclusion and Future Work

We have presented thefile-bundle cachingproblem that
arises frequently in scientific applications where jobs need
to process several files simultaneously. Unlike traditional
approaches to disk cache replacement where one file is re-
quested at a time, this problem requires that a set of files
be cached simultaneously at a time. Given such a request
stream, and a defined cache size, the question is which set
of files in the cache are to be replaced so that themiss byte
ratio is minimized. We have presented a greedy heuristic
algorithm,OptFileBundle, that determines the set of files
that are evicted at each request admission. In particular we
showed that at each instance of a request arrival, the set
of files replaced by the algorithm, gives a solution that is
within a factor of(1−e−1/d) of the optimum, whered is
the maximum number of requests per file, ande is the base
of the natural log. The solution has particular significance
in establishing policies for Storage Resource Managers and
similar software that service file requests, e.g., Storage Area
Networks SANs and other storage request brokers in data
intensive grid environments.

We also presented simulation results that support the ef-
ficiency of our cache replacement algorithms. TheLand-
lord cache replacement algorithm is one of best known for
disk file caching. Using themiss byte ratioas the perfor-
mance metric, we compared theOptFileBundleandLand-
lord under varying simulated workloads of request streams
and cache sizes. For both uniform requests streams, i.e.,
one in which every request is equally likely, and Zipf re-
quest distributions we find thatOptFileBundleconsistently
gives a lower value ofmiss byte ratiothan theLandlord.
However, the values of thebyte miss ratioare much lower
for Zipf’s distribution of requests than for random distribu-
tions.

Future work will address the incorporation ofOptFile-
Bundlealgorithm in an actual Storage Resource Manager
systems currently under development at our lab. We intend
to also extend this work to include cases when the process-
ing time (duration of time to retain the file in the cache for
processing) and the transfer times of files into the cache are
also considered. The case of a hybrid execution model is
also of interest where we have a mix of jobs some of which
execute according toOne File at a Timemodel while others
execute according to theFile-Bundle at a Timemodel.
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A Proofs of Lemmas and Theorems

For a set of requestsG, let v(G) denote the total value,
i.e., v(G) = ∑r∈G v(r). Let OPT denote the set of requests
selected by the optimal solution. Letr denote the number
of iterations made by algorithmOptCacheSelect, until a re-
quest fromOPT is rejected because of insufficient space
in the cache. Assuming that during the firstr iterations,
l requests are added toG, we can renumber the requests
{r1, r2, . . . r l , r l+1} so thatr i is theith request added toG and
requestr l+1 is in OPT but rejected byOptCacheSelectdue
to insuffient space in the cache. Letj i denote the iteration
when requestr i is considered

Lemma A.1.
∑

rm∈OPT

s′(Fm)≤ s(C).

Proof. The Lemma claims that the total adjusted size of
files loaded byOPT into the cache is smaller than the the
cache size. LetCopt denote the the set of files loaded into
the cache byOPT.Then

∑
f j∈Copt

s(Fj)≤ s(C).

On the other hand

∑
rm∈OPT

= ∑
f j∈Fm

rm∈OPT

s′(Fj)≤ ∑
f j∈Copt

d( f j )s
′( f j )

= ∑
f j∈Copt

d( f j )
s( f j )

d( f j )
= ∑

f j∈Copt

s( f j ).

The first inequality follows from the fact each filef j in
the cache is accounted for at mostd( f j ) times in the first
two sums. The second inequality follows directly from the
definition ofs′( f j ).

Lemma A.2. After each iteration ji , i = 1,2, . . . , l +1,

v(G)−v(Gi−1≥
s′(Fi)

s(C)
(v(OPT)−v(Gi−1)). (1)

Proof. After iteration j i−1, the maximum adjusted value
among all requests inOPT\Gi−1 (i.e., requests inOPT but

not inGi−1) is at most v(r i
s′(Fi)

, i.e.,

v(OPT)−v(Gi−1) = ∑
rm∈OPT
rm6∈Gi−1

v(rm)

≤
v(r i)

s′(Fi)
∑

rm∈OPT
rm6∈Gi−1

s′(Fm)≤
v(r i)

s′(Fi)
s(C).

The last inequality follows from Lemma A.1. Usingv(r i) =
v(Gi−v(Gi−1) and substituting in 1, the result follows.

Lemma A.3. We have that v(Gl+1 always satisfies the fol-
lowing condition

v(Gl+1)≥

[

1−
l+1

∏
k=1

(

1−
s′(Fk)

s(C)

)

]

v(OPT).

Proof. The proof is by induction. We need to show that

v(G1)≥

[

1−

(

1−
s′(F1)

s(C)

)]

v(OPT) =
s′(F1

s(C)
v(OPT).

(2)

The algorithmOptCacheSelectselects the request with
the maximum adjusted value over all requests, i.e.,

v(r1)

s′(F1)
≥

v(rm)

s′(Fm)
,∀rm ∈OPT.

It follows that

v(r1)

s′(F1)
≥ ∑

rm∈OPT

v(rm)

s′(Fm)
≥

v(OPT)

s(C)
. (3)

The first inequality of (3) uses the fact that forai ,bi > 0,
if a/b≥ai/bi for 1≤ i ≤ n, thena/b≥∑n

i=1ai/∑n
i=1bi . The

second uses Lemma A.1 and the definition ofv(OPT) =

∑rm∈OPT v(rm). Equation 2 follows since by definition
v(G1) = v(r1). For i > 1,

v(Gi) = v(Gi−1)+ (v(Gi)−v(Gi−1)). (4)

Using Lemma A.2 on the right side of equation 4, we get

v(Gi) ≥ v(Gi−1)+
s′(Fi)

s(C)
(v(OPT)−v(Gi−1))

=

(

1−
s′(Fi)

s(C)

)

v(Gi−1)+
s′(Fi)

s(C)
v(OPT).
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Applying the induction hypothesis tov(Gi−1) in the right-
most expression of 5 and rearranging we get

v(Gi)≥

[

1−
i

∏
k=1

(

1−
s′(Fk)

s(C)

)

]

v(OPT);

as required.

Lemma A.4. Let d be the maximum degree of a file F, then

d
l+1

∑
i=1

s′(Fi)≥ s(C).

Proof. The requestr l+1 was rejected because there was not
enough space in the cacheC. Hence we

d
l+1

∑
i=1

s′(Fi) =
l+1

∑
i=1

d ∑
f j∈Fi

s( f j )

d( f j)
≥

l+1

∑
i=1

∑
f j∈Fi

s( f j )≥ s(C).

Lemma A.5. v(Gl+1 satisfies

v(Gl+1)≥ (1−e1/d)v(OPT).

Proof. Using Lemma A.3 and Lemma A.4, we get

v(Gl+1) ≥

[

1−
l+1

∏
k=1

(

1−
s′(Fk)

s(C)

)

]

v(OPT)

≥

[

1−
l+1

∏
k=1

(

1−
s′(Fk)

d∑l+1
i=1 s′(Fi)

)]

v(OPT)

Using the fact that∏l+1
k=1(1−

s′(Fk)

d∑l+1
i=1 s′(Fi)

) is maximized

when alls′(Fk) are equal, i.e.,

s′(Fk) =
∑l+1

i=1

l +1
,∀1≤ k≤ l +1;

we get

v(Gl+1) ≥

[

1−
l+1

∏
k=1

(

1−
1

d(l +1)

)

]

v(OPT)

≥ 1−

(

1−
1

d(l +1)

)l+1

v(OPT)

≥ (1−e1/d)v(OPT).

Theorem 1. The total value of requests supported by the
cache as loaded by algorithmOptCacheSelectis within a
factor of(1−e−1/d) of the optimal value of v(OPT).

Proof. Let the maximum value request bert , with value
v(rt). Thenv(rt)≥ v(r l+1). Consequently,

v(Gl+1)+v(rt)≥ v(Gl )+v(r l+1)= v(Gl+1)≥ (1−e−1/d)v(OPT).

AlgorithmOptCacheSelectproduces a solution that is larger
than the maximum betweenv(Gl ) andv(rt ) (See Step 3 of
the AlgorithmOptCacheSelect). So the value of this solu-
tion is at least 1/2(1−e−1/d)v(OPT).
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