The Potential of Computation Regrouping for
Improving Locality

Chen Ding and Maksim Orlovich

Computer Science Department
University of Rochester
{cdi ng, orl ovi ch}@s. rochester. edu

Abstract logical simulations [11, 32, 36]. Computation regrouping
)))) _is the only form of computation reordering we study in

portant on modern computer systems. An effective straglgcomputation reorderingnterchangeably in this paper.

egy Is to group computa_tlons on the same data so tha’ﬁ'he goal of computation regrouping is to maximize
once the data are loaded into cache, the program perfornPOs ram locality. Program locality is difficult to define
all their operations before the data are evicted. HoweVBr2Y Y- 9 y '

computation regrouping is difficult to automate for pros—0 is the optimality of computation regrouping. We use

grams with complex data and control structures. a precise measure of locality in this paper, which is the

Thi tudies th tential of locality i capacity cache miss rate of an execution, that is, the miss

'S paper studies the potential of locality IMProveze of the fully-associative LRU cache save the first ac-
ment through tracg-drlyen Computat'lon. regrouping. F”%%ss to each element [20]. We consider an abstract form
I Sh_OVYS_ th"ﬁ] maX|rn|:2||_ng the 'OC?'“Y 1S o?;ferenthfror?of cache that consists of data elements rather than cache
maximizing the paraflelism or maximizing the cache u b'locks, so we separate the effect of the spatial locality.

lization. The problem is NP-hard even without consideg, i locality has a straightforward upper-bound, where
ing data dependences and cache organization. Thenctﬁ

d i 100l that perf trained Ehe blocks and the cache are fully utilized. The lowest
paper describes 4 tool that performs constrained Compley o yigs rate is the lowest capacity miss rate divided by
tation regrouping on program traces. The new tool 8

. - e size of the cache block.
unique because it measures the exact control dependences

and applies complete memory renaming and re-allocationCOmputation regrouping is difficult to apply to large
Using the tool, the paper measures the potential localR{P9rams because related computations often spread far

improvement in a set of commonly used benchmark p,%t_)art in the program code. Traditional dependence anal-
grams written in C. ysis is often not effective because of the complex control

flow and indirect data access especially recursive func-
tions and recursive data structures. Until now, the au-
tomatic methods are limited to programs written in loop
nests, and manual transformation is limited to small frag-
The memory performance of a program is largely detérents of a limited number of applications.

mined by its temporal data locality, that is, how close the We present a study on the potential of computation re-
same data are reused during an execution. The primgrguping. First, we show that maximizing the locality
method for improving the temporal locality is regroupis different from maximizing the parallelism or maximiz-
ing those computations that use the same data, hence gegthe cache utilization. We show that problem of com-
verting long-distance data reuses into short-distandeecaputation regrouping is NP hard even when not consid-
reuses. Well-known techniques such as loop interchangeng program dependences and cache organization. We
blocking (tiling) and fusion regroup computations in reghen present a simulation tool that measures the potential
ular loop nests. Recent studies show that more genestomputation regrouping. The tool allows for aggres-
forms of computation regrouping have significant benefigive yet correct reordering by respecting the exact data
in other complex programs such as information retrievalnd control dependences and applying complete data re-
machine verification, and physical, mechanical, and bisaming and memory re-allocation. It uses a constrained
regrouping heuristic to improve the locality for a given
0-7695-2153-3/04 $20.00 (¢)2004 IEEE cache size. Finally, we evaluate the new tool on a set

1 Introduction

of numerical and integer programs. The tool may have a Inst. data OPT
significant value in high-performance computing, as dis- list access caching

cussed in Section 5. I, EZ :; : :;c h

Many studies have measured the potential of the par- V: (def) abcdefh
allelism at the instruction, loop, and procedure level (for W: (bgh) acdefg
examples [25, 31, 38]). Most of them ignored the local- ¢ E: ‘;")) 2 : egk
ity effect, assuming a single-cycle memory latency. How- z: e k)g

ever, on modern machines, the difference in the memory

access time is reaching two orders of magnitude depeggjure 1: An example sequence of seven instructions,
ing on the data locality. On SGI Origin 2000, the M3sach uses two to three data elements. It needs mini-
trix multiply executes the same number of Instructionga|ly seven-element cache to avoid capacity mists-

100 times faster after the locality optimization. Hencgyre preceding further, the reader is urged to reorder the
studying the potential of locality is important because dequence to reduce its cache demand, assuming the se-

may lead to significant performance improvement. Fgience is fully parallel and can be freely reordered.
general-purpose programs, where the average number of

parallel instructions is mostly below 10, the performance
potential from the locality may rival or exceed that frorof operations, the second shows the set of data elements
the parallelism. accessed by each operation, and the third shows the cache
The simulation tool is trace-based and has several ligentent under the OPT strategy. All data reuses are cached
itations. A trace may not represent the program behavibthe cache size is at least seven elements. It is possible
on other inputs, and a trace may be too large to be atfreduce the cache demand to fewer than seven elements,
lyzed. For many programs, earlier work has shown thhone reorders the sequence. We urge the reader to try
the temporal locality follows a predictable pattern and tiilee reordering problem, assuming the operations are fully
(cache miss) behavior of all program inputs can be piearallel and can be arbitrarily reordered.
dicted by examining medium-size training runs [14, 15, The solution to the example problem is given in Fig-
26, 34, 44]. In this paper, we use a medium-size inpute 1. Part (a) uses a graph to model the data shar-
for each program. Determining the improvement acroy between operations. Part (b) gives a sequence where
all program inputs is a subject of future study. Furtheeach pair of neighboring nodes are separated by at most
more, the simulation uses heuristics and does not find thee other node. This property is callé@ndwidth-1
optimal locality. We use the simulation tool to measufigach pair of data-sharing operations are closest in this
the lower bound of locality improvement in complex prosequence. Indeed, Part (c) shows that the reordered se-

grams by trace-level computation reordering. guence needs only a three-element cache and therefore
has much better locality than the original sequence.
2 The Optimal Temporal Locality As shown by the example, the goal of the locality opti-

mization is to reduce the distance between operations that

Given a sequence of memory accesses and the cacheen$e the same data. The definition of the distance de-
a given size, we want to minimize the number of caclpends on the cache management scheme especially its re-
misses. The past work in memory and cache managem@atement policy. Instead of modeling the exact cache
shows that given a fixed access sequence, the cacherhasagement algorithms, we model a sufficient but not
the optimal performance if it keeps in cache the data witlecessary condition. To ensure a cache hit, we require
the closest reuse, i.e. ti@PT strategy [3, 4]. However, that thetime distancewhich is the number of instructions
the optimality no longer holds when we reorder the sbetween the two accesses, is bounded by a constant. The
guence, that is, when we change the order of data reustsie distance between two instructions is the analogous

To find the best access order, we need to first determiféhe bandwidth in the bandwidth-minimization problem.
whether and when it is legal to reorder by observing thée now define the time-distance problem and show it is
dependences among program operations and then findiityhard.
the independent and parallel operations. Many past stud-
ies examined the parallelism at the instruction, loop, amgfinition The time-distance problem A program ex-
program level. The available parallelism does not directgution is a sequence of instructions. Some instructions
measure the available locality. Even assuming the maiiay access three or more data elements. Given a program
mal parallelism, where program operations can be freélpd a cache sizk, the problem is to reorder the instruc-
reordered, finding the optimal locality is not trivial, asion sequence so that for all pairs of instructions that ac-
shown next by an example. cess the same data, the number of the pairs whose time

Figure 1 has three columns: the first shows a sequefiégtance is bounded blyis maximized.

(a) The data-sharing relation as a
graph. Each edge connects two
instructions that use the same data.

TWYUVXZ

(b) A bandwidth-1 sequence, in which
the endpoints of any edge in (a) are
separated by at most one other node.
The graph has only two such
sequences: this one and its reverse.

Inst. data OPT 4-elem.
list access cache LRU

T: (ah) ah ah

W: (bgh) abg ahbg
Y: (adg) bd badg
U: (bc) cd dgbc
V: (def) cef cdef
X: (cfk) ek decf
Z: (e k) cfek

(c) The recordered sequence
according to (b). All reuses are
fully buffered by 3-element OPT
cache, 4-element LRU cache, or 3
registers.

Theorem 2.1 The time-distance problem is NP-hard.

Proof We reduce the tree bandwidthproblem [18] to

the time-distance problem. L&t be a free tree with all
vertices of degreec 3. The bandwidtht problem is to

find a linear sequence of all tree nodes so that any two
connected tree nodes are separated by no more ithan
nodes in the sequence. Given a tree in the bandwidth-
problem, we construct an execution trace as follows. Let
each tree edge represent a unique data element. Put the
tree nodes in a sequence. Convert each node to an in-
struction that accesses the data elements represented by
its edges. Since the node degree is no more than three,
an instruction accesses at most three data elements. The
conversion takes the time linear to the graph size. As-
sume no data or control dependence in the converted se-
quence. A bandwidth-sequence exists if and only if the
optimal time-distance solution exists, that is, one can re-
order the instruction trace so that no two data-sharing in-
structions are separated by more thanstructions. Since
bandwidthk is NP-hard for trees whose nodes have up to
three edges, the time-distance problem is also NP-hard.

The theorem shows that even without considering the
complication from data dependences and cache organiza-
tion, the locality problem is NP-hard. In addition, max-
imal parallelism and optimal cache management do not
imply optimal locality. Next we study the potential of lo-
cality improvement through trace-driven computation re-

grouping.
3 Trace-Driven Computation Regrouping

The section presents the five steps of trace-driven com-
putation regrouping. The first step constructs instruction
traces by instrumenting programs to record relevant infor-
mation. Of course, not all ordering is permissible. The
next two steps identify the exact control and data de-
pendences in the trace. The control dependence analy-

Figure 2: The example problem of optimal locality, solvegis uses a novel algorithm to handle recursive programs.

as an instance of the bandwidth problem

The data dependence analysis uses complete renaming to
avoid false dependences. The fourth step applies con-
strained computation regrouping. Finally, the last step re
allocates data variables to reduce the memory usage after
reordering. We now describe these steps in the following
five sub-sections.

3.1 Trace Construction

We construct instruction traces through source instrumen-
tation of original programs. We first transform program
statements (except for call statements) to make the assign-
ment and control flow explicit, using the C and Fortran
compilers we developed for earlier studies [13, 43]. The

following example shows the source-to-source transfatructure is passed or returned by value. We address that
mation of a compound statement in C. by passing a copy by reference instead, and adjusting the

a[0][i==02i++:i].a[i] = O: code accordingly.
3.2 Control Dependence

becomes
Recinst(l, 1, &i); Given a program, a stgtemenijs cor_YFroI depend_ent on
if ((i '= 0)) goto L4: a branchy if the following two conditions hold: in one
RecInst(2, 2, &mp2, &i): d!rect!on ofy, the control flow must reach; in th.e other
tmp2 = (i + 1): dlreptlon, the control flow may npt reaah[2]. Like the .
RecInst(2, 2, &, &mp2): static data_\ dependence, the static control dependence is a
i = tmp2; conservative estimate. It is not exact. Thg statement
Reclnst(2, 2, &mpl, &mp2); a_nd the brancl@_may have many instances in an execu-
tmpl = tmp2: tion, but not all instances of are control dependent on
goto L5: all instances of;. Next we discuss the the exact control

L4:: dependence through an example and then present an anal-
Reclinst(2, 2, &mpl, &i); ysis algorithm.

Lst_mpl = b 3.2.1 Exact Control Dependence
Reclnst(1, 1, &a[O][tmpl].a[i])); The program in Listing 1 uses a recursive subroutine to
a[O][tmpl].a[i] = O; traverse a linked list twice. It increments a counter af-

After the t f i impl f h(ir visiting a node. At the program level, the cost incre-
er the fransformation, we can Simply pretix €acg, o g control dependent on the empty test in the main
source line with a call to a specikclnst function. Its pa- f

A ive th ber of locati bei d nction (whether to enter a list traversal). Via way of
rameters give the number of locations being accesse tﬁg recursive call, it is transitively dependent on the test

number of reads, and the list of locations where awriteyf i vecursive function (whether to continue the traver-

any, I followed by reads. The locations are given by t@%l). Ignoring these constraints may lead to fictitious ex-
virtual memory address. For example, the three para &

¢ f the firsRecinst call show that th L instructi utions where the counting is finished before knowing
ers ot the firskecinst call snow that the nextNSwUCUot, i 14 count. However, the static control dependence is
has one memory access, it is a read, and the read loc

: o) . Bllexact. During an execution, each cost increment is di-
is the address of variable This of course provides eXac?ectly control dependent on only one of the two tests. The

mfo(;ma(’;lon Or:j alltscalar depenldenmeds, tasl toksee ,:’r\]'h }rgt increment depends on the test in the main function,
read 1S dependent on one merely needs 1o look up the each of the later increments depends on the test that

write to the location. It includes false dependences as 'epened one invocation earlier in the recursive subrou-
cal variables reuse the stack space. These and other

dependences will be systematically removed in a later step”

through variable renaming. Listing 1: Examples of control dependence
This is not, however, sufficient for per-structure and _.
. . . m?ln() {
other non-scalar operations. To address this, we split all;

) . .) Ui (my_list = null) {
per-structure operations into per-field operations, n@kin . nt (my.list, condition1);

all memory accesses explicit. Another issue is the ac- count(my.list, condition.2);

cesses to portions of scalars using either pointers of dif-}

ferent types of unions. We did not address this issue}in

our implementation, choosing to assume the program is

wholly type-safe. Run-time checks can be applied to tigunt(list , condition) {

case to map byte or similar accesses to the original scalatf (list.next != null)

types, thus providing at least a conservative estimate of ~ count(list.next, condition);

the dependencies.
Another complication is in parameter passing, as there

needs to be a dependence from the calculation of paraﬁm-

ters to the use. We resolve this by introducing special vari-Lam and Wilson observed the difference between the

ables, to which we simulate writes of the passed-in valugstic and the run-time control dependence and gave an al-

using synthesizeReclnst calls, and from which we sim-gorithm for tracking run-time control dependences during

ulate copies to the actual parameters. Return values pim@gram simulation [25]. Presumably for efficiency rea-

handled similarly. This, of course, also fails to work if @ons, they did not measure the exact control dependence

cost += 1;

in the presence of recursion, for example the programdantrol dependencies within the same invocation. Since
Listing 1. Other researchers such as Zhang and Gufta partial order relationship induced by control depen-
used exact control dependence but did not detail the @énce is transitive, and taking care of any control de-
gorithm [42]. We next present a method that finds exgméndence of the controlling branch between invocations
control dependences by storing and searching relevantirould ensure their execution before the controlled state-
formation in a stack. ment.

Using the exact control dependence tracking, we findThus, it remains to consider the case where an instruc-
legal computation regrouping across complex contridn does not have an intraprocedural control-dependence.
flows. For the example program, a legal regroupirBut then, the run-time control dependence for the node is
merges the two list traversals and hence greatly improwdsarly the same as for the procedure call instruction used
the temporal locality in this recursive program. We note invoke the current function.
that current static analysis cannot recognize the two listTo implement this run-time analysis, we first perform
traversals because of the information loss when analyzingditional static analysis, constructing the control flow
the recursive call. By modeling recursive functions, wgraph, and then the control dependence graph [2]. The
can study programs that use (mutual) recursive data strt-time state is maintained for each invocation of a func-
tures such as lists, trees, and graphs as well as prograois The state includes the last access of the basic blocks
that use divide-and-conquer algorithms such as quick-sefthe function. The states are maintained as a stack just

and multi-grid simulation. as the call stack. The compiler inserts code that pushes
. a new state at entry to a function and pops the top state
3.2.2 Exact Control Dependence Analysis at each exit of a function. The exit call is inserted before

To make the discussion somewhat clear, we refer to stdf& actual return statements, but after the data dependence

ments in the source code ssurce linesand the instancesinstrumentation produced for them. Further, each basic

of source lines in the execution traceiastructions we DlOCK is given a unique ID, and an array is constructed

refer to arunderlying source linef an instruction to de- for it listing all of the basic blocks it is statically contro

note the source lingis an instance of, and abbreviate is g&€Pendent on. _ _

usl(i). We also limit the discussion to single procedures At the entrance to an executidrof basic blockB, the

at first, and will generalize it to whole program shortly. @nalysis finds the source of the control dependence by
We define an instruction to be run-time control- calling Control Dependence(b), given in Algorithm 1.

dependent on an instructionwhen a conditional exe- It searches the state stack in the top down order for the

cuted inc has chosen to follow a path in the control floast executioru of all basic blockB” which B statically

graph fromusl(c) to a successor that is post-dominated pntrol dependent on. When closess the source of the

usl(i), while there exists a successored(c) that does control dependence. Once it is found in one state in the

not have this property. Clearly, in this casel(i) must stack, no further search is needed for the rest of the stack.

be control dependent omsl(c). Further, we claim that

¢ is the instance of a source line thatl(i) is control- Algorithm 1 Control Dependence Analysis

dependent on that executed the closest befol® show Procedure ControlDependencé)

this, let, ¢1, c2 be instructions, such thasl(s) is con- {bis an execution of basic blodk}

trol dependent omsl(c;) andusl(cz), ande; occurs be- {Find the source of control dependeneg,

fore ¢, in the execution trace. Notice that the underlying Let a be null

control-flow path for the portion of trace from toi could for each functionf in the call stack in the top-down

not have taken the path froml(c;) to usl(¢) that has all orderdo

intermediate notes that are post-dominatediklyi), as for each basic bloclB’ that B statically control de-
usl(cq) does not have that property, and it is on the path, pends orto
S0 is not run-time control-dependent op, and hence if Let b’ be the last instance @’ executed
s is run-time control-dependent e, no other candidate if distancelf, b)<distanceg, b) then
can intervene between the two. {V is closer tharu}
Now, consider the case of multiple invocations of the Leta =¥’

same procedure. Clearly, we only want to consider state- end if

ment instances in the current invocation of a procedure end for

when testing for in-procedure control-dependence, since if a is not nullthen
conditionals run in a previous copy are not directly rel- {Stop the search
evant. Further, if an instruction is run-time control- break
dependent on an another instruction in the same subrou- end if

tine instance, we clearly do not have to worry about anyend for

return « as the source of the control dependence P’ is the reordered trace
end ControlDependence S, is the set of executed instructions
Sy is the set of data current accessed

3.3 Data Dependence

Given an instruction trace and the exact data access bjprocedure Reorder(, wg, w;)
each instruction, data dependence analysis is straightfor{ is the instruction tracew, and w; are data and
ward. In this study, we track only thé®ow dependenge instruction budgets.
caused by the flow of a value from its definition to one of Let Lq andL; be the logs of the trial executions
its uses [2]. Two other types of data dependenceaate for each instruction in P in the execution ordedto
andoutput-dependencewhich are caused by the reuse of if 7 is not executethen
variables. They are removed by renaming, which creates {Start a trial executioh
a new name for each value in the same way as value num- call Execute(, L4, wq, L;, w;)
bering or static single assignment does in a single basic €nd if
block. end for
The analysis traverses the instruction trace, recorsisd Reorder
the last assignment of each program variable, defines a
new name after each write, and records the current value
(name) for each variable. For each variable read in tHreocgdure Execute(., La, wdj Li, wi)
trace, the analysis converts it to a use of the current valud ¢ iS the current instructioniv; andw; are data and
and adds a flow dependence edge from the instruction ofStruction budgets; and.; and Z; be the logs of the
the last definition to the instruction of the current read. In {fial €xecution}
the worst case, renaming adds a number of names propor2t0re the current state =< Lg, L, P’ >
tional to the length of the trace. We will remap the names!f Not Check{, La, wa, Li, wi) then

into variables in the last step of the analysis. {The current trial failed

for each instruction’ sinceS.L; do
3.4 Constrained Computation Regrouping Removei’ from executed

end for

Computation reordering clusters instructions that access o each datal sinceS.L, do
the same data values. We call the data accessed by a Removed from S,
group of instructions thelata footprint For a group of end for
instructions to reuse data in cache, the size of their foot- R pack to states
print should be no greater than the size of cache. Shown e
by Algorithm 2, constrained computation regrouping is a {The current trial succeeded
heuristic-based method for reordering instructions while ¢35 e5cn operandp in i do
limiting the size of their footprint. {Divide the budgets
The functionreorder traverses the instruction trace. Letn be the next (not yet executed) instruction that
When an instruction is not yet executed, it cadlecute usesop
to start the next reordering process from this instruction call Executef, Ly, Ly.size+Awg, Li, Li.size +
with an initial data budget,, which is the size of the data Aw;)
cache. As the reordering picks an instruction that reuses a gnq for
particular datum, it temporarily skips all other unexedute gnq if
instructions. It is a form of speculation. It may incur the
execution of many other instructions and over spend the{CIean ug
data budget, in which case we need to roll back and canis girectly invoked byReorderthen
cel the speculative reordering. Three other data strusture 5y each datal in L, do
are used to support the speculation. The instructiorllog Removed from S,
and the data lod.q, initially empty, keep the speculated gnq for
but not yet committed reordering results. The instruction ClearL, andL;
budgetw; limits the depth of the speculation for efficiency gnq if
reasons that we will discuss later.
end Execute
Algorithm 2 Constrained Computation Regrouping
data structures procedure Check{, L4, wa, Li, w;)

P is the instruction trace to be reordered {Add the effect of and check the budgkt

for each operandp in i do create a new variable if the stack is empty). At the last

if op is notinS, then use of a value, it frees its variable by pushing it into the
Addopto S;andL, stack. Note that this scheme does not necessarily mini-
Addito L; andsS; mize the number of needed variables. As shown in the
end if evaluation, memory re-allocation after constrained com-
end for putation reordering can eliminate the storage expansion
if Lg.size > wq OF L;.size > w; then caused by variable renaming. Therefore, removing all
return false anit- and output-dependences does not cause an increase
end if in the memory demand of a program.
{Check all dependencgs 4 Evaluation
for each (not yet executed) instructignhat: depends
do In an earlier study, we used unconstrained computation
if not Check(, L4, wq, L;, w;) then regrouping on a set of Fortran 77 programs and observed
return false significant locality improvements [12]. C programs are
end if more difficult for computation regrouping because they
end for often have complex data and control structures (includ-
return true ing recursion). In this section, we use a set of C pro-
end Check grams to evaluate the effect of the exact control depen-

dence tracking, memory renaming and reallocation, and

The functionExecutecalls Checkto inquire whether constrained computation regrouping. For each program,
the execution of the current instruction would exceed tAable 1 shows the name, the source, a description, and
budget. Both functions may speculatively reorder instruttie size of the input. The last two columns show that
tions, soExecutdirst checkpoints the current state. If théhe programs have from under two thousand to about two
current instruction cannot be executed within the budgbtjndred thousand data elements being accessed by a few
it will roll back to the beginning state and return. Othhundred thousand to over six million memory times.
erwise, it continues the speculation on instructions thatwe first instrument a program, run it to get an execu-
reuse the data of the current instruction. When more thgon trace, and measure the capacity miss rate on all cache
one candidate is present, it divides the budget, currentlizes on the original trace [27]. Then, the trace is re-
equally among the candidates. The budget division baldered, and the capacity miss rates are measured again.
ances the reordering permitted for candidate instructiomie temporal locality of the two versions are then com-
The functionCheckiraces back the dependences, execuigsred by the cache capacity miss rates on all cache sizes.
(and checks) all predecessors, accounts their consuMpe regrouping does not change the number of memory
tion of the budget, and checks for any over spending. décesses. However, memory renaming and reallocation
so, it returns false and causes tBeecuteto discard the changes the size of program data. The new sizes are
trial. Otherwise, it completes the speculative executighown inside parentheses in the last column of Table 1.
and records the reordered execution. The combined transformations reduces the size of pro-

The time cost of the algorithm is linear to the size qfram data in all cases. Therefore, a reduction in the miss
the trace, because it limits the size of each trial by thgte means a higher reduction in the number of capacity
instruction budget. Since a trial takes a constant time, amngsses.
every trial executes at least an instruction, the total timewe first test the efficacy of analysis in cases where there
cost is linear. Without the instruction budget, the timgre well-known static improvement techniques. One test
complexity can be quadratic in extreme cases. The trigﬁ)gram consists of two simple loops which make two
can be efficiently implemented by a combination of stackasses over an array. The two loops can be fused together
like transaction logs and set data structures. by an aggressive optimizing compiler to reuse data imme-
diately after it is first accessed. As shown by the left-hand
graph in Figure 3, the trace-level computation regrouping
Memory re-allocation is the reverse of memory renargliminates capacity misses for a cache size greater than
ing. It assigns values with non-overlapping lifetimes inteight data elements, successfully reproducing the effect
a single variable in order to minimize the storage requiref loop fusion.
ment. It uses a single pass to calculate the live range ofor the matrix multiply, shown by the right-hand graph
each value. It keeps free variables in a stack to minimizreFigure 3, computation regrouping removes most of the
the distance of the data reuse. At the definition a valumpacity misses due to the longest data reuse. To be pre-
it pops a vacant variable from the top of the stack (orse, it reduces the miss rate of the 4K cache from 7.6%

3.5 Memory Re-allocation

Table 1: Test programs

name source description num. accesses (K) num. data (K)
Fuse local two loops reading a single array 352 64.0 (0.0)
MMult | textbook | multiplication of two matrices 6,688 38.4 (25.8)
BSort textbook | integer bubble sort, 768 elements 4,446 1.58 (1.53)
QSort textbook | integer quick sort, 15K elements 3,543 30.6 (30.1)
Health | Olden [7] | linear searches of hospital patient records 3,916 59.8 (5.65)
MST Olden finding a minimal spanning tree 810 27.0 (3.25)
TSP Olden a traveling salesman problem solver 3,394 14.9 (7.03)
TreeAdd| Olden recursive summing a balanced 15-level binary tree 2,589 196.9 (196.6)

* The parenthesized numbers in the last column are the dagafier memory renaming and reallocation.

to 3.7%, a reduction of 58%. It demonstrates considihe effect of constrained computation regrouping A

able potential for cache-performance improvement in tigseedy, unconstrained regrouping algorithm may degrade
test, as is expected, but is not as effective as a hand-coddber than improve the program locality because too
stripmine-and-interchange version, which resulted innauch regrouping of related computations may overflow
87% improvement. Constrained reordering is a heuristithe cache of a limited size. As an example, we use uncon-
based solution to an NP-hard problem. It loses to compikrained regrouping i@Sort The result is shown by the
blocking because it does not exploit the high-level struleft-hand side graph in Figure 5. The capacity miss rate is
ture of the matrix multiply program. increased by at least a factor of two for cache sizes greater

For further evaluation, we tested two common sorﬁha” 128. The size needed to fully cache the execution is
ing algorithms — bubble sort and quick sort, and fodpcreased from 16K to 65K elements.
programs from the Olden benchmark setealth, MST, The effect of memory renaming and reallocation

TreeAdd and TSP, As illustrated in Figures 4, most of)
;) . omplete memory renaming removes all false data de-
the tests showed major potential for locality |mprovemer%

while two tests —QSortandTreeAdd— showed no major gfer:ergzesir'] W'X];:;rzzgm'r}g’ w:r: 'SI mggrr:slt? Z;snggarr;c_e
improvement. The result fofreeAddis consistent with grouping. Pie, PPy

: . . uping onBSortwithout memory renaming and reallo-
expectations, since the benchmark performs a single walk. ; . -

: . ation. The right-hand side graph in Figure 5 shows that
over a binary tree and thus has very little reuse. On the

. . ere is no visible difference between the miss-rate curve
other hand,QSorthas excellent locality because it nat- . .

. .__of the reordered version and that of the base version. The
urally blocks computation for power-of-two cache sizes. f false d d .
Computation regrouping finds little opportunity for imPresence ot faise dependences prevents computation re-
rovement ordering to have an observable effect. As shown before in

P o S Table 2, the capacity miss rate®&ortcan be reduced by
The exact miss-rate reduction is given in Table 2 forgfactor of 9 if we remove the false dependences through
cache size equal td, =, 5 1 and; of the power-of- memory renaming and reallocation. Renaming increases
two size needed to have no capacity miss. The comphe data size. However, as shown in Table 1, after reallo-

tation regrouping has little and no effect dreeAddand cation, the data size is actually reducedi®ortand in all
QSort It reduces the average miss rate by 30%Mdult other programs.

and 75% forTSP. For the other four programs, the reduc-
tion is_at least 90% or a factor o_f 1Q, showing the gregt potential Uses of the System
potential of computation regrouping in these programs.

The new system is useful to programmers, compiler writ-
The effect of exact control dependence tracking ers, and computer architects. A programmer can use it to
Many test programs do not have regular loop struestimate the potential of locality improvement for a pro-
tures. The control dependence allows computationsgmm before trying complex transformations for a specific
be regrouped across different control structures inclueikche system. A compiler writer can use it to study the
ing branches and procedural calls. Over a half of ti@tential improvement over the current techniques and to
programsQSort Health MST, TreeAdd and portions of experiment with new regrouping strategies without a full
TSP use recursion. This is perhaps the first study thenmpiler implementation. A computer architect can use it
finds the exact parallelism in recursive programs and do-tailor the memory system design to the available pro-
tomatically measures the effect of computation regrougram locality.
ing. The limit of program locality is vitally important to

Fusion Test Matrix Multiply
0.7 0.9 -
0.6 ——base L 0.8 A —— base |
regrouping 0.7 : regrouping
0.5 \
\ 0.6 \
0.4 05

0.3 \ 0.4 \
0.2 \ 0:3 \
T 02| |

miss rate
miss rate

0.1 - N
0.1 ——
0 T T T T T T T T T T T T T T T 1 O : : : : : : ‘\‘ —
DR A L \‘b,,_gbb‘ T
cache size (elements) cache size (elements)
Figure 3: The fusion test and matrix multiply
Table 2: The miss-rate reduction by constrained computaégrouping
cache size Fuse | MMult | BSort | QSort | Health | MST | TreeAdd| TSP | average
1/32 data siz¢ 100% | 25% | 87% | 6% 64% | 78% 0% 93% 57%
1/16 data size 100% | 25% | 89% | 3% 94% | 87% 0% 61% 57%
1/8 data size | 100% | 25% | 89% | 3% 94% | 87% 0% 61% 60%
1/4 data size | 100% | 28% | 91% | 1% | 100% | 100% 0% 61% 60%
1/2 data size | 100% | 47% | 92% | 1% | 100% | 100% 0% 100% | 68%
average 100% | 30% | 90% | 3% 92% | 93% 0% 75% 60%

high-performance computing, where large systems aran programs and applied a greedy heuristic to shorten
built to run a few applications. In 1988, Callahan, Cock#)e distance of data reuses [12]. They observed that the
and Kennedy gave a model callbdlanceto measure the greedy regrouping sometimes worsens the locality. They
match between the memory demand of a program and thé not model the exact control dependence, nor did they
data bandwidth of a machine [6]. Some programs run wae memory renaming.

on machines with a memory hierarchy, and some need the 5op-nest optimization has achieved great success and
high-bandwidth vector memory. The simulation tool cagecome commonplace in industry compilers. Loop fu-
show how the situation changes when program transfgfsny jmproves the locality by combining loops that ac-
mations are considered. If the locality of a program cagass the same data. Kennedy and McKinley [23] and
not be improved by the simulation tool, it is unlikely thagzget al. [17] modeled loops and data reuses as a graph.
the program can utilize cache well even with the best prphe complexity of loop fusion was studied using a graph
gram optimization. model [23] and a hyper-graph model [12]. Many fusion
techniques used greedy heuristics [12, 22]. The graph
model does not measure the exact locality. It treats the
loop fusion as a clustering process and assumes full cache

Numerous studies in the past forty years have charact&dse within a fused loop and no cache reuse between
ized the memory behavior of computer programs, mo@9Ps. In this paper, we present a new program model
eling them as a trace of accesses to memory page@%?ed on the bandwidth minimization problem. We treat
cache blocks. Some studied more structured progralf@ computation regrouping as a sequencing process and
and finer grained data—data reuses within and acr&8§sider all cases of the cache reuse.

loop nests [28], per-statement [29], and across progranComputation blocking is arguably the most complex
inputs [14]. These studies show that long-distance d&éam of computation regrouping. Callahat al. de-
reuses cause cache misses, but they do not show Isowbed the transformation as unroll-and-jam and gave
well we can improve the locality of data access. Our edts legality test [6], which allows a compiler implemen-
lier work collected instruction traces from a set of Fotation [8]. The later studies, for examples Wolf and

6 Related Work

miss rate

miss rate

miss rate

Bubble Sort
0.9

0.8

——base
regrouping

07|
\

0.6 \

0.5 \

0.4
0.3 x

0.2 \

0.1 \
! e

N LN -+ \&u

cache size (elements)

Health
0.8 -

0.7

——Base
0.6

05 +—

Regrouping| |

0.4

0.3

0.2

0.1

0 L — L — L B e B s

NX O X O A o ok
\Q)ffa\&b‘@\(b%fb

cache size (elements)

Tree Add

0.8 -
0.7
0.6

——base
regrouping

=

0.5

04
0.3

0.2

0.1

\

0 T T T T T T T T T T T T T '\ T

N

R R T R
S SRR & bé;b

cache size (elements)

—

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

miss rate

0.8
0.7
0.6
0.5
0.4

miss rate

0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

miss rate

Quick Sort

——base M
regrouping —

T

LR S Y S N S ¥
N
QY Q° D
VN ® 8

cache size (elements)

MST

——base

regrouping

™

T T T T T T

© & © ™ (o} »
N © rﬁD \Qq/ thQ’ \éb%

cache size (elements)

Traveling Salesman

——base

regrouping

LI B B p e |

© ™
DN

™ o > @Q"b

cache size (elements)

Figure 4: The effect of constrained computation regrouping

10

Quick Sort Bubble Sort
14 0.9 -
0.9 : ——base . 0.8 ——base [
08 \\ unconstrained 07 no renaming
0.7 \ 06
% 0.6 \ o)
® s \ T 0.5
2 A 804
€ 04 \ g
0.3 \ 0.3
0.2 0.2
0 T T T T T T T T T T T T T T T T 1 0 ; ‘//‘ —

S R S N T S - U
LRI \n;b ro(,;b

N ™ >
& g v e) >R S %,(1,\&

cache size (elements) cache size (elements)

Figure 5:Quick sortusing unconstrained regrouping aBdbble sorinot using data renaming

Lam [39], Cierniak and Li [9], and Kodukulat al.[24], tracks the exact control dependence, applies the general
modeled tiling as an optimization problem in the (higiferm of renaming and reallocation (and remowdisfalse
dimensional) iteration space and approximated the optependences), and uses constrained reordering. Almost
mal solution in various ways. Loop fusion and tiling magll previous limit studies assumed uniform, single-cycle
be combined for loops that are all fusible [24, 33, 35, 48¢cess to memory. On modern machines, the memory
41]. Computation fusion is also used to transform dgpeed is orders of magnitude slower than the register and
namic programs [11, 19, 30, 36, 37]. cache speed. Hence the potential gain from locality is as
Unlike high-level program transformations, the tracéignificant as the potential form parallelism, especiaily f
based reordering knows the exact control and data dep@@P-numerical programs.
dence. However, it does not know the high-level control Program control flow is usually analyzed in two ways.
structure needed for tiling. It identifies legal computatidf-conversion uses predicates to construct straight-line
sequences, but they may not be coded efficiently by a peede and convert the control dependence to the data de-
gram. Still, the trace-level simulation can be used to stuggndence. Alleret al. gave a method that systemati-
the potential for a wide range of programs. Pingali cally removes the control flow in loops [1]. Ferramtieal.
al. generalized the idea of loop fusion to computation rerodeled control dependence explicitly [16]. Cytreiral.
grouping and applied it manually to a set of C prograngsive an efficient measurement algorithm [10]. Later stud-
commonly used in information retrieval, computer animées followed these two classical approaches. A compre-
tion, hardware verification and scientific simulation [32hensive treatment can be found in the textbook by Allen
The new tool allows these techniques to be studied amall Kennedy [2].
their potential measured without labor-intensive manualData renaming is a special form of memory manage-
programming and reprogramming. ment. It uses a minimal amount of storage for the ac-
Nicolau and Fisher first showed the limit of parallelisrtive data values (but does not need paging or cache evic-
at the instruction level when the control and false data disn). Huang and Shen studied the reuse of values [21].
pendences are ignored [31]. Later studies added diffBurgeret al. measured the benefit of the optimal cache
ent levels of constraints. Lam and Wilson were the firgtanagement on program traces [5]. As discussed in Sec-
to model the run-time control dependence [25]. As d#on 2, memory and cache management is orthogonal to
scribed in Section 3.2.1, their method was not accurate foe problem of computation reordering.
recursive procedures. They analyzed binary programs and
removed a subset of false dependences involving regiser- Summary
allocated loop index variables. They, as well as most oth-
ers, used greedy reordering, which is sufficient for the dat&e have shown that optimizing for locality is differ-
flow model with an unlimited number of processors. Orent from optimizing for parallelism or cache utilization.
exception is the work of Theobakt al, who measured We have presented a heuristic-based algorithm for con-
the “smoothability” of the parallelism and used it to corstrained computation regrouping. We have designed a
sider the resource constraint [38]. In comparison, our tdohce-driven tool that measures the exact control depen-

11

dence and applies complete memory renaming and r§#] M. C. Carlisle. Olden: parallelizing programs with
allocation. The new algorithm and tool significantly im-
proved the temporal locality of a set of C programs, reduc-
ing the number of cache capacity misses by a factor of ten
for half of the programs. In addition, complete variable[g]
renaming before reordering did not increase the data size
when applied before constrained regrouping and memory
re-allocation. While the results suggest that optimizing
for locality has a great effect, the potential is not Uni-[g]
form across all programs. Therefore, the automatic tool is
valuable in allowing a programmer to estimate the benefit
of computation regrouping before applying it in complex
programs.

[10]

Acknowledgement Daniel Williams participated in the

initial part of this work. We thank SC’'04 reviewers
for their comments, especially for pointing out a prob-
lem with the use of an example. The latex style file

was due to Keith Cooper.

Both authors are supportzﬁq]

by the Department of Energy (Contract No. DE-FGO
02ER25525). Additional support comes from the Na-
tional Science Foundation (Contract No. CCR-0238176,
CCR-0219848, and EIA-0080124), and an equipment
grant from IBM. Special thanks go to Michelle Strout,
whose constructive comments and steadfast shepherdirg]
gave consistency, order, and polish to the presentation of
the paper.

References

[1]

3]

[4]

[5]

[6]

[13]

J. R. Allen, K. Kennedy, C. Porterfield, and J. War-
ren. Conversion of control dependence to data de-
pendence. II€onference Record of the Tenth Annual
ACM Symposium on the Principles of Programming 4]
LanguagesAustin, TX, Jan. 1983.

R. Allen and K. Kennedy. Optimizing Compil-

ers for Modern Architectures: A Dependence-based
Approach Morgan Kaufmann Publishers, October
2001. [15]

J. Backus. The history of Fortrah 11, andIll.
In Wexelblat, editorHistory of Programming Lan-
guagespages 25-45. Academic Press, 1981.

L. A. Belady. A study of replacement algorithms fot 16l

a virtual-storage computerIBM Systems Journal
5(2):78-101, 1966.

D. C. Burger, J. R. Goodman, and A. Kagi. Mem 7]
ory bandwidth limitations of future microprocessorg.1
In Proceedings of the 23th International Symposium
on Computer ArchitecturePhiladelphia, PA, May
1996.

D. Callahan, J. Cocke, and K. Kennedy. Estimating8]
interlock and improving balance for pipelined ma-
chines.Journal of Parallel and Distributed Comput-
ing, 5(4):334-358, Aug. 1988.

12

dynamic data structures on distributed-memory ma-
chines PhD thesis, Department of Computer Sci-
ence, Princeton University, June 1996.

S. Carr and K. Kennedy. Blocking linear algebra
codes for memory hierarchies. froceedings of the
Fourth SIAM Conference on Parallel Processing for
Scientific ComputingChicago, IL, Dec. 1989.

M. Cierniak and W. Li. Unifying data and control
transformations for distributed shared-memory ma-
chines. InProceedings of the SIGPLAN '95 Confer-
ence on Programming Language Design and Imple-
mentation La Jolla, California, 1995.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
K. Zadeck. Efficiently computing static single as-
signment form and the control dependence graph.
ACM Transactions on Programming Languages and
Systemsl3(4):451-490, Oct. 1991.

C. Ding and K. Kennedy. Improving cache per-
formance in dynamic applications through data and
computation reorganization at run time. Rro-
ceedings of the SIGPLAN '99 Conference on Pro-
gramming Language Design and Implementation
Atlanta, GA, May 1999.

C. Ding and K. Kennedy. Improving effective
bandwidth through compiler enhancement of global
cache reuse. Journal of Parallel and Distributed
Computing 64(1), 2004.

C. Ding and Y. Zhong. Compiler-directed run-time
monitoring of program data access. Rroceedings
of the first ACM SIGPLAN Workshop on Memory
System Performanc8erlin, Germany, June 2002.

C. Ding and Y. Zhong. Predicting whole-program
locality with reuse distance analysis. Rroceed-
ings of ACM SIGPLAN Conference on Programming
Language Design and Implementatiddan Diego,
CA, June 2003.

C. Fang, S. Carr, S. Onder, and Z. Wang. Reuse-
distance-based miss-rate prediction on a per instruc-
tion basis. IrProceedings of the first ACM SIGPLAN
Workshop on Memory System Performané&ash-
ington DC, June 2004.

J. Ferrante, K. Ottenstein, and J. Warren. The pro-
gram dependence graph and its use in optimization.
ACM Transactions on Programming Languages and
Systems9(3):319-349, July 1987.

G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Col-
lective loop fusion for array contraction. Rroceed-
ings of the Fifth Workshop on Languages and Com-
pilers for Parallel ComputingNew Haven, CT, Aug.
1992.

M. Garey and D. Johnson. Computers and
Intractability, A Guide to the Theory of NP-
CompletenessW. H. Freeman and Co., New York,
NY, 1979.

[19] H. Han and C. W. Tseng. Locality optimization$32] V. S. Pingali, S. A. McKee, W. C. Hsieh, and J. B.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

for adaptive irregular scientific codes. Technical re-
port, Department of Computer Science, University
of Maryland, College Park, 2000.

M. D. Hill. Aspects of cache memory and instrud33]
tion buffer performance PhD thesis, University of
California, Berkeley, November 1987.

S. A. Huang and J. P. Shen. The intrinsic bandwid[@4
requirements of ordinary programs. Pnoceedings]
of the 7th International Conferences on Architec-
tural Support for Programming Languages and Op-
erating System<ambridge, MA, October 1996.

K. Kennedy. Fast greedy weighted fusion. Rro- [35]
ceedings of the 2000 International Conference on
SupercomputingSanta Fe, NM, May 2000.

K. Kennedy and K. S. MKinley. Typed fusion with
applications to parallel and sequential code gener-
ation. Technical Report TR93-208, Dept. of Coni36]
puter Science, Rice University, Aug. 1993. (also
available as CRPC-TR94370).

I. Kodukula, N. Ahmed, and K. Pingali. Data-centric
multi-level blocking. InProceedings of the SIG- 7
PLAN '97 Conference on Programming Languadg’]
Design and ImplementatioriLas Vegas, NV, June
1997.

M. S. Lam and R. P. Wilson. Limits of control[38]
flow on parallelism. IrProceedings of International
Symposium on Computer Architectu@ueensland,
Australia, 1992.

G. Marin and J. Mellor-Crummey. Cross architegggl
ture performance predictions for scientific applica-
tions using parameterized models. Pmoceedings

of Joint International Conference on Measurement
and Modeling of Computer Systerh&ew York City,

NY, June 2004. [40]

R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger.
Evaluation techniques for storage hierarchitivi
System JournaB(2):78-117, 1970. [41]

K. S. McKinley and O. Temam. Quantifying loop
nest locality using SPEC’95 and the perfect bench-
marks. ACM Transactions on Computer Systems
17(4):288-336, 1999. [42]

J. Mellor-Crummey, R. Fowler, and D. B. Whalley.
Tools for application-oriented performance tuning.
In Proceedings of the 15th ACM International Con-
ference on Supercomputingorrento, ltaly, June [43]
2001.

J. Mellor-Crummey, D. Whalley, and K. Kennedy.
Improving memory hierarchy performance for irreg-
ular applications.International Journal of Parallel
Programming 29(3), June 2001. [44]
A. Nicolau and J. A. Fisher. Measuring the paral-
lelism available for very long instruction word archi-
tecture. IEEE Transactions on Computer33(11),
1984.

13

Carter. Restructuring computations for temporal
data cache localitynternational Journal of Parallel
Programming 31(4), August 2003.

W. Pugh and E. Rosser. lteration space slicing for
locality. In Proceedings of the Twelfth Workshop on
Languages and Compilers for Parallel Computing
August 1999.

X. Shen, Y. Zhong, and C. Ding. Regression-based
multi-model prediction of data reuse signature. In
Proceedings of the 4th Annual Symposium of the Las
Alamos Computer Science Instituteante Fe, New
Mexico, November 2003.

Y. Song and Z. Li. New tiling techniques to improve
cache temporal locality. IfProceedings of ACM
SIGPLAN Conference on Programming Languages
Design and Implementatioitlanta, Georgia, May
1999.

M. M. Strout, L. Carter, and J. Ferrante. Compile-
time composition of run-time data and iteration re-
orderings. InProceedings of ACM SIGPLAN Con-
ference on Programming Language Design and Im-
plementationSan Diego, CA, June 2003.

M. M. Strout and P. Hovland. Metrics and models
for reordering transformations. IRroceedings of
the first ACM SIGPLAN Workshop on Memory Sys-
tem PerformanceéWashington DC, June 2004.

K. B. Theobald, G. R. Gao, and L. J. Hendren. On
the limits of program parallelism and its smoothabil-
ity. Technical Report ACAPS Memo 40, School of
Computer Science, McGill University, June 1992,

M. E. Wolf and M. Lam. A data locality optimiz-
ing algorithm. InProceedings of the SIGPLAN '91
Conference on Programming Language Design and
ImplementationToronto, Canada, June 1991.

D. Wonnacott. Achieving scalable locality with time
skewing.International Journal of Parallel Program-
ming, 30(3), June 2002.

Q. Yi, V. Adve, and K. Kennedy. Transforming loops

to recursion for multi-level memory hierarchies. In

Proceedings of ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation
Vancouver, Canada, June 2000.

X. Zhang and R. Gupta. Cost effective dynamic
program slicing. InProceedings of ACM SIGPLAN
Conference on Programming Language Design and
ImplementationJune 2004.

Y. Zhong, C. Ding, and K. Kennedy. Reuse distance
analysis for scientific programs. Proceedings of
Workshop on Languages, Compilers, and Run-time
Systems for Scalable ComputeW¥ashington DC,
March 2002.

Y. Zhong, S. G. Dropsho, and C. Ding. Miss rate
preidiction across all program inputs. Rroceed-
ings of the 12th International Conference on Paral-
lel Architectures and Compilation Techniguésew
Orleans, Louisiana, September 2003.

