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Abstract

Improving program locality has become increasingly im-
portant on modern computer systems. An effective strat-
egy is to group computations on the same data so that
once the data are loaded into cache, the program performs
all their operations before the data are evicted. However,
computation regrouping is difficult to automate for pro-
grams with complex data and control structures.

This paper studies the potential of locality improve-
ment through trace-driven computation regrouping. First,
it shows that maximizing the locality is different from
maximizing the parallelism or maximizing the cache uti-
lization. The problem is NP-hard even without consider-
ing data dependences and cache organization. Then the
paper describes a tool that performs constrained compu-
tation regrouping on program traces. The new tool is
unique because it measures the exact control dependences
and applies complete memory renaming and re-allocation.
Using the tool, the paper measures the potential locality
improvement in a set of commonly used benchmark pro-
grams written in C.

1 Introduction

The memory performance of a program is largely deter-
mined by its temporal data locality, that is, how close the
same data are reused during an execution. The primary
method for improving the temporal locality is regroup-
ing those computations that use the same data, hence con-
verting long-distance data reuses into short-distance cache
reuses. Well-known techniques such as loop interchange,
blocking (tiling) and fusion regroup computations in reg-
ular loop nests. Recent studies show that more general
forms of computation regrouping have significant benefits
in other complex programs such as information retrieval,
machine verification, and physical, mechanical, and bio-
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logical simulations [11, 32, 36]. Computation regrouping
is the only form of computation reordering we study in
this paper, so we use the termscomputation regrouping
andcomputation reorderinginterchangeably in this paper.

The goal of computation regrouping is to maximize
program locality. Program locality is difficult to define,
so is the optimality of computation regrouping. We use
a precise measure of locality in this paper, which is the
capacity cache miss rate of an execution, that is, the miss
rate of the fully-associative LRU cache save the first ac-
cess to each element [20]. We consider an abstract form
of cache that consists of data elements rather than cache
blocks, so we separate the effect of the spatial locality.
Spatial locality has a straightforward upper-bound, where
cache blocks and the cache are fully utilized. The lowest
cache miss rate is the lowest capacity miss rate divided by
the size of the cache block.

Computation regrouping is difficult to apply to large
programs because related computations often spread far
apart in the program code. Traditional dependence anal-
ysis is often not effective because of the complex control
flow and indirect data access especially recursive func-
tions and recursive data structures. Until now, the au-
tomatic methods are limited to programs written in loop
nests, and manual transformation is limited to small frag-
ments of a limited number of applications.

We present a study on the potential of computation re-
grouping. First, we show that maximizing the locality
is different from maximizing the parallelism or maximiz-
ing the cache utilization. We show that problem of com-
putation regrouping is NP hard even when not consid-
ering program dependences and cache organization. We
then present a simulation tool that measures the potential
of computation regrouping. The tool allows for aggres-
sive yet correct reordering by respecting the exact data
and control dependences and applying complete data re-
naming and memory re-allocation. It uses a constrained
regrouping heuristic to improve the locality for a given
cache size. Finally, we evaluate the new tool on a set
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of numerical and integer programs. The tool may have a
significant value in high-performance computing, as dis-
cussed in Section 5.

Many studies have measured the potential of the par-
allelism at the instruction, loop, and procedure level (for
examples [25, 31, 38]). Most of them ignored the local-
ity effect, assuming a single-cycle memory latency. How-
ever, on modern machines, the difference in the memory
access time is reaching two orders of magnitude depend-
ing on the data locality. On SGI Origin 2000, the ma-
trix multiply executes the same number of instructions
100 times faster after the locality optimization. Hence,
studying the potential of locality is important because it
may lead to significant performance improvement. For
general-purpose programs, where the average number of
parallel instructions is mostly below 10, the performance
potential from the locality may rival or exceed that from
the parallelism.

The simulation tool is trace-based and has several lim-
itations. A trace may not represent the program behavior
on other inputs, and a trace may be too large to be ana-
lyzed. For many programs, earlier work has shown that
the temporal locality follows a predictable pattern and the
(cache miss) behavior of all program inputs can be pre-
dicted by examining medium-size training runs [14, 15,
26, 34, 44]. In this paper, we use a medium-size input
for each program. Determining the improvement across
all program inputs is a subject of future study. Further-
more, the simulation uses heuristics and does not find the
optimal locality. We use the simulation tool to measure
the lower bound of locality improvement in complex pro-
grams by trace-level computation reordering.

2 The Optimal Temporal Locality

Given a sequence of memory accesses and the cache of
a given size, we want to minimize the number of cache
misses. The past work in memory and cache management
shows that given a fixed access sequence, the cache has
the optimal performance if it keeps in cache the data with
the closest reuse, i.e. theOPT strategy [3, 4]. However,
the optimality no longer holds when we reorder the se-
quence, that is, when we change the order of data reuses.

To find the best access order, we need to first determine
whether and when it is legal to reorder by observing the
dependences among program operations and then finding
the independent and parallel operations. Many past stud-
ies examined the parallelism at the instruction, loop, and
program level. The available parallelism does not directly
measure the available locality. Even assuming the maxi-
mal parallelism, where program operations can be freely
reordered, finding the optimal locality is not trivial, as
shown next by an example.

Figure 1 has three columns: the first shows a sequence

Inst. data  OPT
list access caching
T: (a h)  a h

U: (b c)  a b c h

V: (d e f)  a b c d e f h

W: (b g h) a c d e f g

X: (c f k)  a d e g k

Y: (a d g)  e k

Z: (e k)  

Figure 1: An example sequence of seven instructions,
each uses two to three data elements. It needs mini-
mally seven-element cache to avoid capacity misses.*Be-
fore preceding further, the reader is urged to reorder the
sequence to reduce its cache demand, assuming the se-
quence is fully parallel and can be freely reordered.

of operations, the second shows the set of data elements
accessed by each operation, and the third shows the cache
content under the OPT strategy. All data reuses are cached
if the cache size is at least seven elements. It is possible
to reduce the cache demand to fewer than seven elements,
if one reorders the sequence. We urge the reader to try
the reordering problem, assuming the operations are fully
parallel and can be arbitrarily reordered.

The solution to the example problem is given in Fig-
ure 1. Part (a) uses a graph to model the data shar-
ing between operations. Part (b) gives a sequence where
each pair of neighboring nodes are separated by at most
one other node. This property is calledbandwidth-1.
Each pair of data-sharing operations are closest in this
sequence. Indeed, Part (c) shows that the reordered se-
quence needs only a three-element cache and therefore
has much better locality than the original sequence.

As shown by the example, the goal of the locality opti-
mization is to reduce the distance between operations that
reuse the same data. The definition of the distance de-
pends on the cache management scheme especially its re-
placement policy. Instead of modeling the exact cache
management algorithms, we model a sufficient but not
necessary condition. To ensure a cache hit, we require
that thetime distance, which is the number of instructions
between the two accesses, is bounded by a constant. The
time distance between two instructions is the analogous
of the bandwidth in the bandwidth-minimization problem.
We now define the time-distance problem and show it is
NP-hard.

Definition The time-distance problem: A program ex-
ecution is a sequence of instructions. Some instructions
may access three or more data elements. Given a program
and a cache sizek, the problem is to reorder the instruc-
tion sequence so that for all pairs of instructions that ac-
cess the same data, the number of the pairs whose time
distance is bounded byk is maximized.
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Inst. data OPT 4-elem.
list access cache LRU
T: (a h) a h a h

W: (b g h) a b g a h b g

Y: (a d g) b d b a d g

U: (b c) c d d g b c

V: (d e f) c e f c d e f

X: (c f k) e k d e c f

Z: (e k)  c f e k

(c) The recordered sequence 
according to (b).  All reuses are 
fully buffered by 3-element OPT 
cache, 4-element LRU cache, or 3 
registers. 

U
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ZVT Y
a

cb

fg

ed

(a) The data-sharing relation as a 
graph. Each edge connects two 
instructions that use the same data.

T W Y U V X Z

(b) A bandwidth-1 sequence, in which 
the endpoints of any edge in (a) are 
separated by at most one other node.  
The graph has only two such 
sequences: this one and its reverse.

h k

Figure 2: The example problem of optimal locality, solved
as an instance of the bandwidth problem

Theorem 2.1 The time-distance problem is NP-hard.

Proof We reduce the tree bandwidth-k problem [18] to
the time-distance problem. LetT be a free tree with all
vertices of degree≤ 3. The bandwidth-k problem is to
find a linear sequence of all tree nodes so that any two
connected tree nodes are separated by no more thank

nodes in the sequence. Given a tree in the bandwidth-k

problem, we construct an execution trace as follows. Let
each tree edge represent a unique data element. Put the
tree nodes in a sequence. Convert each node to an in-
struction that accesses the data elements represented by
its edges. Since the node degree is no more than three,
an instruction accesses at most three data elements. The
conversion takes the time linear to the graph size. As-
sume no data or control dependence in the converted se-
quence. A bandwidth-k sequence exists if and only if the
optimal time-distance solution exists, that is, one can re-
order the instruction trace so that no two data-sharing in-
structions are separated by more thank instructions. Since
bandwidth-k is NP-hard for trees whose nodes have up to
three edges, the time-distance problem is also NP-hard.

The theorem shows that even without considering the
complication from data dependences and cache organiza-
tion, the locality problem is NP-hard. In addition, max-
imal parallelism and optimal cache management do not
imply optimal locality. Next we study the potential of lo-
cality improvement through trace-driven computation re-
grouping.

3 Trace-Driven Computation Regrouping

The section presents the five steps of trace-driven com-
putation regrouping. The first step constructs instruction
traces by instrumenting programs to record relevant infor-
mation. Of course, not all ordering is permissible. The
next two steps identify the exact control and data de-
pendences in the trace. The control dependence analy-
sis uses a novel algorithm to handle recursive programs.
The data dependence analysis uses complete renaming to
avoid false dependences. The fourth step applies con-
strained computation regrouping. Finally, the last step re-
allocates data variables to reduce the memory usage after
reordering. We now describe these steps in the following
five sub-sections.

3.1 Trace Construction

We construct instruction traces through source instrumen-
tation of original programs. We first transform program
statements (except for call statements) to make the assign-
ment and control flow explicit, using the C and Fortran
compilers we developed for earlier studies [13, 43]. The
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following example shows the source-to-source transfor-
mation of a compound statement in C.

a [ 0 ] [ i ==0? i ++: i ] . a [ i ] = 0 ;

becomes

R e c I n s t ( 1 , 1 , &i ) ;
i f ( ( i != 0 ) ) goto L4 ;
R e c I n s t ( 2 , 2 , &tmp2 , &i ) ;
tmp2 = ( i + 1 ) ;
R e c I n s t ( 2 , 2 , &i , &tmp2 ) ;
i = tmp2 ;
R e c I n s t ( 2 , 2 , &tmp1 , &tmp2 ) ;
tmp1 = tmp2 ;
goto L5 ;

L4 : ;
R e c I n s t ( 2 , 2 , &tmp1 , &i ) ;
tmp1 = i ;

L5 : ;
R e c I n s t ( 1 , 1 , &(a [ 0 ] [ tmp1 ] . a [ i ] ) ) ;
a [ 0 ] [ tmp1 ] . a [ i ] = 0 ;

After the transformation, we can simply prefix each
source line with a call to a specialRecInst function. Its pa-
rameters give the number of locations being accessed, the
number of reads, and the list of locations where a write, if
any, is followed by reads. The locations are given by the
virtual memory address. For example, the three parame-
ters of the firstRecInst call show that the next instruction
has one memory access, it is a read, and the read location
is the address of variablei. This of course provides exact
information on all scalar dependencies, as to see what a
read is dependent on one merely needs to look up the last
write to the location. It includes false dependences as lo-
cal variables reuse the stack space. These and other false
dependences will be systematically removed in a later step
through variable renaming.

This is not, however, sufficient for per-structure and
other non-scalar operations. To address this, we split all
per-structure operations into per-field operations, making
all memory accesses explicit. Another issue is the ac-
cesses to portions of scalars using either pointers of dif-
ferent types of unions. We did not address this issue in
our implementation, choosing to assume the program is
wholly type-safe. Run-time checks can be applied to this
case to map byte or similar accesses to the original scalar
types, thus providing at least a conservative estimate of
the dependencies.

Another complication is in parameter passing, as there
needs to be a dependence from the calculation of parame-
ters to the use. We resolve this by introducing special vari-
ables, to which we simulate writes of the passed-in values
using synthesizedRecInst calls, and from which we sim-
ulate copies to the actual parameters. Return values are
handled similarly. This, of course, also fails to work if a

structure is passed or returned by value. We address that
by passing a copy by reference instead, and adjusting the
code accordingly.

3.2 Control Dependence

Given a program, a statementx is control dependent on
a branchy if the following two conditions hold: in one
direction ofy, the control flow must reachx; in the other
direction, the control flow may not reachx [2]. Like the
static data dependence, the static control dependence is a
conservative estimate. It is not exact. The statementx

and the branchy may have many instances in an execu-
tion, but not all instances ofx are control dependent on
all instances ofy. Next we discuss the the exact control
dependence through an example and then present an anal-
ysis algorithm.

3.2.1 Exact Control Dependence

The program in Listing 1 uses a recursive subroutine to
traverse a linked list twice. It increments a counter af-
ter visiting a node. At the program level, the cost incre-
ment is control dependent on the empty test in the main
function (whether to enter a list traversal). Via way of
the recursive call, it is transitively dependent on the test
in the recursive function (whether to continue the traver-
sal). Ignoring these constraints may lead to fictitious ex-
ecutions where the counting is finished before knowing
what to count. However, the static control dependence is
not exact. During an execution, each cost increment is di-
rectly control dependent on only one of the two tests. The
first increment depends on the test in the main function,
but each of the later increments depends on the test that
happened one invocation earlier in the recursive subrou-
tine.

Listing 1: Examples of control dependence

main ( ) {
i f ( m y l i s t != n u l l ) {

coun t ( m y l i s t , c o n d i t i o n 1 ) ;
coun t ( m y l i s t , c o n d i t i o n 2 ) ;

}
}

coun t ( l i s t , c o n d i t i o n ) {
i f ( l i s t . nex t != n u l l )

coun t ( l i s t . next , c o n d i t i o n ) ;
. . .
c o s t += 1 ;

}

Lam and Wilson observed the difference between the
static and the run-time control dependence and gave an al-
gorithm for tracking run-time control dependences during
program simulation [25]. Presumably for efficiency rea-
sons, they did not measure the exact control dependence
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in the presence of recursion, for example the program in
Listing 1. Other researchers such as Zhang and Gupta
used exact control dependence but did not detail the al-
gorithm [42]. We next present a method that finds exact
control dependences by storing and searching relevant in-
formation in a stack.

Using the exact control dependence tracking, we find
legal computation regrouping across complex control
flows. For the example program, a legal regrouping
merges the two list traversals and hence greatly improves
the temporal locality in this recursive program. We note
that current static analysis cannot recognize the two list
traversals because of the information loss when analyzing
the recursive call. By modeling recursive functions, we
can study programs that use (mutual) recursive data struc-
tures such as lists, trees, and graphs as well as programs
that use divide-and-conquer algorithms such as quick-sort
and multi-grid simulation.

3.2.2 Exact Control Dependence Analysis

To make the discussion somewhat clear, we refer to state-
ments in the source code assource lines, and the instances
of source lines in the execution trace asinstructions; we
refer to anunderlying source lineof an instructioni to de-
note the source linei is an instance of, and abbreviate is as
usl(i). We also limit the discussion to single procedures
at first, and will generalize it to whole program shortly.

We define an instructioni to be run-time control-
dependent on an instructionc when a conditional exe-
cuted inc has chosen to follow a path in the control flow
graph fromusl(c) to a successor that is post-dominated by
usl(i), while there exists a successor ofusl(c) that does
not have this property. Clearly, in this caseusl(i) must
be control dependent onusl(c). Further, we claim that
c is the instance of a source line thatusl(i) is control-
dependent on that executed the closest beforei. To show
this, let i, c1, c2 be instructions, such thatusl(s) is con-
trol dependent onusl(c1) andusl(c2), andc1 occurs be-
fore c2 in the execution trace. Notice that the underlying
control-flow path for the portion of trace fromc1 to i could
not have taken the path fromusl(c1) to usl(i) that has all
intermediate notes that are post-dominated byusl(i), as
usl(c2) does not have that property, and it is on the path,
soi is not run-time control-dependent onc1, and hence if
s is run-time control-dependent oncj , no other candidate
can intervene between the two.

Now, consider the case of multiple invocations of the
same procedure. Clearly, we only want to consider state-
ment instances in the current invocation of a procedure
when testing for in-procedure control-dependence, since
conditionals run in a previous copy are not directly rel-
evant. Further, if an instruction is run-time control-
dependent on an another instruction in the same subrou-
tine instance, we clearly do not have to worry about any

control dependencies within the same invocation. Since
the partial order relationship induced by control depen-
dence is transitive, and taking care of any control de-
pendence of the controlling branch between invocations
would ensure their execution before the controlled state-
ment.

Thus, it remains to consider the case where an instruc-
tion does not have an intraprocedural control-dependence.
But then, the run-time control dependence for the node is
clearly the same as for the procedure call instruction used
to invoke the current function.

To implement this run-time analysis, we first perform
traditional static analysis, constructing the control flow
graph, and then the control dependence graph [2]. The
run-time state is maintained for each invocation of a func-
tion. The state includes the last access of the basic blocks
of the function. The states are maintained as a stack just
as the call stack. The compiler inserts code that pushes
a new state at entry to a function and pops the top state
at each exit of a function. The exit call is inserted before
the actual return statements, but after the data dependence
instrumentation produced for them. Further, each basic
block is given a unique ID, and an array is constructed
for it listing all of the basic blocks it is statically control-
dependent on.

At the entrance to an executionb of basic blockB, the
analysis finds the source of the control dependence by
calling ControlDependence(b), given in Algorithm 1.
It searches the state stack in the top down order for the
last executiona of all basic blockB′ which B statically
control dependent on. When closesta is the source of the
control dependence. Once it is found in one state in the
stack, no further search is needed for the rest of the stack.

Algorithm 1 Control Dependence Analysis
procedureControlDependence(b)

{b is an execution of basic blockB}
{Find the source of control dependence,a}
Let a be null
for each functionf in the call stack in the top-down
orderdo

for each basic blockB′ thatB statically control de-
pends ondo

Let b′ be the last instance ofB′ executed
if distance(b′, b)<distance(a, b) then
{b′ is closer thana}
Let a = b′

end if
end for
if a is not nullthen
{Stop the search}
break

end if
end for

5



return a as the source of the control dependence

endControlDependence

3.3 Data Dependence

Given an instruction trace and the exact data access by
each instruction, data dependence analysis is straightfor-
ward. In this study, we track only theflow dependence,
caused by the flow of a value from its definition to one of
its uses [2]. Two other types of data dependence areanti-
andoutput-dependences, which are caused by the reuse of
variables. They are removed by renaming, which creates
a new name for each value in the same way as value num-
bering or static single assignment does in a single basic
block.

The analysis traverses the instruction trace, records
the last assignment of each program variable, defines a
new name after each write, and records the current value
(name) for each variable. For each variable read in the
trace, the analysis converts it to a use of the current value
and adds a flow dependence edge from the instruction of
the last definition to the instruction of the current read. In
the worst case, renaming adds a number of names propor-
tional to the length of the trace. We will remap the names
into variables in the last step of the analysis.

3.4 Constrained Computation Regrouping

Computation reordering clusters instructions that access
the same data values. We call the data accessed by a
group of instructions thedata footprint. For a group of
instructions to reuse data in cache, the size of their foot-
print should be no greater than the size of cache. Shown
by Algorithm 2, constrained computation regrouping is a
heuristic-based method for reordering instructions while
limiting the size of their footprint.

The function reorder traverses the instruction trace.
When an instruction is not yet executed, it callsexecute
to start the next reordering process from this instruction
with an initial data budgetωd, which is the size of the data
cache. As the reordering picks an instruction that reuses a
particular datum, it temporarily skips all other unexecuted
instructions. It is a form of speculation. It may incur the
execution of many other instructions and over spend the
data budget, in which case we need to roll back and can-
cel the speculative reordering. Three other data structures
are used to support the speculation. The instruction logLi

and the data logLd, initially empty, keep the speculated
but not yet committed reordering results. The instruction
budgetωi limits the depth of the speculation for efficiency
reasons that we will discuss later.

Algorithm 2 Constrained Computation Regrouping

data structures
P is the instruction trace to be reordered

P ′ is the reordered trace
Si is the set of executed instructions
Sd is the set of data current accessed

procedureReorder(P , ωd, ωi)

{P is the instruction trace;ωd and ωi are data and
instruction budgets.}
Let Ld andLi be the logs of the trial executions
for each instructioni in P in the execution orderdo

if i is not executedthen
{Start a trial execution}
call Execute(i, Ld, ωd, Li, ωi)

end if
end for

endReorder

procedureExecute(i, Ld, ωd, Li, ωi)

{i is the current instruction;ωd and ωi are data and
instruction budgets; andLd and Li be the logs of the
trial execution.}
Store the current stateS =< Ld, Li, P

′ >

if not Check(i, Ld, ωd, Li, ωi) then
{The current trial failed}
for each instructioni′ sinceS.Li do

Removei′ from executed

end for
for each datad sinceS.Ld do

Removed from Sd

end for
Roll back to stateS

else
{The current trial succeeded}
for each operandop in i do
{Divide the budgets}
Letn be the next (not yet executed) instruction that
usesop
call Execute(n, Ld, Ld.size+∆ωd, Li, Li.size+
∆ωi)

end for
end if

{Clean up}
if directly invoked byReorderthen

for each datad in Ld do
Removed from Sd

end for
ClearLd andLi

end if

endExecute

procedureCheck(i, Ld, ωd, Li, ωi)

{Add the effect ofi and check the budget}
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for each operandop in i do
if op is not inSd then

Add op to Sd andLd

Add i to Li andSi

end if
end for
if Ld.size > ωd or Li.size > ωi then

return false
end if

{Check all dependences}
for each (not yet executed) instructionj thati depends
do

if not Check(j, Ld, ωd, Li, ωi) then
return false

end if
end for
return true

endCheck

The functionExecutecalls Checkto inquire whether
the execution of the current instruction would exceed the
budget. Both functions may speculatively reorder instruc-
tions, soExecutefirst checkpoints the current state. If the
current instruction cannot be executed within the budget,
it will roll back to the beginning state and return. Oth-
erwise, it continues the speculation on instructions that
reuse the data of the current instruction. When more than
one candidate is present, it divides the budget, currently,
equally among the candidates. The budget division bal-
ances the reordering permitted for candidate instructions.
The functionChecktraces back the dependences, executes
(and checks) all predecessors, accounts their consump-
tion of the budget, and checks for any over spending. If
so, it returns false and causes theExecuteto discard the
trial. Otherwise, it completes the speculative execution
and records the reordered execution.

The time cost of the algorithm is linear to the size of
the trace, because it limits the size of each trial by the
instruction budget. Since a trial takes a constant time, and
every trial executes at least an instruction, the total time
cost is linear. Without the instruction budget, the time
complexity can be quadratic in extreme cases. The trials
can be efficiently implemented by a combination of stack-
like transaction logs and set data structures.

3.5 Memory Re-allocation

Memory re-allocation is the reverse of memory renam-
ing. It assigns values with non-overlapping lifetimes into
a single variable in order to minimize the storage require-
ment. It uses a single pass to calculate the live range of
each value. It keeps free variables in a stack to minimize
the distance of the data reuse. At the definition a value,
it pops a vacant variable from the top of the stack (or

create a new variable if the stack is empty). At the last
use of a value, it frees its variable by pushing it into the
stack. Note that this scheme does not necessarily mini-
mize the number of needed variables. As shown in the
evaluation, memory re-allocation after constrained com-
putation reordering can eliminate the storage expansion
caused by variable renaming. Therefore, removing all
anit- and output-dependences does not cause an increase
in the memory demand of a program.

4 Evaluation

In an earlier study, we used unconstrained computation
regrouping on a set of Fortran 77 programs and observed
significant locality improvements [12]. C programs are
more difficult for computation regrouping because they
often have complex data and control structures (includ-
ing recursion). In this section, we use a set of C pro-
grams to evaluate the effect of the exact control depen-
dence tracking, memory renaming and reallocation, and
constrained computation regrouping. For each program,
Table 1 shows the name, the source, a description, and
the size of the input. The last two columns show that
the programs have from under two thousand to about two
hundred thousand data elements being accessed by a few
hundred thousand to over six million memory times.

We first instrument a program, run it to get an execu-
tion trace, and measure the capacity miss rate on all cache
sizes on the original trace [27]. Then, the trace is re-
ordered, and the capacity miss rates are measured again.
The temporal locality of the two versions are then com-
pared by the cache capacity miss rates on all cache sizes.
The regrouping does not change the number of memory
accesses. However, memory renaming and reallocation
changes the size of program data. The new sizes are
shown inside parentheses in the last column of Table 1.
The combined transformations reduces the size of pro-
gram data in all cases. Therefore, a reduction in the miss
rate means a higher reduction in the number of capacity
misses.

We first test the efficacy of analysis in cases where there
are well-known static improvement techniques. One test
program consists of two simple loops which make two
passes over an array. The two loops can be fused together
by an aggressive optimizing compiler to reuse data imme-
diately after it is first accessed. As shown by the left-hand
graph in Figure 3, the trace-level computation regrouping
eliminates capacity misses for a cache size greater than
eight data elements, successfully reproducing the effect
of loop fusion.

For the matrix multiply, shown by the right-hand graph
in Figure 3, computation regrouping removes most of the
capacity misses due to the longest data reuse. To be pre-
cise, it reduces the miss rate of the 4K cache from 7.6%
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Table 1: Test programs
name source description num. accesses (K) num. data (K)
Fuse local two loops reading a single array 352 64.0 (0.0)
MMult textbook multiplication of two matrices 6,688 38.4 (25.8)
BSort textbook integer bubble sort, 768 elements 4,446 1.58 (1.53)
QSort textbook integer quick sort, 15K elements 3,543 30.6 (30.1)
Health Olden [7] linear searches of hospital patient records 3,916 59.8 (5.65)
MST Olden finding a minimal spanning tree 810 27.0 (3.25)
TSP Olden a traveling salesman problem solver 3,394 14.9 (7.03)
TreeAdd Olden recursive summing a balanced 15-level binary tree 2,589 196.9 (196.6)
* The parenthesized numbers in the last column are the data size after memory renaming and reallocation.

to 3.7%, a reduction of 58%. It demonstrates consider-
able potential for cache-performance improvement in this
test, as is expected, but is not as effective as a hand-coded
stripmine-and-interchange version, which resulted in a
87% improvement. Constrained reordering is a heuristic-
based solution to an NP-hard problem. It loses to compiler
blocking because it does not exploit the high-level struc-
ture of the matrix multiply program.

For further evaluation, we tested two common sort-
ing algorithms — bubble sort and quick sort, and four
programs from the Olden benchmark set:Health, MST,
TreeAdd, and TSP. As illustrated in Figures 4, most of
the tests showed major potential for locality improvement,
while two tests —QSortandTreeAdd— showed no major
improvement. The result forTreeAddis consistent with
expectations, since the benchmark performs a single walk
over a binary tree and thus has very little reuse. On the
other hand,QSort has excellent locality because it nat-
urally blocks computation for power-of-two cache sizes.
Computation regrouping finds little opportunity for im-
provement.

The exact miss-rate reduction is given in Table 2 for a
cache size equal to1

32
, 1

16
, 1

8
, 1

4
, and 1

2
of the power-of-

two size needed to have no capacity miss. The compu-
tation regrouping has little and no effect onTreeAddand
QSort. It reduces the average miss rate by 30% forMMult
and 75% forTSP. For the other four programs, the reduc-
tion is at least 90% or a factor of 10, showing the great
potential of computation regrouping in these programs.

The effect of exact control dependence tracking
Many test programs do not have regular loop struc-
tures. The control dependence allows computations to
be regrouped across different control structures includ-
ing branches and procedural calls. Over a half of the
programs,QSort, Health, MST, TreeAdd, and portions of
TSP, use recursion. This is perhaps the first study that
finds the exact parallelism in recursive programs and au-
tomatically measures the effect of computation regroup-
ing.

The effect of constrained computation regrouping A
greedy, unconstrained regrouping algorithm may degrade
rather than improve the program locality because too
much regrouping of related computations may overflow
the cache of a limited size. As an example, we use uncon-
strained regrouping inQSort. The result is shown by the
left-hand side graph in Figure 5. The capacity miss rate is
increased by at least a factor of two for cache sizes greater
than 128. The size needed to fully cache the execution is
increased from 16K to 65K elements.

The effect of memory renaming and reallocation
Complete memory renaming removes all false data de-
pendences. Without renaming, there is much less chance
of regrouping. As an example, we apply constrained re-
grouping onBSortwithout memory renaming and reallo-
cation. The right-hand side graph in Figure 5 shows that
there is no visible difference between the miss-rate curve
of the reordered version and that of the base version. The
presence of false dependences prevents computation re-
ordering to have an observable effect. As shown before in
Table 2, the capacity miss rate ofBSortcan be reduced by
a factor of 9 if we remove the false dependences through
memory renaming and reallocation. Renaming increases
the data size. However, as shown in Table 1, after reallo-
cation, the data size is actually reduced inBSortand in all
other programs.

5 Potential Uses of the System

The new system is useful to programmers, compiler writ-
ers, and computer architects. A programmer can use it to
estimate the potential of locality improvement for a pro-
gram before trying complex transformations for a specific
cache system. A compiler writer can use it to study the
potential improvement over the current techniques and to
experiment with new regrouping strategies without a full
compiler implementation. A computer architect can use it
to tailor the memory system design to the available pro-
gram locality.

The limit of program locality is vitally important to
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Figure 3: The fusion test and matrix multiply

Table 2: The miss-rate reduction by constrained computation regrouping
cache size Fuse MMult BSort QSort Health MST TreeAdd TSP average
1/32 data size 100% 25% 87% 6% 64% 78% 0% 93% 57%
1/16 data size 100% 25% 89% 3% 94% 87% 0% 61% 57%
1/8 data size 100% 25% 89% 3% 94% 87% 0% 61% 60%
1/4 data size 100% 28% 91% 1% 100% 100% 0% 61% 60%
1/2 data size 100% 47% 92% 1% 100% 100% 0% 100% 68%
average 100% 30% 90% 3% 92% 93% 0% 75% 60%

high-performance computing, where large systems are
built to run a few applications. In 1988, Callahan, Cocke,
and Kennedy gave a model calledbalanceto measure the
match between the memory demand of a program and the
data bandwidth of a machine [6]. Some programs run well
on machines with a memory hierarchy, and some need the
high-bandwidth vector memory. The simulation tool can
show how the situation changes when program transfor-
mations are considered. If the locality of a program can-
not be improved by the simulation tool, it is unlikely that
the program can utilize cache well even with the best pro-
gram optimization.

6 Related Work

Numerous studies in the past forty years have character-
ized the memory behavior of computer programs, mod-
eling them as a trace of accesses to memory pages or
cache blocks. Some studied more structured programs
and finer grained data—data reuses within and across
loop nests [28], per-statement [29], and across program
inputs [14]. These studies show that long-distance data
reuses cause cache misses, but they do not show how
well we can improve the locality of data access. Our ear-
lier work collected instruction traces from a set of For-

tran programs and applied a greedy heuristic to shorten
the distance of data reuses [12]. They observed that the
greedy regrouping sometimes worsens the locality. They
did not model the exact control dependence, nor did they
use memory renaming.

Loop-nest optimization has achieved great success and
become commonplace in industry compilers. Loop fu-
sion improves the locality by combining loops that ac-
cess the same data. Kennedy and McKinley [23] and
Gaoet al. [17] modeled loops and data reuses as a graph.
The complexity of loop fusion was studied using a graph
model [23] and a hyper-graph model [12]. Many fusion
techniques used greedy heuristics [12, 22]. The graph
model does not measure the exact locality. It treats the
loop fusion as a clustering process and assumes full cache
reuse within a fused loop and no cache reuse between
loops. In this paper, we present a new program model
based on the bandwidth minimization problem. We treat
the computation regrouping as a sequencing process and
consider all cases of the cache reuse.

Computation blocking is arguably the most complex
form of computation regrouping. Callahanet al. de-
scribed the transformation as unroll-and-jam and gave
its legality test [6], which allows a compiler implemen-
tation [8]. The later studies, for examples Wolf and

9



Bubble Sort

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 16 64 25
6

10
24

cache size (elements)

m
is

s
 r

a
te

base

regrouping

,

Quick Sort

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 25
6

10
24

40
96

16
38

4

cache size (elements)

m
is

s
 r

a
te

base

regrouping

Health

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 16 64 25
6

10
24

40
96

16
38

4

cache size (elements)

m
is

s
 r

a
te

Base

Regrouping

,

MST

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 16 64 25
6

10
24

40
96

16
38

4

cache size (elements)

m
is

s
 r

a
te

base

regrouping

Tree Add

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

cache size (elements)

m
is

s
 r

a
te

base

regrouping

,

Traveling Salesman

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 16 64 25
6

10
24

40
96

cache size (elements)

m
is

s
 r

a
te

base

regrouping

Figure 4: The effect of constrained computation regrouping
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Lam [39], Cierniak and Li [9], and Kodukulaet al. [24],
modeled tiling as an optimization problem in the (high-
dimensional) iteration space and approximated the opti-
mal solution in various ways. Loop fusion and tiling may
be combined for loops that are all fusible [24, 33, 35, 40,
41]. Computation fusion is also used to transform dy-
namic programs [11, 19, 30, 36, 37].

Unlike high-level program transformations, the trace-
based reordering knows the exact control and data depen-
dence. However, it does not know the high-level control
structure needed for tiling. It identifies legal computation
sequences, but they may not be coded efficiently by a pro-
gram. Still, the trace-level simulation can be used to study
the potential for a wide range of programs. Pingaliet
al. generalized the idea of loop fusion to computation re-
grouping and applied it manually to a set of C programs
commonly used in information retrieval, computer anima-
tion, hardware verification and scientific simulation [32].
The new tool allows these techniques to be studied and
their potential measured without labor-intensive manual
programming and reprogramming.

Nicolau and Fisher first showed the limit of parallelism
at the instruction level when the control and false data de-
pendences are ignored [31]. Later studies added differ-
ent levels of constraints. Lam and Wilson were the first
to model the run-time control dependence [25]. As de-
scribed in Section 3.2.1, their method was not accurate for
recursive procedures. They analyzed binary programs and
removed a subset of false dependences involving register-
allocated loop index variables. They, as well as most oth-
ers, used greedy reordering, which is sufficient for the data
flow model with an unlimited number of processors. One
exception is the work of Theobaldet al., who measured
the “smoothability” of the parallelism and used it to con-
sider the resource constraint [38]. In comparison, our tool

tracks the exact control dependence, applies the general
form of renaming and reallocation (and removesall false
dependences), and uses constrained reordering. Almost
all previous limit studies assumed uniform, single-cycle
access to memory. On modern machines, the memory
speed is orders of magnitude slower than the register and
cache speed. Hence the potential gain from locality is as
significant as the potential form parallelism, especially for
non-numerical programs.

Program control flow is usually analyzed in two ways.
If-conversion uses predicates to construct straight-line
code and convert the control dependence to the data de-
pendence. Allenet al. gave a method that systemati-
cally removes the control flow in loops [1]. Ferranteet al.
modeled control dependence explicitly [16]. Cytronet al.
gave an efficient measurement algorithm [10]. Later stud-
ies followed these two classical approaches. A compre-
hensive treatment can be found in the textbook by Allen
and Kennedy [2].

Data renaming is a special form of memory manage-
ment. It uses a minimal amount of storage for the ac-
tive data values (but does not need paging or cache evic-
tion). Huang and Shen studied the reuse of values [21].
Burgeret al. measured the benefit of the optimal cache
management on program traces [5]. As discussed in Sec-
tion 2, memory and cache management is orthogonal to
the problem of computation reordering.

7 Summary

We have shown that optimizing for locality is differ-
ent from optimizing for parallelism or cache utilization.
We have presented a heuristic-based algorithm for con-
strained computation regrouping. We have designed a
trace-driven tool that measures the exact control depen-
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dence and applies complete memory renaming and re-
allocation. The new algorithm and tool significantly im-
proved the temporal locality of a set of C programs, reduc-
ing the number of cache capacity misses by a factor of ten
for half of the programs. In addition, complete variable
renaming before reordering did not increase the data size
when applied before constrained regrouping and memory
re-allocation. While the results suggest that optimizing
for locality has a great effect, the potential is not uni-
form across all programs. Therefore, the automatic tool is
valuable in allowing a programmer to estimate the benefit
of computation regrouping before applying it in complex
programs.
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