Optimal File-Bundle Caching Algorithms for Data-Grids

Ekow Otoo and Doron Rotem and Alexandru Romosan
Lawrence Berkeley National Laboratory
1 Cyclotron Road, MS: 50B-3238
University of California Berkeley, CA 94720

Abstract e maintaining different models of storage resources, e.g.,
Mass Storage Systems (MSS) from different vendors
Thefile-bundlecaching problem arises frequently in sci- and Storage Area Networks (SANS).

entific applications where jobs need to process several files)))
simultaneously. Consider a host system in a data-grid that ® €omputing on high performance computing systems
maintains a staging disk or disk cache for servicing jobs of that are located at sites far removed from the sites of
file requests. In this environment, a job can only be ser- the researchers and data resources.

viced if all its file requests are present in the disk cache.
Files must be admitted into the cache or replaced in sets
of file-bundles, i.e. the set of files that must all be pro-
cessed simultaneously. In this paper we show that tradi-

The applications in these domains, typically referred to
as data intensive applications, require not only high per-
formance computing resources, but timely high speed ac-
tional caching algorithms based on file popularity measures cess to the data resources (generally mamtgmed In units of

data files), that are needed at the computational resources.

do not perform well in such caching environments since they o

. . : : To access these large heterogeneous distributed data over
are not sensitive to the inter-file dependencies and may hold_ . . ;
) S) wide area network, there is the need to implement strate-
in the cache non-relevant combinations of files. We present

and analyze a new caching algorithm for maximizing the gleds thg_tﬁmgnmcangyllmpfrove the_data_lf_jlccr?s_s perf;)rmafr;ce
throughput of jobs and minimizing data replacement costs unader d ere_nt modets o com_putmg. echniques for etil-
to such data-grid hosts. We tested the new algorithm us_.c|ent and opt.lmal data access in these envwonmentsllnvc_)lve
ing a disk cache simulation model under a wide range of 'mp'eme”t"’.‘“o” of QOOd file request. schedules, appllcathn
conditions such as file request distributions, relativelwac of optlmql f||§ caching (or data. staging), usage .Of strateg.|c
size, file size distribution, etc. In all these cases, theltes data replication and pre-fetching, and application of effi-

o . : " cient cache and replica replacement algorithms.
show significant improvement as compared with traditional : : . :
. : Caching techniques, in particular, have been used gen-
caching algorithms.

erally to improve the performance of storage hierarchies in
computing systems. In the data-grid environment, special-
. ized middle-ware services, such as Storage Resource Man-
1 Introduction ager (SRM) [12] and Storage Resource Brokers(SRB) [11],
i i i provide the intermediary services for caching or staging
A data-grid [2] defines an environment of the GRID fjies required by data intensive jobs. An SRM provides
model of computing that encompasses the management ogryice by holding, for some duration of time, data that
large numbers of data sets that result from current scientifi .o requested by multiple clients, providing a uniform con-
experiments and observations and are also likely to result i gistent interface to clients making file requests to hetero-
future scientific research. Specific examples of such collab geneous MSS, masking intermittent link failures and data
oratory research activities are the Particle Physics Data G ansfer disruptions that would otherwise have to be han-
(PPDG) [5] and the Earth Science Grid (ESG) [4]. The gen- gieq by clients. The file caching activities of an SRM and

eral model of computlng within these research communities -5 he replacement are the main issues we focus on in this
can be characterized as: paper

e having globally geographically dispersed locations A Storage Resource Manager (SRM), runs on a host, or
of experimental laboratories and/or observatories thata cluster of machines, that receives job requests submitted
constitute widely distributed and heterogeneous datato a data-grid. Each file can be very large (of the order of
sources; few to tens of gigabytes), and typically resides in an MSS

that is either local or remote. An SRM maintains a large ca- problem discussed in this paper is different and more gen-
pacity disk cache, of the order of hundreds of gigabytes to eral than these earlier works. In our case each arriving re-
tens of terabytes. The disk cache is used to retain those filegjuest may need to load multiple files simultaneously into
that are read from or are to be written to Mass Storage Sys-the cache rather then one file at a time.

tems and is shared by multiple jobs. An SRM'’s host that This work is motivated by file caching problems arising
consists of a cluster of machines may have its disk cachein scientific and other data management applications thatin
distributed over independent disks of the cluster nodes. Th yolve multi-dimensional data [8, 15]. The main common
use of a storage resource manager is analogous to the usgharacteristic of such applications is that they deal with o
of a proxy-server and/or a reverse proxy in web-caching ex-jects that have multiple attributes (10 to 500), and oftem pa
cept that SRMs deal with very large data files. In particu- tition the data such that values for each attribute (or agrou
lar, a large number of file requests may be batched in oneof attributes) are stored in a separate file (vertical pantit
job. As a result, SRMs contend with file accesses that in-ing). Subsequent analysis and data mining jobs that operate
cur significant long delays in accessing and processing fileson this data often require that several of these attributes a
over wide area networks. The notion of a job being pro- compared or combined together for further computation. In
cessed at an SRM involves simply migrating the data thatrelational database terminology, this is equivalent to com
are requested to the computational resource, possibly withputing a multi-way join. An m-way join requires that
some transformations applied. The transformation carriedfiles must be in cache at the same time making it necessary
out may simply be a filtering process that restricts the datato make cache loading and replacement decisions based on
to the subset that satisfies some query condition. Similarfijle-bundles rather then a single file at a time.
related services are rendered_ by a Storage Resource Broker one example of an application where this problem arises
(SRB). In general, the operation of an SRM is governed by i5 igh Energy and Nuclear Physics (HENP) data analysis.
a set of policies such as tltiee job service (or scheduling) The gata sources are from experiments that consist of ac-
policy, thefile caching policyand thecache replacement cgjerating subatomic particles to nearly the speed of light
policy. and forcing their collision. A small part of the particled-co
lide head on and produce a large number of sub-particles.
1.1 Problem Definition and Motivating Examples Each such collision (called an event) has multiple atteabut
such as the total energy of the event, momentum, number
We address the problem of cache replacement for diskOf particles of each type etc. Typically the values for at-
caches, where replacements occur in file-bundles, in thetributes are stored in separate files where each file stores
context of an SRM. The result is equally applicable to stag- values of an attribute across multiple events. These fikes ar
ing disks of mass storage systems and storage area network&@ibsequently analyzed by physicists who may wish to look
(SAN). Consider a sequence of jobs that make requests fo@t several gttributgs simultaneously in order to selectesom
files at an SRM where each job is comprised of file requests.Subset of "interesting events.
The requests are serviced in some ordfinst come first Another example of this situation is simulation programs
serve (FCFS)shortest job first (SJF)etc. A cacheC of of climate modeling. These programs produce multiple
some fixed siz&(C), is available for storing a subset of all time steps where each time step may have many attributes
the requested files. A job is served only if all the files that such as temperature, humidity, three components of wind
it needs are already in the cadBgotherwise the requested velocity etc. For each attribute, its values across all time
files of the job must be retrieved from a Mass Storage Sys-Steps are stored in a separate file. Subsequent analysis
tem, located either locally or at a remote site, and at a muchand visualization of this data requires matching, merging
higher cost in time, int€. The problem being addressed and correlating of attribute values from multiple files (see
here is the following. Given that each job requires all its Fig. 1).
requested files to be in cache before service begins, whatis A third example of simultaneous retrieval of multiple
an optimal cache replacement policy to achieve the maxi-files comes from the area of bit-sliced indices for query-
mum throughput, or alternatively minimize the volume of ing high dimensional data [15]. In this case, a collection
data transfers, under a limited cache space. of N objects (such as physics events) each having multi-
There are many papers [1, 6, 8, 13, 14, 16] that describeple attributes, is represented using bitmaps in the follow-
and analyze caching and replacement policies. The maining way. The range of values of each attribute is divided
concern of most of these efforts is the maintenancepaifa into sub-ranges (also called bins). A bitmap is constructed
ular set of files in the cache in order to maximizie-ratios for each sub-range with a 0 or 1 bit indicating whether an
and minimize expected access costs for files requested buattribute value is in the required sub-range. The bitmaps
not found in the cache. The assumption used by these workgeach consisting dfl bits before compression) are stored in
is that each request is associated with exactly one file. Themultiple files, one file for each sub-range of an attribute.

Time
step

Tl
T2
T3
T4
T5

Ay Ay

multiple time step climate simulation output

Tn

vertical partitioning into multiple files

@ analysis jobs requesting subsets of the files

Figure 1. lllustration of vertical partitioning of
climate simulation data

Consider a workload of a sequence Mfjobs R =
(r1,ra2,...rn), where each jol; = { fi} makes a request for
only one filef; . We denote the size of the filig by s(f;).

Of the N requests let the set of files found in the cache be
H whereh is its cardinality, i.e.h = |H|. The hit ratiopp,

is defined apnit = h/N. The miss ratipmissis defined as
1—pnit = 1—h/N. The byte hit rati@pye_nit is defined as
Poyte-hit = (Yier S(fi))/ (3 jerS(fj)) and the byte miss ratio
Pbyte missiS defined as + ppyte hit-

Numerous techniques have been proposed for optimal
cache replacement all of which are geared towards either
maximizing thehit ratio or thebyte hit ratia These tech-
niques generally retain in the cache either the most fre-
guently referenced objects or the most recently referenced
objects. The former effectively evicts the least frequentl
used object (i.e., the LFU-policy), the latter evicts thaske
recently used object (i.e., the LRU-policy). Algorithms in
web-caching try to minimize thieyte miss ratid1, 14].

Our algorithms are based on an analysis of the problem
that maximizes the throughput of jobs, i.e., number of jobs
serviced per unit time, while also minimizing thgte miss
ratio. We compare our results with some earlier works on
caching, using thbyte miss rati@as our performance metric
for most of the experiments. We also show how the results
are impacted when queues of waiting jobs are taken into

Range queries are then answered by performing boolean,nsideration.

operations among these files. Again, in this case all files
containing bit slices relevant to the query must be read si-
multaneously to answer the query.

The solution to the problem discussed in this paper
serves as a fundamental building block in the design of ef-
ficient cache service policies. Given an available space in
the cache and a collection of requests currently waiting in
the admission queue, the goal is to load files into the avail-

able space in the cache to maximize the number of requests
that can be serviced and consequently minimize the average ~*

response time of the jobs. Alternatively, since the cost (in
time) to retrieve files into the cache is unusually high, we
can solve to minimize the average volume of data read into
the cache per request for a given workload trace.

1.2 Performance Metrics

Cache replacement algorithms are key to the implemen-

tation of a good caching system. Not only should this be
evaluated in an almost negligible time relative to the time
it takes to cache an object, but it should optimize, in some

sense, some measure of a performance metric. The typical

1.3 Main Results

The main results of this paper are:

1. Identification of a new caching problem, that arises fre-
qguently in scientific applications that deal with verti-
cally partitioned files.

Derivation of a new cache replacement algoritioptt
FileBundlg, that is simple to implement. Unlike, ex-
isting cache replacement algorithms in the literature,
we track thdile-bundleghat were requested in the past
to determine what combinations of files should be re-
tained or evicted from the cache. This results in a much
lower cache miss-ratio under a wide range of condi-
tions tested.

3. Results of extensive simulation runs that compare the
OptFileBundlealgorithm withLandlord[16] cache re-
placement consistently show th@aptFileBundlegives
a much lower average volume of data transfers per re-
qguest with file requests observing either Uniform or
Zipf distributions.

performance metrics in cache replacement algorithms are

the hit ratio, themiss ratiq the byte hit ratiq and thebyte
miss ratia A good cache replacement policy maximizes the
hit ratio (or minimizes thamiss ratig or alternatively max-
imizes thebyte hit ratio(or minimizesbyte miss rati.

4. The heuristic algorithr@ptCacheSeleatsed byOpt-
FileBundleis an approximation algorithm to an inter-
esting combinatorial problem whose exact solution is

NP-Hard. For this algorithm, we derive tight bounds

from the optimal solution and show that the value of
the SO|uti0n produced iS a faCtor Of at mOSt— efl/d) Clients Acessing Remote Data via Storage Resource Managers
from the optimal one wheris the maximum number e Hierarchical Storage System (HSS

Workgroup N
of requests that use the same file. Ste ¢
Disk Cache {%
Site D

The rest of the paper is organized as follows. In Sec-
tion 2 we present the application environmentin the context| siea DiskCache
of a data-grid. In Section 3, a greedy heuristic algorithm, | ciiens
called OptFileBundleis presented. The theoretical foun- emareur
dation of theOptFileBundlealgorithm is presented in Sec-
tion 4 where characteristics of the algorithm, e.g., itsrizsu
from the optimal solution, are discussed. In Section 5, a

Wide Area
Network

Application

Site B Clients

DRM: Disk Resource Manager

simulation of theFile-Bundle Cachings presented using HRM: Hierarchical Resource Manager Disk Storage
. . . SAN: Storage Area Network
the OptFileBundlecaching algorithm. The performance of SVR: Storage Host Server

our proposed algorithm is compared with one of the best _])
performing existing caching algorithms that does not use Figure 2. An SRMin the Context of a Data-Grid
file-bundles in its replacement decisions. The results ®f th

experiments carried out are also discussed in this section.

We conclude in Section 6 with summary and directions for

future work. being requested needs to be serviced at a time and this

could be in some defined order or in any order.

2 Data-Grid and Storage Resource Man-

OneFile-Bundle at a Time: The termFile-Bundlerefers
agers

to the set of files that a job expects to be available in
cache for it to run. The job may actually by consid-
ered as composed of tasks (or sub-jobs), where each
task requests a file-bundle and the job completes after
executing all its tasks. The number of files in a bundle,
i.e., thefile-bundlesize, varies from bundle to bundle.

Distributed scientific applications anticipated in the hex
several years would require access to large amounts of data
of the order of hundreds of terabytes to tens of petabytes.
The envisioned model of managing and accessing the data
is through what is currently referred to as data grids where
the data repositories are maintained in mass storage system

and are accessed from different locations by large commu An optimal service policy for the first model of service
. AR . ylarg was addressed in [8]. We consider hereRhie-Bundle at a
nities of scientists. The term data-grid generally imply an

distributed K inf f cab Timewhen jobs are percieved as a sequence of independent
e ot o . 5K BYOplmalsecone mesn one hat aiher s
tific experiments in the following disciplines: High Energy mizes the throughput probs or minimizes the average vol-
; .) : ume of data replaced in the cache per request.
Physics, Biology, Earth Observation Systems and Astro-
physics. The idea is to support scientific explorations that
require intensive computations and analyses of largeescal 2.1 Related Work
shared databases across widely distributed scientific com-

munities.
Storage resource managers and component prototypes

The role of an SRM is depicted in Figure 2. Its primary re already in service [12, 11]. Techniques for transfarrin
function is both as a proxy server and a reverse proxy serverl"j;Ir o datayf'lles a\rl1ld databasé ob'ectlsql; or wide arga Inet-
according to their specialized usage. For example a disk re- g ') Ver wi

source manager (DRM), manages disk resource only Wh”eworks have been the subject of extensive research studies

a hierarchical resource manage (HRM) manages data fIOWfor many years in distributed and federated databases [10].

into and out of Mass Storage Systems. In either case, it.One major idea resulting from these early works is that

. . . . improved response times are achieved with extensive data
attempts to deliver, in a timely manner to a computational

resource, the data being requested. The file requests anreephcatlon, caching and data staging [13, 9] on proxy

batched in the form of jobs and the service rendered is pre->°' Vo' > A close analogous environment from which one

scribed by either the job or the policy of the SRM. There could dra_w_some experience and relate it tofthaebunqile
are different models for servicing jobs. problem is in web-caching. For example, web-caching [1,

14], address similar cache replacement policies except tha
One File at a Time: This model of service requires that, the scale of data sizes and transfer delays considered are on
for each job, only one of the number of possible files a much smaller scale than those in a data-grid environment.

3 A Caching Algorithm Based on File Bun-

dles File | No of File request
Requests| probability

o) i _ f1 2 1/3

The main idea behind our caching strategy is to load the f, 1 176
cache with a set of files such that the probability that an fa) 13
arriving request can find all the files it needs in the cache is fa 1 13
maximized. We will illustrate the difference between this o 2 573
strategy and caching policies based on file popularity with o 3 17
a small example shown in Fig. 3. For a given cache state f7 3 17

and a request, we will say that the cache supportor
alternatively that is a request-hit if all files needed byare Table 1. File request probabilities
found in the cache.

Example: Let us assume that we have six possible re-

questsr,ra,...,rs each associated with one or more Cache contents | Requests | Request-hit
files fromF = fy, f5,...f7 as shown by the lines con- Supported | probability
necting requests to their associated files in Fig. 3. Fur- f5.fe.f7 e 1/6

ther, let us assume that all files are of the same size, f1.fa.f5 M.rs.ls 172

the cache can hold only three files, and all six requests f1.f5.fe 3 1/6

are equally likely,i.e. probabilty of that any of the f3,f5,f6 rs 1/6
requests is the next one to arrive. Each row in Ta- f1,f2.f3 - 0

ble 1 shows the probablity of the event that a file is
requested by a random request. Note that the sum of
probabilities is more than 1 as the events are not mu-
tually exclusive. We note that the most popular file is
fs as 4 requests out of the six possible requests need
it. This is followed by filesfs and f7 each needed by 3

of the requests. Each row in Table 2 shows request-hit
probabilities,i.e., the probablity that a random request
will find all the files it needs in the cache under some
cache content. Only 5 cases of cache content out of
the 35 cases (possible ways of choosing 3 files from 7)
are shown. We note that keeping the 3 most popular
files (row 1 of the table) does not lead to the largest
request-hit probability. The best request-hit probabil-
ity is represented in the cache of Fig. 3 and by the
second row of the table with a request-hit probability
of % as keeping filed1, f3, f5 in the cache results in a
request-hit for 3 out of the six possible requests.

Table 2. Request-hit probabilities

Figure 3. Example of file selection

Some theoretical results about the complexity of the prob-
lem and analysis of the effectiveness of the approximation
The previous example illustrates the need for caching are given in Section 4
strategies that take into account request-hits ratherdiman The OptCacheSelecilgorithm gets as its input a data
ple file-hit based algorithms. We will now proceed to de- stryctureL(R) containing full information about a collec-
scribe our caching algorithm. tion of all historical request® The data structuré(R)
Atthe heart of our caching strategy is an algorithm called s initially empty and gets updated with each request pro-
OptCacheSeledhat determines the files that must be re- cessed. For lack of space we will not present here the ex-
placed. It takes into account file sizes and request type dis-act implementation of (R), which is basically a hash-table
tributions and will be described in more detail below. The with pointers to other structures, but rather describedts ¢
result produced byOptCacheSeleds a new set of files tents. For each requeste R that was served by the system
loaded into the cache that attempt to maximize request-we store inL(R) the following information:
hit probability. The algorithm is a greedy heuristic that
attempts to achieve a good approximation to an NP-hard
problem that is a generalization of the Knapsack problem.

e An associated valug(ri). In our currentimplementa-
tion v(r;) is simply a counter incremented by 1 each

time this request appeared so far, but it can also refleqt

request priority or some other measure of importance, input +A data structurd. (R as described
quest prionty ! 'mp above and a cach@of sizes(C)

e the sef~(r;) of files requested bg and the size of each output : The solutionG - a subset of the

such file. requests inR whose files must be

We need the following additional definitions in the de- loaded into the cache.

scription of the algorithm. We denote the size of a cachg Step 0:/* Initialize */
C by s(C). For a file f;, let s(f;) denote its size and let G <@, /lsetof requests selected
d(f;) represent the number of requests served by it. The S(C") —s(C) ; /I s(C') keeps track of unused
adjusted size of a fildj, denoted bys'(f;), is defined as cache size
its size divided by the number of requests it served, i.e. Step 1: Sort the requests iR in decreasing or-
s(fi) =s(fi)/d(fi). der of their relative values and renumber from
The adjusted relative value of a request, or simply its rel- r1,...,r based on this order
ative valuey/'(rj), is its value divided by the sum of adjusted Step 2:
sizes of the files it requests, i.e. fori— 1tondo
if S(C") > s(F(rj)) then
v(rj) = v(rj) Load the files irF (r;) into the cache
2 tier(rj) S (1) S(C') «s(C")=s(F(ri)); //update un-

used cache size

The algorithmOptCacheSelect(R),S(C)) attempts to G GUrN: [add request to the

select an optimal set of files that fits in the cache in order tq

serve a subset &t with the highest total value. It does so by endsolunon

servicing requests in decreasing order of their adjusted re end

tive values skipping requests that cannot be serviced due fo ~ Step 3: Compare the total value of request<an
insufficient space in the cache for their associated files. Th and the highest value of any single request and
final solution is the maximum between the value of requests choose the maximum.

loaded and the maximum value of any single request. Th
justification for the comparison performed in this latteyst
is given in Appendix A. The intuition behind usinr;) as

Algorithm 1: Algorithm OptCacheSelect

a measure for ranking requests is tifdt;) increases with o

an increase in request popularity and degree of sharing of <~ =

its files with other requests. On the other hand, it decreases$ <

when the amount of cache resources use# {ry) grows. — O Lo —]
Note: In practice we can even do better by recomputing - £ = =

V/(rj) for all requests; not selected yet (and resorting) fol- “

lowing Step 2. This is done by setting to 0 the size of files SR §

in F(rj) that are already in the cache. The reason for this is [- f

that these files will not incur any additional cache resosirce A S b

This leads to an increase in adjusted value for requests th o o

Share f”es Wlth the |aSt Se|ected request. (a) Cache Filling Up (b) Cache Full (c) Algorithm Applied (d) Resulting Cache
We are now in a position to describe the main steps of our)))

caching algorithmQptFileBundle as illustrated in Fig. 4. Figure 4. The steps of algorithm OptFileBun-

Initially the cache is empty, whenever a new requgst, dle

arrives all its missing files (files requested by it but notcur

rently in the cache) are loaded into the cache (Fig. 4a). At . o] o
some point the cache fills up (Fig. 4b) and a caching re- optimal files that must be maintained in the remaining part

placement decision must be taken when a new request, of the cache_to maximize request-hit probability (Fig. 4d).
arrives. The algorithmOptFileBundleworks as follows:

All files requested bynew that are not currently present
in the cache must be must loaded into the cache and somé Complexity Analysis of the Algorithms
other files currently in the cache must be evicted in order
to make space for them (Fig. 4c). We reserve sufficient ~As OptCacheSeleds attempting to maximize request-
space for the new files requested iy, and then call on hit probability and the value of each request approximates
algorithmOptCacheSeledescribed above to decide on the its populatity it follows that the fundamental problem that

the DKS instance. We also note that any approximation al-
gorithm for theFBC problem can be used to approximate a
DKS problem with the same bound from optimality. Cur-
rently the best-known approximation for the DKS problem
[3] is within a factor ofO(|V |*/3#) from optimum for some

€ > 0. Itis also conjectured in [3] that an approximation to
DKS with a factor of(1+€) is NP-hard. Let us defing as

the maximum number of requests that need the same file.
For example in the system described in Figl 3 4 asfs is
used by 4 different requests. In Appendix A we prove that
the total value of the requests loaded®ptCacheSeleds

input : A new requestnew, a data structure
L(R) including information about
requestsR = {ry,...rn}, their val-
uesv(rj), the setsF(r;), a cacheC
of size s(C) ,F(C) the set of files
currently in the cache, and the sizes
s(fi) of all files requested by mem-
bers ofR.

output : The solutionG - a set of files that
must be loaded int@

Step 1: ComputeS, the amount of space needed within a factor of at mos (1 — e /9) from the value of an
by files inF(rnew) that are not currently in the optimal solution. This can be stated as:
cacheC

Step 2: Call OptCacheSelect(L(R),s(C)-8hd
store its solution irF (Opt)

Step 3: Load into the cacheC the files in
F(Opt)\F(C)

Step 4: Update the data structutéR) with all
relevant information aboutt,ey We can show that methods similar to the ones used in
[7] can improve this bound by a factor of 2 (@ — e 1/9)

Theorem 4.1. The total value of requests supported by the
cache as loaded by algorith@ptCacheSeleds within a
factor of 3 (1 — e~1/9) of the optimal value of @OPT).

at higher computational cost. This is done by construct-
ing a candidate solution consisting of selectlngequests
for some small fixek (k = 2 is a valid choice) and com-
theOptCacheSelectigorithm is trying to solve can be pre- plementing it by running@ptCacheSelean the remaining

Algorithm 2: Algorithm OptFileBundle

sented as follows: space in the cache and remaining requests. lterating this

Given a collection of reques® = {ry,r2,...,rn}, each procedure over all possible choiceskakquests and select-
with associated value(ri), defined over a set of filels = ing the solution with highest value among all these candi-
{f1, f2,..., fm}, each with sizes(fj) and a constarg(C), date solutions results in the above improved bound.

find a subseR of the requestsR C R, of maximum total
value such that the total size of the files neededrbig at

mosts(C). 5 The Simulation Model and its Environment

We will call this the File-Bundle Cachind-BC) prob-
lem. It is easy to show that in the special case that each
file is needed by exactly one request #BC problem is
equivalent to the well-known knapsack problem. The cache We designed a simulation model to explore how@-
Cis the knapsack and its siz€(C) represents the knapsack FileBundle algorithm compares with théandlord algo-
capacity, each request corresponds to an item of wghye rithm [1, 16]. For that purpose, we implemented a version
and weight equal to the total size of the files needed;py of Landlordwhere each job makes a request for a set of files
i.e., size ofF (ri). It is more interesting to note that tkBC rather than a single file as in the original implementation.
problem is NP-hard even for the restricted case that each reThe implementation is described below in Algorithm 3. The
guest has exactly 2 files of equal size. This is done by reduc-simulation programg¢acheSimwas written inC++ with
tion from the Dens&—subgraph (DKS) problem [3]. An extensive use of STL. Using a cluster of two 1.6 GHz dual
instance of the DKS problem is defined as follows: Given Opterons with 2GB of RAM each, we ran a large number
a graphG = (V,E) and a positive integek, find a subset of experiments to study the behaviour of the proposed al-
V/ C V with [V’| = k that maximizes the total number of gorithms for different combinations of parameters. These
edges in the subgraph induced\Wy Given an instance ofa experiments consumed over 1000 hours of CPU time. The
DKS problem, the reduction to an instanceFBC is done main performance metric used is thyte miss rati@nd this
by making each vertex € V correspond to a filé (v) of was observed for different workload distributions, andyvar
size 1. Each edggx,y) in E corresponds to a request for ing cache sizes. We note here that we mesaure cache sizes
two files f(x) and f(y). A solution to theFBC instance by the number of requests that can be accommodated in the
with a cache of sizd& corresponds to a solution to the in- cache. This is a slight departure from the general method of
stance of the DKS where tHefiles loaded into the cache reporting results in which the absolute cache size is speci-
correspond to vertices of the subgraphn the solution of fied.

input : A new requestfnew, a cacheC of 5.2 Simulation Parameters

sizes(C), F(C). the set of files cur-
rently in cache.
output : The solutionG - a subset of the files
in F(C) that must be evicted from
the cache to make room fogey. Request Size: This refers to the total size of files needed
by a request. Assuming a cache of a fixed size, the av-
erage request size determines the number of requests
that can be supported in the cache at any given time.
The more requests that are already in cache, the more
likely that files requested by an incoming job are al-
ready present in cache. Conversely, assuming a fixed
request our results translate to studying the effect of
varying the cache size.

There are several parameters that can be varied to ob-
serve different affects on the performance measures. We
describe some of the major ones varied in our simulations:

Step 0: Maintain a value credif] € [0,1] with
each itemf in the cache.

Step 1: ComputeS, the amount of space needed
by files in F(rnew) that are not currently in the
cacheC.

Step 2: ComputeF(C') = F(C)\F(rpew), the
subset of files in cach@ which are not requested

by rnew
Step 3: Popularity Distribution: The popularity distribution of
while s(rpew) > S(C) — s(F(C)) do requests for typical workloads is hard to characterize in
for f e F(C')do the case of file bundles since each request draws a ran-
Find the minimum credit; dom combination of files and two requests are identical
end only if their file requests are the same. As a result we
Decrease all credits by the minimum credit; examine the effects of the two extreme distributions: a
Evict from the cache the subset of iterfis purely random distribution, and a Zipf distribution.
such that credjf] = 0;)) o
end Incoming Queue Length: Instead of processing a job in
Step 4: Bring F(rnew) into the cache antlg € first come first serve order, one can also consider ag-
F (Fnew) Set credifg] — 1; gregating the jobs in an admission queue of a given
length, and admit the next job to be processed accord-
Algorithm 3: Algorithm Landlord ing to some fair effective scheduling algorithm, i.e.,

one that avoidsequest lockoubut at the same time

L inimizes thebyte mi ti
5.1 Workload Characterization minimizes yte miss ratio

Request History Length: As shown in this paper, th@pt-
FileBundlealgorithm determines the optimal requests

Although file-bundle is the mode of file request in most to be loaded based on the history of all requests ever
data intensive scientific analysis, efforts have not be made made. Computationally this gets to be expensive as the
to derive workload traces and logs of caching activitiese Th number of requests increases. We studied the effect of
log traces maintained by most scientific centers are mainly truncating the history length to consider only the re-
for one file at a time requests. Even in Web-Caching envi- quests Supported by the cache while Obtaining the re-
ronments, the log traces are still on per file basis. quest popularity and the degree of file sharing from the

In the absence of runtime measured workload character- global history.

istics, we constructed a simulated workload consisting of a

given set of jobs, with each job requesting a random num-5.3 Simulation Results

ber of files from the pool of available files. The parameters

chosen for our simulated workload are as close as possible We present some results of simulation runs with variabil-
to observed real experiments that log single file requests aifty in some representative parameters such as varying cache
atime. Given a defined cache size, the size of each file wassize and different request distributions.

generated randomly between a minimum size of 1IMB and Computational costs for each iteration are a function of
a maximum size expressed as a percentage of defined cachmany factors, but depend strongly on the average number
size that varied from 1% to 10%. The set of files requested of requests served by the cache, and for@ptFileBundle

by each job was chosen randomly from the list of available algorithm by the number of requests in the history. As the
files such that the total size of the files requested was smalle number of requests increases, the computational costs be-
than the available cache size. Each simulation run consistcome expensive. As such, we studied the effect of truncat-
of submitting a number of jobs (typically 10000) in orderto ing the history length. A variety of approaches were ex-
study the effects of the various parameters. plored, from arbitrarily limiting the history to the requss

byte miss ratio

byte miss ratio

byte miss ratio

0.9

0.85 |

0.8

0.75 |+

0.7 r

0.65 |

0.6

T

v v
all requests —=—

cached requests

o5 oo

n n n n n n n n n

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Requests

(a) Random distribution.

byte miss ratio

0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35

0.3
0.25 |

0.2

all requests —=—
cached requests 4

n n n n n n n n n

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Requests

(b) Zipf distribution.

Figure 5. Effect of varying the history length

0.8 "
0.6 '1

04 r

O‘ptBunc‘iIe ——
Landlord

n n n n n n n n n

0
0

0.8
0.6
0.4

0.2

100 200 300 400 500 600 700 800 900 1000
Number of Requests

(a) Random distribution.

byte miss ratio

08t

04t

O‘ptBunc‘iIe ——
Landlord

n n n n n n n n n

100 200 300 400 500 600 700 800 900 1000
Number of Requests

(b) Zipf distribution.

Figure 6. Byte miss-rate for small files.

OptBundle —=—

Landlord

n n n n n

0 100
Number of Requests

(a) Random distribution.

200 300 400 500 600 700 800 900 1000

byte miss ratio

0.8

0.6

0.4

0.2

VW\W\,W%

OptBundle —=—
Landlord

n n n n n

0 100 200 300 400 500 600 700 800 900 1000

Number of Requests

(b) Zipf distribution.

Figure 7. Byte miss-rate for large files.

'OptBundle ——
0.9} Landlord
t
0.8 t‘
|
0.7
2 \
g 06\
P \
= 05
€ o4t
el
03
02 T~
01F -
0
0 100 200 300 400 500 600 700 800 900
Average number of requests served by the cache
(a) Random distribution.
1
08
=] T > T e B S S S O OO hOS
ﬁ 0.6 F—EEai bk f:] - L
?
9
£
€ oat
=
qlL ——
0.2+ q2
g5
q10 a
0 s 100
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

1

" OptBundle ——
0.9 Landlord

08 r
0.7
0.6
05

0.4 ¢

byte miss ratio

03 r

/Q/a/

02
0.1 K\

0

-

[—

—e

—
0 20 40 60 80 100 120 140 160 180 200 220
Average number of requests served by the cache

(b) Zipf distribution.

Figure 8. Effect of varying the cache size

Number of requests

(a) Random distribution.

1

: :
ql ——
q2
g5 x

L ql0 a8
08 q100

2

5 06

123

£ 'ﬁ,:’:\itt«a AR e

€ o0af

o

0.2 |

0 L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of requests

(b) Zipf distribution.

Figure 9. Effect of varying the queue length

in the cache to a full history of all requests ever processedas illustrated in Figures 6(a) and 6(b). In the graphs of both
are retained. As shown in Fig. 5, the effects of such trun- Figures 6 and 7, we also observe that the values dbyie
cation are negligible, and subsequent simulations were runmiss ratioare much lower for Zipf’s distribution of requests
using only the truncated history limited to the requests in than for random distributions.

the cache. This approach has the advantage that, for a given The overall effect of varying the request size (and im-
set of parameters, computational costs stay constant-per itplicitly the cache size) is shown in Fig. 8. As the cache

eration.

is able to serve more requests the amount of data moved

The first set of experiments performed involved job pop- into the cache for each request is smaller. This difference

ularity distributions. A random (or uniform) popularitysdi

in the amount of data moved into the cache, betw@pt

tribution means that every request from the pool of avadlabl FileBundlecache replacement athd@ndlord is even more
requests is equally likely to be requested, whereas Zipf’s pronounced for Zipf request distribution.

distribution assigns a probability of selection propantib

Another set of experiments we performed involved ag-

to ¥ to theit" most popular request. In addition, we varied gregating the requests in a processing queue of varying

the size of the incoming requests, implicitly varying theesi

of the cache.

Figures 6(a) and 6(b) compare thwte miss ratidor ran-

length instead of processing each request in first come first
serve (FCFS) order. Once the queue is full, we first serve
the request of highest relative value in the queue using

dom and Zipf request distributions. In both cases the cacheOptFileBundleand repeat this process on the remaining

replacement based d@ptFileBundlealgorithm performs
better than théandlordalgorithm in the sense that the byte
miss ratio is much lower. The superiority OptFileBundle
overLandlordis even more significant for smaller file sizes

requests in the queue until it becomes empty. Fig. 9(a)
and Fig. 9(b) show the effects of varying the processing
gueue length from 1 to 100 (shown as q1,95,..,100) for
incoming random and Zipf request distributions, respec-

tively. The effect of queuing incoming requests is minor for Acknowledgment

uniform request distribution and the small increase in effi-

ciency doesn't justify the additional computational cdets This work is supported by the Director, Office of Lab-

this case. However, the effect of queuing is more significant oratory Policy and Infrastructure Management of the U.

for Zipf request distribution as a queue of size 100 creates ag, Department of Energy under Contract No. DE-ACO03-

much lowerbyte miss ratias compared with smaller queue 76SF00098. This research used resources of the National

Sizes. Energy Research Scientific Computing (NERSC), which is
supported by the Office of Science of the U.S. Department

6 Conclusion and Future Work

We have presented tHige-bundle cachingroblem that
arises frequently in scientific applications where jobsthee
to process several files simultaneously. Unlike traditiona
approaches to disk cache replacement where one file is re-
guested at a time, this problem requires that a set of files
be cached simultaneously at a time. Given such a request
stream, and a defined cache size, the question is which set
of files in the cache are to be replaced so thatntiiss byte
ratio is minimized. We have presented a greedy heuristic
algorithm, OptFileBundle that determines the set of files
that are evicted at each request admission. In particular we
showed that at each instance of a request arrival, the set
of files replaced by the algorithm, gives a solution that is
within a factor of (1 — e %/9) of the optimum, wherel is
the maximum number of requests per file, @&id the base
of the natural log. The solution has particular significance
in establishing policies for Storage Resource Managers and
similar software that service file requests, e.g., StoragaA
Networks SANs and other storage request brokers in data
intensive grid environments.

We also presented simulation results that support the ef-
ficiency of our cache replacement algorithms. Tland-
lord cache replacement algorithm is one of best known for
disk file caching. Using theniss byte raticas the perfor-
mance metric, we compared tptFileBundleand Land-
lord under varying simulated workloads of request streams
and cache sizes. For both uniform requests streams, i.e.,
one in which every request is equally likely, and Zipf re-
quest distributions we find th&ptFileBundleconsistently
gives a lower value ofmiss byte ratiathan theLandlord
However, the values of thigyte miss raticare much lower
for Zipf’s distribution of requests than for random distrib
tions.

Future work will address the incorporation OptFile-
Bundlealgorithm in an actual Storage Resource Manager

systems currently under development at our lab. We intend [12]

to also extend this work to include cases when the process-
ing time (duration of time to retain the file in the cache for

processing) and the transfer times of files into the cache are 13]

also considered. The case of a hybrid execution model is
also of interest where we have a mix of jobs some of which
execute according tone File at a Timenodel while others
execute according to tHéle-Bundle at a Timenodel.

11

[10]

[11]

of Energy.

References

[1] P. Cao and S. Irani. Cost-aware WWW proxy caching al-
gorithms. INUSENIX Symposium on Internet Technologies
and Systemd.997.

[2] A. Chervenak, |. Foster, C. Kesselman, C. Salisbury, and

S. Tuecke. The data grid: Towards an architecture for

the distributed management and analysis of large scientific

datasetsJ. Network and Computer Applicatiarz3(3):187

— 200, 2000.

U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph

problem. Algorithmicg 29(3):410-421, 2001.

Earth Science Grid. http://www.scd.ucar.edu/csglesg

Particle Physics Data Grid. http://www.ppdg.net/.

U. Hahn, W. Dilling, and D. Kaletta. Adaptive replacenten

algorithm for disk caches in hsm systems.1BInt’l. Symp

on Mass Storage Syspages 128 — 140, San Diego, Califor-

nia, Mar. 15-18 1999.

S. Khuller, A. Moss, and J. S. Naor. The budgeted max-

imum coverage problemInformation Processing Letters

70(1):39-45, 1999.

E. J. Otoo, D. Rotem, and A. Shoshani. Impact of admission

and cache replacement policies on response times of jobs on

data grids. Irint'l. Workshop on Challenges of Large Appli-
cations in Distrib. EnvironmentsSeatle, Washington, Jun.,

21 2003. IEEE Computer Society, Los Alamitos, California.

E. J. Otoo and A. Shoshani. Accurate modeling of cache

replacement policies in a data grid. 1dth NASA Goddard

Conf. on Mass Storage Syst. and Tech. / 20th IEEE Symp.

on Mass Storage SysSan Diego, California, April 7 - 10

2003.

T. T. Ozsu and ValdurieZrinciples of distributed database

systems Prentice Hall, Upper Saddle River, N.J., 2nd edi-

tion, 1999.

A. Rajasekar, M. Wan, and R. Moore. Mysrb & srb - com-

ponents of a data grid. [fhe 11th Int’l. Symp. on High Perf.

Distrib. Comput. (HPDC-11)Edinburgh, Scotland, Jul. 24

- 26 2002.

A. Shoshani, A. Sim, and J. Gu. Storage resource masager

Middleware components for grid storage. 10th NASA

Goddard Conference on Mass Storage Syst. and ;TAgi.

15 - 18 2002.

M. Tan, M. Theys, H. Siegel, N. Beck, and M. Jurczyk. A

mathematical model, heuristic, and simulation study for a

basic data staging problem in a heterogeneous networking

environment. IrProc. of the 7th Hetero. Comput. Workshop

pages 115-129, Orlando, Florida, Mar. 1998.

(3]

(4]
(5]
(6]

(7]

(8]

(9]

[14] J. Wang. A survey of web caching schemes for the internet Proof. After iteration ji_1, the maximum adjusted value
In ACM SIGCOMM'99 Cambridge, Massachusetts, Aug. among all requests IOPT\G;_1 (i.e., requests iOPT but

1999. notinG;_1) is at mosts)’((lg) Ji.e.,
[15] K. Wu, W. S. Koegler, J. Chen, and A. Shoshani. Using '
bitmap index for interactive exploration of large dataséts) .
SSDBM'2003pages 65-74, Cambridge, Mass., 2003. VOPT) ~Vv(Gi-y) = rmng v(Tm)
[16] N. Young. On-line file caching. ISODA: ACM-SIAM rm¢Gi_1
Symposium on Discrete Algorithms (A Conference on The- v(ri) v(ri)
oretical and Experimental Analysis of Discrete Algorithms < m Z 5,(Fm) < ms(c)-
1998 [rmeOPT [
: rmeGi_1

The last inequality follows from Lemma A.1. Usingr;) =
A Proofs of Lemmas and Theorems V(Gj — v(Gj_1) and substituting in 1, the result follrc?\:v;lj
For a set of requests, let v(G) denote the total value,
i.e.,v(G) = S V(r). Let OPT denote the set of requests

selected by the optimal solution. Ledenote the number
of iterations made by algorith@ptCacheSelectntil a re-
qguest fromOPT is rejected because of insufficient space
in the cache. Assuming that during the firsiterations,

Lemma A.3. We have that G, always satisfies the fol-
lowing condition

| requests are added ®, we can renumber the requests 41 $(R)

{ra,r2,...1r,141} so thatr is theit" request added 16 and V(Giy1) > [1— |'| <1— —> v(OPT).

request; is in OPT but rejected byDptCacheSeleatue k=1 s(C)

to insuffient space in the cache. Ligtdenote the iteration

when request; is considered Proof. The proof is by induction. We need to show that

s(F s(F

LemmaA.l. ¢(En) < SO). v(Gy) > {1_ <1_ sECl)))] v(OPT) = %V(OPT).

rmEOPT (2)

Proof. The Lemma claims that the total adjusted size of The algorithmOptCacheSeledtelects the request with

files loaded byOPT into the cache is smaller than the the the maximum adjusted value over all requests, i.e.,
cache size. Le€qpt denote the the set of files loaded into

the cache bYDPT.Then ;’E::l)) > ;/E::m)) ,Vrm € OPT.
1 m
‘o % s(Fj) <s(C). It follows that
j€Copt
v(r1) V(rm) _ Vv(OPT)
> >
On the other hand SF) > rme%PTsl(Fm) Z 50 (3)
% = ;ﬂ S(Fj) < % d(fj)s(fj)
meOPT r:njEEOPT fj Copt The first inequality of (3) uses the fact that fgrb; > 0,
s(f) if a/b>a;/bi for1<i<n,thena/b>5S! &/ 1bi. The
= d(fi)22 — s(fi). second uses Lemma A.1 and the definitionv@®PT) =
J (f) J
fjCopt J fj€Copt SrmeopTV(rm). Equation 2 follows since by definition

. . o v(G1) = Vv(r1). Fori > 1,
The first inequality follows from the fact each filg in

the cache is accounted for at makif;) times in the first V(G) =V(Gi_1) + (V(G)) —V(Gi_1)). 4)
two sums. The second inequality follows directly from the
definition ofs'(f;). = Using Lemma A.2 on the right side of equation 4, we get
i o — S(F
Lemma A.2. After eachglzer;atlon ibi=12,...,14+1, VG) > V(Gi1)+ S((CI)) (V(OPT) —V(Gi_1))
H
V(G) = V(Gi_1 > —Z(V(OPT) = V(Gi_1)). (1) _ (4, _s(R) _ s(F)
s(C) = (1 S0 v(Gi_1) + SC) v(OPT).

12

Applying the induction hypothesis #(G;j_1) in the right-
most expression of 5 and rearranging we get

-f6-48)

v(Gi) >)

v(OPT);

as required. O

Lemma A.4. Letd be the maximum degree of a file F, then
I+1

d_Zd(F) > 5(C)

Proof. The request,, 1 was rejected because there was not
enough space in the cacBeHence we

I+1 I+1 s(f) [+1
DEUEPAPRTED PR
(|
Lemma A.5. v(Gj,1 satisfies
V(Gi41) = (1—e/I)v(OPT).

Proof. Using Lemma A.3 and Lemma A.4, we get

V(G1) > [1—ﬁ<1—§(—2k))> Vv(OPT)

> [1— lﬁl (1— %) v(OPT)
s (Fo)

Using the fact thap]L (1 -
when alls' () are equal, i.e.,

m) is maximized

I+1

9(R) = Iiﬁ,\ﬂgkglﬂ;
we get
I+1
V(Gi1) > ll—Dl (1—d(|7::_1)) v(OPT)
1 I+1
el — (1— m) V(OPT)
> (1—eY%)v(OoPT).

O

Theorem 1. The total value of requests supported by the
cache as loaded by algorith@ptCacheSeleds within a
factor of (1 — e 1/9) of the optimal value of @DPT).

13

Proof. Let the maximum value request bbg with value
v(rt). Thenv(r) > v(r;;1). Consequently,

V(Giy1) >

Algorithm OptCacheSele@roduces a solution that s larger
than the maximum betweer{G;) andv(ry) (See Step 3 of
the AlgorithmOptCacheSelekt So the value of this solu-
tion is at least 12(1— e /9)v(OPT). O

V(Giy1) +V(rt) 2 V(Gr) +V(r141) = (1—e Y9)v(OPT).

